Brief Summary of Chapter 1

微观粒子波动性--运动粒 子在空间出现的几率分布 呈现波的特征--几率波!

量子力学的统计学本质

量子力学体系的状态函数 --波函数 **Ψ**(*r*,*t*)

简单体系 : i维势箱

ĤΨ = EΨ
 边界条件

A. 能量量子化

B. 测不准原理: $\Delta x \Delta p$ or $\Delta E \Delta t \ge \hbar$

1. 几率密度分布函数 |Ψ/2 2. 正交归一性: $\int \Psi_i^* \Psi_i d\tau = \delta_{ii}$ 3. 本征函数/方程: $\hat{A} \Psi = a \Psi$ 4. Schrödinger方程: $i\hbar\partial\Psi/\partial t = \hat{H}\Psi$ (定态) $\hat{H}\Psi(\mathbf{r}) = E\Psi(\mathbf{r})$ 5. 态叠加原理: $\Psi = \Sigma c_i \psi_i$, $\hat{A} \psi_i = A_i \psi_i$ 求平均值: $\langle A \rangle = \int \Psi^* \hat{A} \Psi d\tau / \int \Psi^* \Psi d\tau$ $= \Sigma c_i^2 A_i / \Sigma c_i^2$

 $\psi = \prod_{i=1-3} \sqrt{\frac{2}{l_i}} \sin \frac{n_i \pi x_i}{l_i} E = \frac{h^2}{8m} \sum_{i=1-3} \frac{n_i^2}{l_i^2} \quad (n_i = 1, 2, 3, ...)$

Chapter 2 Atomic structure

The basic building block of all matters.

- The smallest particle of an element that has the same properties as the element.
- Composed of a central nucleus and an "electron cloud ".
- Electron cloud: not really a cloud of electrons, but an informal description of the probability wave of electrons in constant motion!

Evolution of Atomic Models

- 1803, "Atomic Theory" by John Dalton.
- 1904, "*Plum pudding*" model proposed by J.J. Thomson after his discovery of electron (1897) in cathode rays.

i.e., negatively charged electrons embedded in a uniformly distributed positive charge.

History of Atomic Models

• 1911, disproval of Thomson's model!

Geiger and *Marsden* with *E*. *Rutherford* performed a scattering experiment with alpha particles (*He*²⁺) shot on a thin gold foil.

Deflection angle $\Theta \ge 90^{\circ}$

10-3500
(predicted by Thomson model)
10-4
(observed by Rutherford et al.)

History of Atomic Models

1912: Rutherford proposed the "Planetary Model" of the atom,
i.e., positively charged core surrounded by electrons.

(**1908 Nobel prize** chemistry of radioactive substances)

Rutherford estimated the diameter of nucleus to be only about 10⁻¹⁵ m. The diameter of an atom, however, was known to be 10⁻¹⁰ m, about 100 000 times larger. Thus most of an atom is empty space.

The planetary model failed in explaining why collapses of electrons into nucleus do not occur!

1) According to Maxwell theory of electromagnetism, as the electron orbits around the nucleus, it accelerates and hence radiates energy.

2) The typical time for the electron to collapses into the nucleus would be about 10⁻⁸ s.

3) The spectrum of radiation would be continuous.

1913: Niels Bohr proposed his Bohr model of the atom with incorporation of the idea of "quanta" (by Plank & Einstein).

The Bohr Model Explanation of the Three Series of Spectral Lines

Bohr atom Merits: i) Explains why atoms are stable ii) Predicts energy is quantized iii) Explains H atom spectra

Demerits:

iv) Fails to predict fine spectral structure of Hv) Fails for many-electron atoms

e⁻ is classical particle

e⁻ in 'orbit' at fixed *r* corresponding to a quantum number.

Bohr atom e⁻ is a classical particle e⁻ in 'orbit' at fixed r

Schrödinger atom (1926) 1) Electron confined in an atom should also behave like a wave. Schrödinger equation!

2) No fixed orbits but electron density distribution

3) For 3-D, we need three quantum numbers n, l, m_l

History of Atomic Models

•Understanding atomic structure is the first step to understand the Structures of Matters.

•The so-called electron density is actually the probability density of electron wave!

Quantum mechanics

2.1 The Schrödinger equation and its solution for one-electron atoms 2.1.1 The Schrödinger equation H atom, He⁺ and Li²⁺

• The Hamiltonian of a one-electron atom/cation,

- The Hamiltonian for a many-electron atom?
- For a many-electron atom, the kinetic-energy operator should sum up the contribution from every electron. The potential energy function should include all those from **n-e** and **e-e** interactions.

e

Note that the nucleus is much heavier than the electron and the electron moves much quickly around the atomic nucleus! The Hamiltonian can be simplified as

$$\hat{H} = \hat{T}_{e} + \hat{V}_{n-e} = -\frac{h^{2}}{8\pi^{2}m_{e}}\nabla_{e}^{2} + \hat{V}_{n-e}$$
One-electron Hamiltonian
$$\hat{H} = -\frac{h^{2}}{8\pi^{2}m_{e}}\left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial z^{2}}\right) + \hat{V}_{n-e}$$

$$\hat{V}_{n-e} = -\frac{Ze^{2}}{4\pi\varepsilon_{0}r}$$

$$r = \sqrt{x^{2} + y^{2} + z^{2}}$$
The Schrödinger equation
$$\hat{H}\psi = E\psi$$

Separation of variables (x,y,z) hindered by r ?!

Spherical polar coordinates

Using spherical polar coordinates, we have

$$\nabla^{2} = \frac{1}{r^{2}} \frac{\partial}{\partial r} (r^{2} \frac{\partial}{\partial r}) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial}{\partial \theta}) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}$$
$$V_{n-e} = -\frac{Ze^{2}}{(4\pi\varepsilon_{0})r} \qquad \hat{H} = -\frac{h^{2}}{8\pi^{2}m_{e}} \nabla^{2} + \hat{V}_{n-e}$$
$$\frac{\partial}{\partial \theta} = \frac{1}{2} \frac{\partial}{\partial \theta} (r, \theta, \phi) = E\psi(r, \theta, \phi) \text{ becomes}$$

$$\left[-\frac{h^2}{8\pi^2 m_e}\left[\frac{1}{r^2}\frac{\partial}{\partial r}(r^2\frac{\partial}{\partial r}) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}(\sin\theta\frac{\partial}{\partial\theta}) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2}{\partial\phi^2}\right] - \frac{Ze^2}{4\pi\varepsilon_0 r}\right]\psi = E\psi$$

divided by $-h^2/(8\pi^2 m_e)$

$$\frac{1}{r^2}\frac{\partial}{\partial r}(r^2\frac{\partial\psi}{\partial r}) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}(\sin\theta\frac{\partial\psi}{\partial\theta}) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2\psi}{\partial\phi^2} + \frac{8\pi^2m_e}{h^2}(E + \frac{Ze^2}{4\pi\varepsilon_0 r})\psi = 0$$

Thus it is reasonable to suppose $\psi(r, \theta, \phi) = R(r)\Theta(\theta)\Phi(\phi)$.

2.1.2 The solution --- separation of variables Substitute $\Psi(r, \theta, \phi) = R(r)\Theta(\theta)\Phi(\phi)$ into the equation

$$\frac{1}{r^2}\frac{\partial}{\partial r}(r^2\frac{\partial\psi}{\partial r}) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}(\sin\theta\frac{\partial\psi}{\partial\theta}) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2\psi}{\partial\phi^2} + \frac{8\pi^2m_e}{h^2}(E + \frac{Ze^2}{4\pi\varepsilon_0 r})\psi = 0$$

and multiply with $r^2 / [R(r)\Theta(\theta)\Phi(\phi)]$

$$\frac{1}{R(r)}\frac{\partial}{\partial r}\left(r^{2}\frac{\partial R(r)}{\partial r}\right) + \frac{1}{\Theta(\theta)\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\Theta(\theta)}{\partial\theta}\right) + \frac{1}{\Phi(\phi)\sin^{2}\theta}\frac{\partial^{2}\Phi(\phi)}{\partial\phi^{2}} + \frac{8\pi^{2}m_{e}}{h^{2}}\left(E + \frac{ze^{2}}{4\pi\varepsilon_{0}r}\right)r^{2} = 0$$

Now both sides are variableindependent!

 $= -\left[\frac{1}{\Theta(\theta)\sin\theta}\frac{\partial}{\partial\theta}(\sin\theta\frac{\partial\Theta(\theta)}{\partial\theta}) + \frac{1}{\Phi(\phi)\sin^2\theta}\frac{\partial^2\Phi(\phi)}{\partial\phi^2}\right]$

$$let \quad \frac{1}{R(r)} \frac{\partial}{\partial r} \left(r^2 \frac{\partial R(r)}{\partial r} \right) + \frac{8\pi^2 m_e}{h^2} \left(E + \frac{ze^2}{4\pi\varepsilon_0 r} \right) r^2 = \beta$$

$$Radial part$$

$$R eq.$$
Yet unsolvable!
$$\frac{1}{\Theta(\theta) \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Theta(\theta)}{\partial \theta} \right) + \frac{1}{\Phi(\phi) \sin^2 \theta} \frac{\partial^2 \Phi(\phi)}{\partial \phi^2} = -\beta$$
Angular part
Now multiply with $\sin^2 \theta$ and ...
$$\frac{\sin \theta}{\Theta(\theta)} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Theta(\theta)}{\partial \theta} \right) + \beta \sin^2 \theta = -\frac{1}{\Phi(\phi)} \frac{\partial^2 \Phi(\phi)}{\partial \phi^2}$$

$$Et = m^2$$

$$\frac{\sin \theta}{\Theta(\theta)} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Theta(\theta)}{\partial \theta} \right) + \beta \sin^2 \theta = m^2$$

$$\Theta eq.$$
Unsolvable yet!
$$\frac{1}{\Phi(\phi)} \frac{\partial^2 \Phi(\phi)}{\partial \phi^2} = -m^2$$

$$\Phi eq.$$

a.
$$\Phi(\phi)$$
 equation
Its solution in complex form:
 $\frac{d^2 \Phi(\phi)}{d\phi^2} + m^2 \Phi(\phi) = 0$
 $\Rightarrow \phi = Ae^{\pm i|m|\phi}$; Let $m = \pm |m|$, $\phi = Ae^{im\phi}$
Now normalize Φ :
 $\int_0^{2\pi} \Phi^* \Phi \ d\Phi = \int_0^{2\pi} A^2 e^{-im\phi} e^{im\phi} d\phi = 2\pi A^2 = 1$ $\Rightarrow A = (\sqrt{2\pi})^{-1}$
 $\Phi = \sqrt{1/2\pi} e^{im\phi} = \sqrt{1/2\pi} (\cos m\phi + i \sin m\phi)$
 $\therefore \Phi (\phi) = \Phi (\phi + 2\pi)$ (Boundary condition!)
 $e^{im\phi} = e^{im(\phi + 2\pi)} = e^{im\phi} \cdot e^{im2\pi}$ $\therefore e^{im2\pi} = 1$
The values of *m* must be $m = 0, \pm 1, \pm 2, \cdots$
 $m (m)$; magnetic quantum number

1/

Complex function
$$\Phi_m = Ae^{im\phi}$$
 $(m=0,\pm 1,\pm 2,\cdots)$
In case *m*=0, $\Phi_{\pm m} = Ae^{\pm im\phi} = A(\cos m\phi \pm i \sin m\phi)$

How to transform these complex functions into real ones for practical use? Use the superposition principle.

Let
$$\varphi_1 = \Phi_m + \Phi_{-m} = 2A\cos m\phi = B\cos m\phi$$

 $\varphi_2 = \Phi_m - \Phi_{-m} = 2iA\sin m\phi = B'\sin m\phi$

Now normalize φ_1 and φ_2 :

$$\int_{0}^{2\pi} \varphi_{1}^{*} \varphi_{1} d\phi = \int_{0}^{2\pi} (B\cos m\phi)^{2} d\phi$$
$$= B^{2}\pi = 1 \implies B = \sqrt{1/\pi}$$
$$\varphi_{1} = \sqrt{1/\pi} \cos m\phi$$
$$\varphi_{2} = \sqrt{1/\pi} \sin m\phi$$

The solutions of $\Phi(\phi)$ equation

m	complex form	real form
0	$\Phi_0 = \frac{1}{\sqrt{2\pi}}$	$\Phi_0 = \frac{1}{\sqrt{2\pi}}$
1	$\Phi_1 = \frac{1}{\sqrt{2\pi}} e^{i\phi}$	$\Phi_{\pm 1}^{\cos} = \frac{1}{\sqrt{\pi}} \cos \phi$
-1	$\Phi_{-1} = \frac{1}{\sqrt{2\pi}} e^{-i\phi}$	$\Phi_{\pm 1}^{sin} = \frac{1}{\sqrt{\pi}} sin\phi$
2	$\Phi_2 = \frac{1}{\sqrt{2\pi}} e^{i2\phi}$	$\Phi_{\pm 2}^{\cos} = \frac{1}{\sqrt{\pi}} \cos 2\phi$
-2	$\Phi_{-2} = \frac{1}{\sqrt{2\pi}} e^{-i2\phi}$	$\Phi_{\pm 2}^{sin} = \frac{1}{\sqrt{\pi}} sin 2\phi$

b. $\Theta(\theta)$ equation

 $\frac{\sin\theta}{\Theta(\theta)}\frac{\partial}{\partial\theta}(\sin\theta\frac{\partial\Theta(\theta)}{\partial\theta}) + \beta\sin^2\theta = m^2$

The process to solve this equation is too complicated. However, the solution always has the real form, $\Theta(\theta) = NP_1^{|m|}(\cos \theta)$

$$N = \left[\frac{(2l+1)}{2} \frac{(l-|m|)!}{(l+|m|)!}\right]^{1/2}, \quad P_l^{|m|}(z) = \frac{(1-z^2)^{\frac{|m|}{2}}}{2^l l!} \frac{d^{l+|m|}}{dz^{l+|m|}} (z^2-1)^l$$

Demanding $\beta = l(l+1)$ with l = 0, 1, 2, 3, ... to make $\Theta(\theta)$ a wellbehaved function.

l: angular momentum quantum number (角动量量子数) necessary condition: $l \ge |\mathbf{m}|$ (m= 0, ±1, ...) hence, l = 0, 1, 2, 3, ...(s, p, d, f, g, h...)m = 0, (-1, 0, 1), (-2, -1, 0, 1, 2),

Examples of $\Theta(\theta)$: $\Theta(\theta)$ l m $\frac{\sqrt{10}}{4}(3\cos^2\theta - 1)$ 2_0 $\pm 1 \quad \sqrt{\frac{15}{2}} \sin \theta \cos \theta$ $\sqrt{\frac{15}{4}}\sin^2\theta$ ±2

12

c. Solution of R equation

$$\frac{1}{R(r)} \frac{\partial}{\partial r} \left(r^2 \frac{dR(r)}{\partial r} \right) + \frac{8\pi^2 m_e}{h^2} \left(E + \frac{ze^2}{4\pi\varepsilon_0 r} \right) r^2 = \beta$$
Solution
$$R(r) = N \cdot e^{-\rho/2} L_{n+l}^{2l+1}(\rho) \quad \text{(real!)}$$

$$L_{n+l}^{2l+1}(\rho) = \sum_{k=0}^{n-l-1} (-1)^{k+1} \frac{\left[(n+l)! \right]^2 \rho^k}{(n-l-1-k)! (2l+1+k)! k!}$$

$$\rho = 2\alpha r, \quad \alpha = \frac{Z}{na_0} \& a_0 = \frac{4\pi\varepsilon_0 \hbar^2}{m_e e^2} = 0.529 \text{ Å}$$

 $a_0 \sim Bohr \ radius$, and also the atomic unit (au) of length. necessary condition: $n \ge l + 1$ (l = 0, 1, 2,) hence, n = 1, 2, 3, ... n: Principal quantum number

9

Examples of R(r):

n=1, *l*=0

$$R_{10} = 2(\frac{Z}{a_0})^{3/2} e^{-\rho/2}$$

 $\rho = \frac{2Z}{na_0} r$
n=2, *l*=0
 $R_{20} = \frac{1}{2\sqrt{2}}(\frac{Z}{a_0})^{3/2}(2-\rho)e^{-\rho/2}$

Finally, the *Rydberg equation* is obtained to define the energy,

$$E = -\left(\frac{h^2}{8\pi^2 m_e a_0^2}\right) \frac{Z^2}{n^2} = -R \cdot \frac{Z^2}{n^2}, \ R = \frac{h^2}{8\pi^2 m_e a_0^2} = 13.6eV$$

R is called *Rydberg constant* with the value of 13.6 eV.

$\Psi_{n,l,m}(\mathbf{r},\ \theta,\ \phi) = \mathbf{R}(\mathbf{r})\Theta(\theta)\Phi(\phi)$

Real Hydrogenlike Wave Functions

$$n=1, l=0, m=0 \quad 1s = \frac{1}{\pi^{1/2}} \left(\frac{Z}{a}\right)^{3/2} e^{-Zr/a}$$

$$n=2, l=0, m=0 \quad 2s = \frac{1}{4(2\pi)^{1/2}} \left(\frac{Z}{a}\right)^{3/2} \left(2 - \frac{Zr}{a}\right) e^{-Zr/2a}$$

$$n=2, l=1, m=0 \quad 2p_z = \frac{1}{4(2\pi)^{1/2}} \left(\frac{Z}{a}\right)^{5/2} r e^{-Zr/2a} \cos \theta$$

$$n=2, l=1, m=\pm 1 \quad 2p_x = \frac{1}{4(2\pi)^{1/2}} \left(\frac{Z}{a}\right)^{5/2} r e^{-Zr/2a} \sin \theta \cos \phi$$

$$2p_y = \frac{1}{4(2\pi)^{1/2}} \left(\frac{Z}{a}\right)^{5/2} r e^{-Zr/2a} \sin \theta \sin \phi$$

Transformed from the complex form of $\Phi(\phi)$!

Summary

2.1 The Schrödinger equation and its solution for one-electron atoms

2.1.1 The Schrödinger equation

The Hamiltonian Operator of one-electron atoms

Consider that the electron approximately surrounds the atomic nucleus, the Hamilton operator can be simplified as

$$\hat{H} = \hat{T}_e + \hat{V}_{n-e} = -\frac{h^2}{8\pi^2 m_e} \nabla_e^2 + \hat{V}_{n-e}$$
$$\hat{H} = -\frac{h^2}{8\pi^2 m_e} (\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}) + \hat{V}_{n-e}$$

$$\hat{V}_{n-e} = -\frac{Ze^2}{4\pi\varepsilon_0 r}$$
 $r = \sqrt{x^2 + y^2 + z^2}$

The Schrödinger equation

 $\hat{H}\psi = E\psi$

e

Separation of variables ?

$$\hat{H} = \hat{T}_{e} + \hat{V}_{n-e} = -\frac{\hbar^{2}}{2m_{e}} \hat{\nabla}_{e}^{2} - \frac{Ze^{2}}{4\pi\varepsilon_{0}r}$$
Spherical polar coordinates
$$\frac{1}{r^{2}} \frac{\partial}{\partial r} (r^{2} \frac{\partial \psi}{\partial r}) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial \psi}{\partial \theta}) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} \psi}{\partial \phi^{2}} + \frac{8\pi^{2}m_{e}}{h^{2}} (E + \frac{Ze^{2}}{4\pi\varepsilon_{0}r})\psi = 0$$

$$\psi(r, \theta, \phi) = R(r)\Theta(\theta)\Phi(\phi)$$
Separation of variables!
$$-\frac{1}{\Phi} \frac{d^{2}\Phi}{d\phi^{2}} = m_{l}^{2} \longrightarrow \Phi_{m_{l}}(\phi) = \sqrt{\frac{1}{2\pi}}e^{im_{l}\phi} \quad (m_{l} = 0, \pm 1, \pm 2...)$$

$$\frac{\sin \theta}{\Theta(\theta)} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial\Theta(\theta)}{\partial \theta}) + \beta \sin^{2}\theta = m^{2} \longrightarrow \Theta_{l,m_{l}}(\theta), \quad \beta = l(l+1)$$

$$\frac{1}{R} \frac{d}{dr} \left(r^{2} \frac{dR}{dr}\right) + r^{2} \frac{8\pi^{2}m_{e}}{h^{2}} \left(E + \frac{Ze^{2}}{4\pi\varepsilon_{0}r}\right) = \beta \longrightarrow R_{n,l}(r)$$
Quantum numbers-..., n, l, m_{l}

• For H and H-like ions, their one-electron wavefunction (atomic orbital) can be expressed as,

$$\psi_{n,l,m_l}(r,\theta,\phi) = R_{n,l}(r) \cdot \Theta_{l,m_l}(\theta) \cdot \Phi_{m_l}(\phi)$$

These are the **eigenfunctions** of Hamiltonian, following the **eigenequation**,

$$\hat{H}\psi_{n,l,m_l}(r,\theta,\phi) = E_n\psi_{n,l,m_l}(r,\theta,\phi)$$

with the eigenvalue depending solely on the principal quantum number n, i.e.,

$$E_n = -\frac{Z^2 h^2}{8\pi^2 m_e n^2 a_0^2} = -(\frac{h^2}{8\pi^2 m_e a_0^2}) \frac{Z^2}{n^2} = -R \frac{Z^2}{n^2}$$

R= 13.6 eV --- Rydberg constant

2.2 The physical meaning of quantum numbers

 (n, l, m_l)

Principal

Quantum Number

Angular Momentum

Quantum Number

Magnetic Quantum Number

9

2.2.1 The allowed values of quantum numbers Quantum Numbers

- The number of atomic orbitals of a given *l* subshell is *2l+1*.
- The total number of atomic orbitals for a given value of n is n^2 .

2.2.2 The principal quantum number, *n*

- Positive integer values of n = 1, 2, 3, etc.
- Also called the "energy" quantum number, indicating the approximate distance from the nucleus.
- Denotes the electron energy shells around the atom, and is derived directly from the Schrödinger equation.
- Higher "n" \rightarrow higher orbital energy.

$$E_n = -R \frac{Z^2}{n^2}$$
 (H - like atom/ions)

• For H-like atom/ion, the orbitals with the same *n*, but differing in *l* and m_l , are degenerate (equal in energy!). Accordingly, the degeneracy of an energy level is n^2 (spin-free) or $2n^2$ (including spin).

Example: Energy states of a H atom.

// = principal

$$E_n = -R\frac{Z^2}{n^2}$$

 $n = 1, 2, 3 \dots \infty$ n = 1 : ground state n = 2 : first excited statesn = 3 : second excited states

 $E_n = -13.6 \left(\frac{1}{n^2}\right)$ $E_1 = -13.6 \text{ eV}$

 $E_2 = -3.40 \text{ eV}$

 $E_3 = -1.51 \text{ eV}$

 $E_4 = -0.85 \text{ eV}$

 $E_5 = -0.54 \text{ eV}$

• $E_{\infty} = 0 \text{ eV}$

Example: Energy states of a Li⁺ ion.

For this two-electron cation, electron-electron interaction should be taken into account. However, we may estimate the energy levels of its atomic orbitals by using the formula derived for one-electron atom/cation, i.e.,

$$E_n = -R \frac{Z^2}{n^2} \quad \mathbf{R} = 13.6 \text{ eV}$$

 $\mathbf{E}_{1s} = -9\mathbf{R}$

 $E_{2s,sp} = -(9/4)R$

 $\mathbf{E}_{3s} = -\mathbf{R}$

• If the *e-e* interaction is taken into account, the sublevels with the same *n* value should differ in energy. Why?

2.2.3 the azimuthal quantum number, l

a. Classical Mechanics of one-particle angular momentum. The vector *r* from the origin to the instantaneous position of a particle is given by $r = \mathbf{i}x + \mathbf{j}y + \mathbf{k}z$

The angular momentum L is perpendicular to the plane defined by the particle's position vector rand its velocity v or momentum p.

The particle's angular momentum *L* with respect to the coordinate origin is defined as

$$L = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x & y & z \\ p_x & p_y & p_z \end{vmatrix} \begin{aligned} L_x &= yp_z - zp_y \\ L_y &= zp_x - xp_z \\ L_z &= xp_y - yp_x \end{aligned}$$

$$L^{2} = |L|^{2} = L \cdot L = L_{x}^{2} + L_{y}^{2} + L_{z}^{2}$$

b. One-particle orbital-angular-momentum in Quantum Mechanics.

The motion of an electron within an atomic orbital (through-space) results in *orbital angular momentum M* (as the analog of the classical mechanical quantity *angular momentum L*), the operator of which fulfills

$$\hat{M}^{2} = \hat{M}_{x}^{2} + \hat{M}_{y}^{2} + \hat{M}_{z}^{2}$$

$$\hat{M}_{x} = y\hat{p}_{z} - z\hat{p}_{y} = -i\hbar(y\frac{\partial}{\partial z} - z\frac{\partial}{\partial y})$$

$$\hat{M}_{y} = z\hat{p}_{x} - x\hat{p}_{z} = -i\hbar(z\frac{\partial}{\partial x} - x\frac{\partial}{\partial z})$$

$$M_{z} = x\hat{p}_{y} - y\hat{p}_{x} = -i\hbar(x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x})$$

Its components
$$\hat{M}^{2} = \hat{M}_{x}^{2} + \hat{M}_{y}^{2} + \hat{M}_{z}^{2}$$

In spherical polar coordinates

$$\hat{M}_{x} = i\hbar(\sin\phi\frac{\partial}{\partial\theta} + \cot\theta\cos\phi\frac{\partial}{\partial\phi})$$

$$\hat{M}_{y} = -i\hbar(\cos\phi\frac{\partial}{\partial\theta} - \cot\theta\sin\phi\frac{\partial}{\partial\phi})$$

$$\hat{M}_{z} = -i\hbar \frac{\partial}{\partial \phi}$$

 $\Rightarrow \hat{M}^{2} = -\hbar^{2} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial}{\partial \theta}) + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \right]$

These operators are simply related to the azimuthal variables!

I denotes the orbital angular momentum.

- Indicates the shape of the orbitals around the nucleus.
- Denotes the different sublevels within the same main level "*n*".

Spatial quantization of electron motion.

(Electromagnetic induction) When there exists an angular momentum of electron motion, there is a magnetic (dipole) moment.

Such a magnetic moment is defined as

with its magnitude being

$$\mathbf{\mu} = \frac{Q}{2m_e} \mathbf{M} = -\frac{e}{2m_e} \mathbf{M}$$

$$|\mu| = \frac{e}{2m_e} / M / = \frac{e\hbar}{2m_e} \cdot \sqrt{l(l+1)} = \beta_e \sqrt{l(l+1)}$$
$$\beta_e = \frac{e\hbar}{2m_e} = 9.274 \times 10^{-24} J \cdot T^{-1}$$
Bohr magneton (μ_B)
$$|\mu|_s = 0, \ |\mu|_p = \sqrt{2}\beta_e, \ |\mu|_d = \sqrt{6}\beta_e, \ |\mu|_f = 2\sqrt{3}\beta_e$$

- When *l* increases, the magnetic moment increases, and the influence of external magnetic field on the electron motion is enhanced.
- Zeeman effect: splitting of atomic spectral lines (of the same *n*) caused by an external magnetic field.

2.2.4 Magnetic Quantum Number, m_l

$$\Phi_{m_l} = A e^{i m_l \phi}$$

i) Define the *z*-component (*M_z*) of the orbital angular momentum.
ii) Determine the component (*µ_z*) of the magnetic moment *µ* in the direction of an external magnetic field.

$$\hat{M}_{z} = -i\hbar \frac{\partial}{\partial \phi} \qquad \hat{M}_{z} \Phi_{m_{l}} = -i\hbar \frac{\partial}{\partial \phi} (Ae^{im_{l}\phi}) = m_{l}\hbar (Ae^{im_{l}\phi}) = m_{l}\hbar \Phi_{m_{l}}$$

$$\hat{M}_{z}\Psi_{n,l,m_{l}} = \hat{M}_{z}(R\Theta\Phi) = R\Theta(\hat{M}_{z}\Phi) = m_{l}\hbar R\Theta\Phi = m_{l}\hbar\Psi_{n,l,m_{l}}$$

$$\therefore \hat{M}_{z} \Psi_{n,l,m_{l}} = m_{l} \hbar \Psi_{n,l,m_{l}} \implies M_{z} = m_{l} \hbar \text{ (a vector !)}$$

 \rightarrow Both Ψ and Φ are eigenfunctions of \hat{M}_z !

$$\mu_z = -\frac{e}{2m_e}M_z = \frac{-e\hbar m_l}{2m_e} = -m_l\beta_e \quad (\because \beta_e = \frac{e\hbar}{2m_e})$$

Space quantization!!

Space quantization of orbital angular momentum.

Here the orbital quantum number is l=2 and there are accordingly 2*l*+*1*=5 possible values of the magnetic quantum number m_1 , with each value corresponding to a different orientation of orbital angular momentum *L* relative to the *z* axis.

$$\left|L\right| = \sqrt{l(l+1)}\hbar$$

$$L_z = m_l \hbar$$

 $\alpha(l, m_l) = \operatorname{acos}(L_z / |L|) = \operatorname{acos}(\frac{m_l}{\sqrt{l(l+1)}})$

Example: Please derive the angle between the orbital angular momentum of the AO p_{+1} and the z-axis.

$$\therefore \alpha(l, m_l) = \operatorname{acos}(L_z / |L|) = \operatorname{acos}(\frac{m_l}{\sqrt{l(l+1)}})$$

$$\therefore \alpha(1,1) = \operatorname{acos}(\frac{1}{\sqrt{2}}) = \pi/4$$

Magnetic Quantum Number, m_l

• Denotes the direction or orientation of an atomic orbital.

 $m_l = 0, \pm 1, \pm 2 \dots \pm l$

Number of orbitals in a subshell

= 2 *l* + 1

l	m _l	Atomic orbital	
		complex	real
0	0	S	S
1	0	p ₀	pz
	+1	р ₊₁	
	-1	р ₋₁	ρ _{x &} ρ _y
2	0	d ₀	$d_{2z^2-x^2-y^2} = d_{z^2}$
	+1	d ₊₁	
	-1	d ₋₁	a _{xz} & a _{yz}
	+2	d ₊₂	
	-2	d ₋₂	$a_{x^2-y^2} \ge a_{xy}$

Key points: For H-like atom/ions, the wavefunctions to describe their atomic orbitals (AO's) that are derived from their Schrödinger equations can be characterized using three quantum numbers, i.e., *n*, *l*, *m*, and symbolized as ψ_{nlm} .

$$\psi_{nlm} = R_{n,l}(r) \cdot Y_{l,m}(\theta,\phi) \text{ with } Y_{l,m}(\theta,\phi) = \Theta_{l,m}(\theta) \cdot \Phi_{m}(\phi)$$
They are eigenfunctions of those Hermitian operators $\hat{H}, \hat{L}^{2}(\hat{M}^{2})$
and $\hat{L}_{z}(\hat{M}_{z})$, by the following eigenequations,
 $\hat{H}\psi_{nlm} = E_{n}\psi_{nlm} \quad E_{n} = -RZ^{2} / n^{2}$
Magnitude of orbital
angular momentum
 $\hat{L}^{2}\psi_{nlm} = l(l+1)\hbar^{2}\psi_{nlm} \&$
 $\hat{L}^{2}Y_{l,m} = l(l+1)\hbar^{2}Y_{l,m} \text{ with } L^{2} = l(l+1)\hbar^{2} \Longrightarrow / L \models \sqrt{l(l+1)}\hbar$
 $\hat{L}_{z}\psi_{nlm} = m\hbar \psi_{nlm} \& \hat{L}_{z}Y_{l,m} = m\hbar Y_{l,m}$
Note: Angular momentum I
is a vector!

2.3 The wavefunction and electron cloud

2.3.1 The wave-functions of hydrogen-like ions

$$\psi_{nlm} = R_{n,l}(r) \cdot \Theta_{l,m}(\theta) \cdot \Phi_m(\phi)$$

$$\psi_{1s} = \sqrt{\frac{Z^3}{\pi a_0^3}} e^{-\frac{Zr}{a_0}} \psi_{2s} = \frac{1}{4} \sqrt{\frac{Z^3}{2\pi a_0^3}} (2 - \frac{Zr}{a_0}) e^{-\frac{Zr}{2a_0}}$$

Fig. (left) The ψ -r and ψ ²-r diagrams of the *1s* state of the hydrogen atom; (right) The ψ -r of the *2s* state .

12

A Radial Probability Distribution of Apples

2.3.2 The radial distribution function

• Probability distribution function $|\psi|^2$ with

$$\psi = R_{n,l}(r) \cdot \Theta_{l,m}(\theta) \cdot \Phi_m(\phi) = R_{n,l}(r) \cdot Y_{l,m}(\theta,\phi)$$

Define $Y_{l,m}(\theta,\phi) = \Theta_{l,m}(\theta) \Phi_m(\phi)$ Normalized spherical harmonics

• The probability of finding electron in the region of space $r \rightarrow r+dr$, $\theta \rightarrow \theta + d\theta$, $\phi \rightarrow \phi + d\phi$: $d\tau = r^2 \sin \theta dr d\theta d\phi$

$$\left|\psi\right|^{2} d\tau = \left[R_{n,l}(r)\right]^{2} \left|Y_{l,m}(\theta,\phi)\right|^{2} r^{2} \sin\theta dr d\theta d\phi$$

• The probability of electron in a thin spherical shell $r \rightarrow r+dr$:

$$dr \int_0^{2\pi} \int_0^{\pi} \left| \psi \right|^2 r^2 \sin \theta d\theta d\phi$$

 $D(r) = r^2 R_n^2(r)$

$$=R_{n,l}^{2}(r)r^{2}dr\int_{0}^{2\pi}\int_{0}^{\pi}\left|Y_{l,m}(\theta,\phi)\right|^{2}\sin\theta d\theta d\phi=r^{2}R_{n,l}^{2}(r)dr$$

Normalized spherical harmonics Radial distribution function Ψ = AO wave function $|\Psi|^2$ = probability density $r^2 R^2$ = radial probability function

Calculating the most probable radius

$$\frac{dD(r)}{dr} = 0$$

Expectation value of r

$$\langle r \rangle = \int \psi^* r \psi dV$$

= $\int_0^\infty \int_0^\pi \int_0^{2\pi} r R_{n,l}^2 |Y_{l,m}|^2 r^2 dr \sin\theta d\theta d\phi = \int_0^\infty R_{n,l}^2 r^3 dr$

Example: please derive the radial probability distribution function of the H 1s orbital and the radium of its maximum.

$$\psi_{1s} = \sqrt{\frac{1}{\pi a_0^3}} e^{\frac{-r}{a_0}}$$

Its radial probability distribution function is

$$D(r)_{1s} = \int_0^{2\pi} \int_0^{\pi} |\psi_{1s}|^2 r^2 \sin \theta d\theta d\phi = 4\pi r^2 |\psi_{1s}|^2 = \frac{4r^2}{a_0^3} e^{\frac{-2r}{a_0}}$$

To derive the radium of its maximum, we have

$$\frac{dD(r)_{1s}}{dr} = 0 \Longrightarrow \frac{8r}{a_0^3} e^{\frac{-2r}{a_0}} (1 - \frac{r}{a_0}) = 0$$

$$\because r \neq 0, \therefore 1 - \frac{r}{a_0} = 0$$

$$\implies r = a$$

The point/surface with $\rho_e = 0$ is called a *node/nodal surface*.

- D(r) has (*n-l*) maxima and (*n-l-1*) nodal surfaces.
- Orbital penetration: Penetration describes the proximity to which an electron can approach to the nucleus. In a multi-electron system, electron penetration is defined by an electron's relative electron density (probability density) near the nucleus.

i) Within the same shell value (*n*), the penetrating power of an electron follows this trend in subshells(*l*):

s > p > d > f.

ii) Penetrating power of an electron follows this trend: *1s>2s>2p> 3s>3p>4s>3d>4p>5s>4d>5p>6s>4f*.

2.3.3 The angular function $(Y_{lm}(\theta, \phi))$

$$\Psi(r,\theta,\phi) = R\Theta\Phi = RY(\theta,\phi)$$

► Angular part

$$Y_{lm}(\theta,\phi) = \Theta_{lm}(\theta)\Phi_{m}(\phi)$$

It indicates the angular distribution of an atomic orbital and is the eigenfunction of M^2 and M_z operators.

$$\hat{M^2} = -\hbar^2 \left[\frac{1}{\sin\theta} \frac{\partial}{\partial\theta} (\sin\theta\frac{\partial}{\partial\theta}) + \frac{1}{\sin^2\theta} \frac{\partial^2}{\partial\phi^2}\right]$$

$$\hat{M}^2 Y_{lm}(\theta,\phi) = l(l+1)\hbar^2 Y_{lm}(\theta,\phi)$$

$$\hat{M}_{z}Y_{lm}(\theta,\phi) = m\hbar Y_{lm}(\theta,\phi)$$

p-orbital

$$Y(p_x) = \sqrt{\frac{3}{4\pi}} \sin\theta \cos\phi$$
$$Y(p_y) = \sqrt{\frac{3}{4\pi}} \sin\theta \sin\phi$$

Question: Are these two angular functions the eigenfunctions of operators \hat{M}_x and \hat{M}_y , respectively?

d-orbital (*l*=2, 2*l*+1=5)

$$\begin{array}{c}
 Y_{20} & Y_{2\pm 1} & Y_{2\pm 2} \\
 Y(d_{z^2}) = \frac{1}{4}\sqrt{\frac{5}{\pi}}(3\cos^2\theta - 1) \\
 Y(d_{xz}) = \frac{1}{4}\sqrt{\frac{15}{\pi}}\sin 2\theta \cos \phi & Y(d_{x^2-y^2}) = \frac{1}{4}\sqrt{\frac{15}{\pi}}\sin^2\theta \cos 2\phi \\
 Y(d_{yz}) = \frac{1}{4}\sqrt{\frac{15}{\pi}}\sin 2\theta \sin \phi & Y(d_{xy}) = \frac{1}{4}\sqrt{\frac{15}{\pi}}\sin^2\theta \sin 2\phi \\
 Y(d_{yz}) = \frac{1}{4}\sqrt{\frac{15}{\pi}}\sin 2\theta \sin \phi & Y(d_{xy}) = \frac{1}{4}\sqrt{\frac{15}{\pi}}\sin^2\theta \sin 2\phi \\
 Y(d_{yz}) = \frac{1}{4}\sqrt{\frac{15}{\pi}}\sin^2\theta \sin 2\phi & Y(d_{xy}) = \frac{1}{4}\sqrt{\frac{15}{\pi}}\sin^2\theta \sin 2\phi \\
 Y(d_{yz}) = \frac{1}{4}\sqrt{\frac{15}{\pi}}\sin^2\theta \sin 2\phi & Y(d_{xy}) = \frac{1}{4}\sqrt{\frac{15}{\pi}}\sin^2\theta \sin 2\phi \\
 Y(d_{yz}) = \frac{1}{4}\sqrt{\frac{15}{\pi}}\sin^2\theta \sin 2\phi & Y(d_{xy}) = \frac{1}{4}\sqrt{\frac{15}{\pi}}\sin^2\theta \sin 2\phi \\
 Y(d_{yz}) = \frac{1}{4}\sqrt{\frac{15}{\pi}}\sin^2\theta \sin 2\phi & Y(d_{xy}) = \frac{1}{4}\sqrt{\frac{15}{\pi}}\sin^2\theta \sin 2\phi \\
 Y(d_{yz}) = \frac{1}{4}\sqrt{\frac{15}{\pi}}\sin^2\theta \sin 2\phi & Y(d_{xy}) = \frac{1}{4}\sqrt{\frac{15}{\pi}}\sin^2\theta \sin 2\phi \\
 Y(d_{yz}) = \frac{1}{4}\sqrt{\frac{15}{\pi}}\sin^2\theta \sin 2\phi & Y(d_{yz}) = \frac{1}{4}\sqrt{\frac{15}{\pi}}\sin^2\theta \sin 2\phi \\
 Y(d_{yz}) = \frac{1}{4}\sqrt{\frac{15}{\pi}}\sin^2\theta \sin^2\theta \sin^2\theta + \frac{1}{4}\sqrt{\frac{15}{\pi}}\sin^2\theta + \frac{1}{4}\sqrt{\frac{15}{\pi}}\cos^2\theta + \frac{1}{4}\sqrt{\frac{15}{\pi}}\cos^2\theta$$

Note: These are not eigenfunctions of M^2 and M_z .

Angular functions Complex form vs. Real form

When $m \neq 0$, the angular functions Y_{lm} adopt complex forms, linear combination of which with the same |m| gives rise to the real forms of angular functions.

l	m _l	Orbital (Real)
0	0	S
1	0	p _z
	±1	p _x
	±1	p _y
2	0	$d_{2z^2-x^2-y^2} = d_{z^2}$
	±1	d _{xz}
	±1	d _{yz}
	±2	$d_{x^2-y^2}$
	±2	d _{xy}

Nodes:

• For a given orbital, the number of angular nodes is *l*.

 Accordingly, the total number of nodes equals to n-1, including l angular nodes and n-l-1 radial nodes.

Energy of electron in H-like atom/ion(s):

Average potential energy & kinetic energy:

$$\hat{V} = -\frac{Ze^2}{4\pi\varepsilon_0 r}$$

$$\left\langle V \right\rangle = \int \psi_{nlm}^* \hat{V} \psi_{nlm} d\tau = \iiint \hat{V} \left| \psi_{nlm} \right|^2 r^2 \sin\theta dr d\theta d\phi$$
$$= -\frac{2RZ^2}{n^2}$$

$$\therefore E_{nlm} = \langle V \rangle_{nlm} + \langle T \rangle_{nlm} \qquad \& E_{nlm} = -\frac{RZ^2}{n^2}$$

$$\Rightarrow < T >_{nlm} = E_{nlm} - < V >_{nlm} = \frac{RZ^2}{n^2}$$

Average kinetic energy

2.4 The structure of many-electron atoms (multi-electron atoms)

2.4.1 Schrödinger equation for many-electron atoms

For hydrogen - like atom/ions :

$$\hat{H}\Psi = E\Psi, \quad \hat{H} = -\frac{h^2}{8\pi^2 m} \nabla^2 - \frac{Ze^2}{4\pi\varepsilon_0 r}$$

$$\hat{H} = -\frac{1}{2} \nabla^2 - \frac{Z}{r} \quad (in \ atomic \ units)$$

$$\hat{H} = -\frac{1}{2} (\nabla_1^2 + \nabla_2^2) - (\frac{Z}{r_1} + \frac{Z}{r_2}) + \frac{1}{r_{12}}$$

$$f_{12} = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$

$$\nabla^2 = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial y_1^2} + \frac{\partial^2}{\partial z_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial y_2^2} + \frac{\partial^2}{\partial z_2^2}$$

$$\hat{V} = -(\frac{Z}{r_1} + \frac{Z}{r_2}) + \frac{1}{r_{12}}$$

For many – electron atoms:

$$\hat{H} = -\frac{1}{2}\sum_{i} \nabla_{i}^{2} - \sum_{i} \frac{Z}{r_{i}} + \sum_{i} \sum_{j>i} \frac{1}{r_{ij}}$$
Separation of variables
becomes impractical
due to the complicated
term of e-e interactions.

Ζ

r_i

lf JUCULCU.

$$\hat{H} = \sum_{i} \left(-\frac{1}{2} \nabla_{i}^{2} - \frac{Z}{r_{i}} \right) = \sum_{i} \hat{h}_{i} \qquad \hat{h}_{i} = -\frac{1}{2} \nabla_{i}^{2}$$

/

The electrons are thus independent! Thus Let

$$\Psi(1,2,3,...,N) = \psi_1 \cdot \psi_2 \cdot \psi_3 \cdots \psi_N = \prod_{i=1}^N \psi_i \quad \text{Wavefunction of } i\text{th e.}$$

$$\Rightarrow \hat{H}\Psi = \left[\sum_i \hat{h}_i \right] \prod_{i=1} \psi_i = \Psi \sum_i \left[\left(\hat{h}_i \psi_i\right) / \psi_i\right] = \left[\sum_i \varepsilon_i\right] \Psi = E\Psi$$
with $\hat{h}_i \psi_i = \varepsilon_i \psi_i \quad \& \quad E = \sum_i \varepsilon_i$
Single-particle eigenequation i.e., Bohr's atomic model !

Orbital energy derived from Bohr's model

$$\boldsymbol{E}_{\boldsymbol{n}} = -\boldsymbol{\mathcal{R}}\left(\frac{\boldsymbol{Z}^2}{\boldsymbol{n}^2}\right)$$

$$\boldsymbol{E}_{1} = -\boldsymbol{\mathcal{R}}\left(\frac{\boldsymbol{2}^{2}}{\boldsymbol{1}^{2}}\right)$$

Predict: $E_1 = -54.4 \text{ eV}$

Actual: $E_1 = -24.6 \text{ eV}$

- When it comes to a many-electron atom, something is wrong with the simple Bohr Model!
- The e-e interactions are too large to be negligible! How to realistically solve the many-electron problem?

Central field approximation (中心力场近似)

Also known as independent electron approximation: Suppose that in a n-electron atom, each electron move in an average (central) field V(i) exerted by the nucleus and the other electrons.

$$\hat{H}(1,2,3,..,n) = \sum_{i=1}^{n} \left(-\frac{1}{2}\nabla_{i}^{2}\right) + \sum_{i=1}^{n} \left[-\frac{Z}{r_{i}} + \sum_{j\neq i}^{n} \frac{1}{r_{ij}}\right]$$
The coordinates of *i*th e.
Now Let
$$-\frac{Z}{r_{i}} + \sum_{j\neq i}^{n} \frac{1}{r_{ij}} \approx V_{i}(i)$$
i.e., central field exerted on *i*th e.

$$\Rightarrow \hat{H}(1,2,...,n)\Psi(1,2,...,n) = \sum_{i=1}^{n} \hat{h}_{i}\Psi(1,2,...,n) = E\Psi(1,2,...,n)$$
Single-particle equations!
with
$$\hat{h}_{i} = -\frac{1}{2}\nabla_{i}^{2} + V_{i}(i) \begin{bmatrix} \hat{h}_{i}\varphi_{i}(i) = \varepsilon_{i}\varphi_{i}(i) \end{bmatrix}$$
with
$$\Psi(1,2,3\cdots n) = \varphi_{1}(1)\varphi_{2}(2)\cdots\varphi_{n}(n) \& E = \sum_{i}\varepsilon_{i}$$

Central field approximation (中心力场近似)

$$V_{i}(1,2,3,...,N) = -\frac{Z}{r_{i}} + \sum_{j\neq i}^{n} \frac{1}{r_{ij}} \approx V_{i}(i) \qquad \hat{H}(1,2,...,n) = \sum_{i=1}^{n} \hat{h}_{i}$$
$$\hat{h}_{i} = -\frac{1}{2} \nabla_{i}^{2} + V_{i}(i) \qquad \hat{H}\Psi = E\Psi \qquad \{\hat{h}_{i}\varphi_{i}(i) = \varepsilon_{i}\varphi_{i}(i)\}$$

with
$$\Psi(1,2,3\cdots n) = \varphi_1(1)\varphi_2(2)\cdots\varphi_n(n)$$
 & $E = \sum_i \varepsilon_i$

- Note that V_i(i) is not spherical in most cases. Only the V_i(i) exerted by a closed-shell configuration is spherical.
- Suppose $V_i(i)$ is spherically symmetric around the nucleus. Then $\varphi_i(i)$ can adopt the form $\varphi_i(i) = R_i(i)Y_{l_i,m_i}(\theta_i,\phi_i)$
- Accordingly, the equation can be solved by means of the Hartree-Fock self-consistent field (HF-SCF) method.

$\left\{ \hat{h}_{i} \varphi_{i} = \varepsilon_{i} \varphi_{i} \right\}$ Self-consistent Field method First proposed by Hartree in 1928, then improved by Fock. $\left\{ \left[-\frac{1}{2} \nabla_i^2 + V_i^{(0)}(i) \right] \varphi_i^{(1)} = \varepsilon_i^{(1)} \varphi_i^{(1)} \right\} \text{Note: In the } \mathbf{k} \text{th} \\ \text{interation, } \mathbf{V}_i^{\mathbf{k-1}} \text{ is the}$ $\left\langle \varphi_{i}^{\left(0 ight)} ight angle$ potential energy of 1st iteration **Initial guess** $\left\langle \varphi_{i}^{(1)}, \mathcal{E}_{i}^{(1)} \right\rangle$ electron *i* in the for a N-elec. electric field exerted atom: NAO's by the nucleus and $\left| -\frac{1}{2} \nabla_i^2 + V_i^{(1)}(i) \right| \varphi_i^{(2)} = \varepsilon_i^{(2)} \varphi_i^{(2)}$ of H-like ion. other electrons derived by $\{\varphi_i^{k-1}\}$ 2nd iteration $\mathcal{E}^{(2)}_{i}$ (*j≠i*)! $\{V_{i}^{(2)}(i)\}$ $\left\{ \varphi_{i}^{(m-1)} \approx \varphi_{i}^{(m)} \right\} \& \left\{ \varepsilon_{i}^{(m-1)} \approx \varepsilon_{i}^{(m)} \right\}$ mth iteration $\mathcal{D}_{:}^{(m)}, \mathcal{E}_{:}^{(m)}$ $\& \left\{ V_i^{(m-1)} \approx V_i^{(m)} \right\}$ untill

Example: initial guess for Li atom (1s²2s¹) Note that the AO's of H-like atom/ions are in the forms,

$$\varphi_{1s} = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \exp\left(-\frac{Z}{a_0}r\right) \qquad \varphi_{2s} = \frac{1}{4\sqrt{2\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \left(2 - \frac{Z}{a_0}r\right) \exp\left(-\frac{Z}{2a_0}r\right)$$

Now supposed the valence AO's of Li atom have similar forms

$$\varphi_{1s}^{0} = \frac{1}{\sqrt{\pi}} \left(\frac{b_{1}}{a_{0}}\right)^{3/2} \exp\left(-\frac{b_{1}}{a_{0}}r\right) \varphi_{2s}^{0} = \frac{1}{4\sqrt{2\pi}} \left(\frac{b_{2}}{a_{0}}\right)^{3/2} \left(2-\frac{b_{2}}{a_{0}}r\right) \exp\left(-\frac{b_{2}}{2a_{0}}r\right)$$

in which the coefficients b_1 , b_2 etc evolve upon the proceeding of the **HF-SCF** procedure.

The converged values for the coefficients b_1 , b_2 etc are definitely smaller than the Z value of Li atom.

Why? Plz figure out the physical meaning of these coefficient!

Practical method before the computer-era: Slater's approximate method for central field

$$\hat{V_i} = -\frac{Z}{r_i} + \frac{\sigma_i}{r_i} = -\frac{Z - \sigma_i}{r_i}$$

The presence of other electrons around a nucleus "*screens*" an electron from the full charge of the nucleus.

$$Z^* = Z - \sigma$$

- **σ: Screen constant**
- Z*: Effective nuclear charge

→ Modified Rydberg equation:

$$E_i = -R \cdot \left(\frac{Z^*}{n^*}\right)^2$$
$$= -R \cdot \left(\frac{Z - \sigma_i}{n^*}\right)^2$$

n:* Effective principal quantum number

 $n^* = n$ (when $n \le 3$)

$$n^* = 3.7$$
 (when $n = 4$)

$$n^* = 4.0$$
 (when $n = 5$)

Lithium , Z = 3

Bohr's atomic model:

$$E_n = -R\left(\frac{Z}{n}\right)^2 \Longrightarrow E_{2s} = -13.6\left(\frac{3}{2}\right)^2$$

Predicted: $E_{2s} = -30.6 \text{ eV}$ Actual: $E_{2s} = -5.4 \text{ eV}$

Empirical determination of Z^{\ast} and σ :

$$: E_n = -R(Z * /n)^2$$

$$\Rightarrow Z^* = n \sqrt{(-E_n / R)}$$

 $\Rightarrow \sigma = Z - Z^*$

For 2s of Li

$$Z_{2s}^* = n \sqrt{(-E_{2s} / R)}$$

$$= 2\sqrt{5.4/13.6} = 1.26$$

 $\sigma = Z - Z^* = 1.74$

A. Screen (shielding) constant

- Slater's rules for the prediction of σ for an electron:
- First group electronic configuration as follows: (1s)(2s,2p)(3s,3p)(3d)(4s,4p)(4d)(4f)(5s,5p) etc.
- 2. An electron is not shielded by electrons in the right shells (in higher subshells and shells).
- 3. For *n*s or *n*p electrons:

a) each other electron in the same group contributes 0.35 (but 0.30 for 1s)

b) each electron in an *n*-1 group(s) contributes 0.85

- c) each electron in an *n*-2 or lower group contributes 1.00.
- 4. For *n*d or *n*f electrons:

a) each other electron in the same group contributes 0.35.

b) each electron in a lower group contributes 1.00.

9
The basis of Slater's rules for σ

s and **p** orbitals have better "penetration" to the nucleus than d (or f) orbitals for any given value of n.

i.e. there is a greater probability of s and p electrons being

near the nucleus.

Charge does

Charge

5

10

15

r/a₀

This means:

1. *ns* and *np* orbitals completely shield *nd* orbitals.

2. (*n*-1)s/p orbitals don't completely shield *n*s and *n*p orbitals.

Example : O, Z = 8 Electron configuration: $1s^2 2s^2 2p^4$

a) $(1s^2) (2s^2 2p^4)$

b) For a 2s/2p electron: $\sigma = (2 * 0.85) + (5 * 0.35) = 3.45$ 1s 2s,2p

> → $Z^* = Z - \sigma = 8 - 3.45 = 4.55$ for six electrons in 2s/2p orbitals.

i.e., any of the 2s/2p electrons is actually held by about 57% of the force that one would expect for a +8 nucleus.

c) For a 1s electron:

 $\sigma = 1 * 0.3; Z^*(1s) = 8 - 0.3 = 7.7!$

Example: Ni, Z = 28

Electron configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁸ 4s²

Then (1s²) (2s² 2p⁶) (3s² 3p⁶) (3d⁸) (4s²)

For a 3d electron: $\sigma = (18 * 1.00) + (7 * 0.35) = 20.45$ 1s,2s,2p,3s,3p 3d

 $Z^* = Z - \sigma$ $Z^*(3d) = 28 - 20.45 = 7.55$

For a 4s electron: $\sigma = (10 * 1.00) + (16 * 0.85) + (1 * 0.35) = 23.95$ 1s,2s,2p 3s,3p,3d 4s

 $Z^* = Z - \sigma$ $Z^*(4s) = 28 - 23.95 = 4.05$

B. Approximation of the atomic orbital energy

2.4.2 The ionization energy (IE) and the electron affinity (EA)

I. Ionization energy:

The minimum energy required to remove an electron from one of the atomic orbitals (in the gas phase) to the vaccum.

$$A(g) \to A^+(g) + e$$

$$I_1 = E(A^+) - E(A)$$

The first ionization energy

$$I_2 = E(A^{2+}) - E(A^+)$$
 The second ionization energy

TABLE 7.2 Successive Values of Ionization Energies, <i>I</i> , for the Elements Sodium Through Argon (kJ/mol)										
Element	I_1	I2	13	14	7 ₅	76	I_7			
Na	496	4560			(Inner-sl	hell electr	ons)			
Mg	738	1450	7730		(,			
AĽ	578	1820	2750	11,600	_					
Si	786	1580	3230	4360	16,100					
Р	1012	1900	2910	4960	6270	22,200				
S	1000	2250	3360	4560	7010	8500	27,100			
C1	1251	2300	3820	5160	6540	9460	11,000			
Ar	1521	2670	3930	5770	7240	8780	12,000			

Periodic Trends in Ionization Potentials

II. Estimation of ionization energy Example: $C \rightarrow C^+$, $1s^22s^22p^2 \rightarrow 1s^22s^22p^1$ $I_1 = \Delta E = E(C^+) - E(C)$ i.e., depletion of a 2p electron.

$$E_n = -R \cdot (\frac{Z - \sigma_i}{n^*})^2$$

- Both C⁺ and C have the same value of σ_{1s} , i.e. $E_{Is(C+)} = E_{Is(C)}$
- For their 2s/2p electrons, we have

$$\begin{array}{ll} for \quad C^{+} & for \quad C \\ Z - \sigma = 6 - (2 \times 0.35 + 2 \times 0.85) = 3.60 & Z - \sigma = 3.25 \\ I_{1} = 2 \times E_{1s(C^{+})} + 3 \times E_{2s2p(C^{+})} - 2 \times E_{1s(C)} - 4 \times E_{2s2p(C)} \\ = -[3 \times (\frac{3.6}{2})^{2} - 4 \times (\frac{3.25}{2})^{2}] \cdot R = 11.44 \ eV \\ I_{expt.} = 11.22 \ eV \end{array}$$

Estimation of ionization energy Example: Fe \rightarrow Fe⁺, depletion of a 1s electron.

- a) Fe⁺ for lacking of a K-shell electron, Z = 26Electron configuration: 1s¹ 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁶ $E_n = -R \cdot (\frac{Z^*}{n^*})^2$ $(1s^{1}) (2s^{2} 2p^{6}) (3s^{2} 3p^{6}) (3d^{6}) (4s^{2})$ 1s: $26 - 0^{\circ}0.30 = 26.00$ $Z^* = Z - \sigma$ 2s,2p: 26 - 7*0.35 - 1*0.85 = 22.703s, 3p: 26 - 7*0.35 - 8*0.85 - 1*1.0 = 15.75 $26 - 5^{*}0.35 - 17^{*}1.0 = 7.25$ 3d:
- 4s: 26 1*0.35 14*0.85 9*1.0 = 4.75

J. C. Slater, Phys. Rev. 36(1930)57

Example: Fe, *Z* = 26

Electron configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁶

(1s²) (2s² 2p⁶) (3s² 3p⁶) (3d⁶) (4s²)

1s: 26 - 0.30 = 25.70

2s,2p: 26 - 7*0.35 - 2*0.85 = 21.85

3s,3p: 26 - 7*0.35 - 8*0.85 - 2*1.0 = 14.75

3d: $26 - 5^* 0.35 - 18^* 1.0 = 6.25$

4s: 26 - 1*0.35 - 14*0.85 - 10*1.0 = 3.75

J. C. Slater, Phys. Rev. 36(1930)57

Estimation of ionization energy Example: $Fe \rightarrow Fe^+$, depletion of a 1s electron.

	Fe (Z *)	Fe ⁺ (Z *)	E(Fe)=-2(25.70/1) ² -8(21.85/2) ²
(1s) ²⁻¹	25.70	26.00	-8(14.75/3) ² -6(6.25/3) ²
(2s,2p) ⁸	21.85	22.70	-2(3.75/3.7) ² =-2497.3
(3s,3p) ⁸	14.75	15.75	$E(Fe^+)=-1(26.00/1)^2-8(22.70/2)^2$
(3d) ⁶	6.25	7.25	$-8(15.75/3)^2-6(7.25/3)^2$ -2(4.75/3.7) ² =-1965.4
(4s) ²	3.75	4.75	J. C. Slater, Phys. Rev. 36(1930)57

 $I_{1K} = \Delta E = E(Fe^+) - E(Fe)$

= -1965.4 + 2497.3 = 531.9 (524.0 expt.)

III. Electron Affinity

- The electron affinity (EA) is the energy change that occurs when an electron is <u>added</u> to a gaseous atom.
 B(g) + e⁻ → B⁻(g) + A
- 1. EA of an atom can be empirically predicted using the Slater's rules.
- 2. In practice, EA of an atom can be measured by measuring the first ionization potential of its monoanion in gas phase!
- Electron affinity usually increases as the radii of atoms decrease.
- Electron affinity decreases from the top to the bottom of the periodic table.

IV. The Electronegativity

• Electronegativity was proposed by Pauling to evaluate the relative capability of atoms to attract bonding electrons.

It can be concluded that:

- 1. The electronegativities of metals are small while those of non-metal are large.
- 2. Generally, the electronegativity increases from left to right across the periodic table, but decreases from top to bottom within a group.
- 3. Elements with great difference in electronegativities tend to form ionic bonds.

2.4.3 The building-up principle and the electronic configurations

I. The building-up principle (for ground states of atoms) Mg: 1s² 2s² 2p⁶ 3s²

a. Pauli exclusion principle.

Every orbital may contain up to two electrons of opposite spins.

b. The principle of minimum energy. (Aufbau principle)

Whilst being compatible with the Pauli principle, electrons occupy the orbital with the lowest energy first.

Problem:

For a many-electron atom, its energy levels are not faithfully aligned in the order of principal quantum numbers, e.g., for transition-metal atoms!

Fe: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁶

For multi-electron atoms:

Due to electron-electron repulsions, atomic orbitals with the same *n* but different *l* are no longer degenerate in energy. For this case, both the penetration effects and the average radii of AOs are decisive.

1) Average radii of AO: In general, the AO with higher *n* value has a larger average radii, thus is higher in energy due to smaller electron-nucleus interactions.

2) Penetration effects: the radial distribution of a AO (*n*,*l*) has *n*-*l* maxima. Thus for AOs with the same *n*, the one with a lower *l* has more local maxima near the nucleus and thus has a higher probability for electron to appear near the nucleus. i.e., being lower in energy (less screened by innershell electrons!)

For multi-electron atoms:

The energy level can be estimated by *n*+0.71. (*proposed by G.X. Xu*.)

1s	2 s	2p	3 s	3 p	3d	4 s	4 p	4d	4f
1.0	2.0	2.7	3.0	3.7	4.4	4.0	4.7	5.4	6.1
5 s	5p	5 d	5 f	<u>6s</u>	бр	6d	6f		
5.0	5.7	6.4	7.1	6.0	6.7	7.4	8.1		

Therefore, the sequence of the atomic orbitals is: *1s*, *2s*, *2p*, *3s*, *3p*, *4s*, *3d*, *4p*, *5s*, *5p*, *6s*, *4f*, *5d*, *6p*, ...

Relative Energies for Shells and Orbitals

 ∞

5.

4

3

2

•The orbitals have different energies and for the *d* and *f* orbitals, their energies overlap *s*-orbital energies in the next principal level.

- I. The building up principle (for ground state)
- a. Pauli exclusion principle.

Every orbital may contain up to two electrons of opposite spins.

b. The principle of minimum energy (*Aufbau* principle)
 Whilst being compatible with the Pauli principle, electrons occupy the orbital with the lowest energy first.

c. Hund's rule.

In degenerate energy states, electrons tend to occupy as many degenerate orbitals as possible. (The number of unpaired electrons is a maximum.)

Note: The electronic configuration for the ground state of a molecule also follows these rules!

II. The ground-state electronic configurations of atoms

Electron Configuration using the Periodic Table

2.5 Atomic spectra and spectral term

The wavefunction to describe the motion of a electron in an AO of a many-electron atom (derived from the *central-field approx*.):

Spin part:

 $\varphi = [R_n(r) \cdot Y_{\ell,m}(\theta,\phi)] \cdot \sigma(s) < \alpha \text{ or } \beta$

orbital part

n (principal quantum number)
 l (orbital quantum number)
 m(m_l) (magnetic quantum number)
 m_s (spin magnetic quantum number)

n = 1, 2, 3, ... l = 0, 1, ..., (n-1) $m_l = 0, \pm 1, ..., \pm l$ $m_s = \pm \frac{1}{2}$

For electron & proton, spin quantum number $s \equiv \frac{1}{2}$

(i.e., defining the magnitude of spin angular momentum)!

Seemingly similar to that for the one-electron H-like atom/ion.

Difference:

• For a 1-electron atom/ion, AO's of the same shell (*n*) are degenerate.

For a many-electron atom, the e-e interactions result in:

i) The electronic orbitals within a given shell (*n*) are divided into energy-sublevels differing in *l*. (*ns<np< nd* ...)

ii) The electrostatic potential exerted on each electron is not spherical, and, consequently, the angular momentum of any individual electron is not as conserved as that of the electron within a 1-e atom/ion. In other words, the individual orbital-angular-momentum operators \hat{L}_i of the electrons do not commute with the atomic Hamiltonian, but their sum does.

$$\hat{H}\Psi(1,2,...,N) = E\Psi(1,2,...,N)$$

$$[\hat{H}, \hat{L}_i] \neq 0; \qquad [\hat{H}, \hat{L}_i^2] \neq 0$$

• The electronic wave function of an atom in a given quantum
state satisfies
Atomic Hamiltonian
L: total electronic orbital
angular momentum

$$L_z$$
: z-component of *L*
 $\hat{L}_z^2(1,2,...,N) \Psi = L(L+1)\hbar^2 \Psi$
 $\hat{L}_z(1,2,...,N) \Psi = M_L \hbar \Psi$
 $\hat{L}_z(1,2,...,N) \Psi = M_L \hbar \Psi$
Total orbital-angular-
momentum quantum number *L*
 $[\hat{H}, \hat{L}_z^2(1,2,...,N)] = 0 \& [\hat{H}, \hat{L}_z(1,2,...,N)] = 0$

- Therefore, we can characterize an atomic state by the quantum numbers L and M_L (as well as the spin quantum numbers S and Ms).
 - \rightarrow Spectral term!

Example: C $1s^22s^22p^2$ np^2 (l=1) m_l 1 0 -1 A total of 15 (i.e., C₆²) microstates differing in the orbitals and spin states of the two electrons, e.g.,

• These microstates differing subtly in e-e electron interactions are not in the same energy. More importantly, the wave functions to describe each of these microstates may not be the eigenfunction of atomic Hamiltonian. How to discern them?

Spectral term!

2.5.1 Total Electronic Orbital and Spin Angular Momenta

a. Addition of two angular momenta:

The addition of two angular momenta characterized by quantum number j_1 and j_2 results in a total angular momentum whose quantum number J has the possible values:

<u>Example</u>: Find the possible values of the total-angular-momentum quantum number resulting from the addition of two angular momenta with quantum number $j_1 = 2$ and $j_2 = 3$.

Solution: $J_{max} = j_1 + j_2 = 2 + 3 = 5$

 $J_{min} = |j_1 - j_2| = |2 - 3| = 1$

 \rightarrow The possible J values are: 5, 4, 3, 2, 1

Angular momenta are vectors!

(Note: for an electron in a given AO, its orbital angular momentum is jointly defined by l (magnitude) and m_l (direction)!)

$e.g., d^{I}p^{I}$

 $l_1=2$ (with 5 possible directions differing in $m_{l'}$)

⇒ 15 possible total angular momenta differing in *L* (magnitude) and M_L (direction): L = 3, 2, 1 (For each L, M_L ranges from -L to L.) M_L: L, L-1, ..., -L+1, -L

B. The total electronic orbital angular momentum

The total electronic orbital angular momentum of an *n*-electron atom is defined as the vector sum of the angular momenta of the individual electrons:

$$\vec{L} = \sum_{i} \vec{m}_{i}(i)$$

The orbital angular momentum of *i*th e defined by two quantum numbers l (magnitude) and m_l (direction).

The total-electronic-orbital-angular-momentum quantum number L of an atom is indicated by a code letter:

L	0	1	2	3	4	5	6	7
Letter	S	P	D	F	G	H	Ι	K

For a given L value, the quantum number M_L (M_L h---the *z* component of the total electronic orbital angular momentum) takes on 2L+1_values ranging from -L to L.

• For s	For single particle (single electron) Eigenequations									
Orbital	symbol	\hat{M}^2	$\psi_{nlm} =$	<i>l(l</i> +1,) $\hbar^2 \psi_{_{nln}}$	$\hat{M}_{z}\psi_{n}$	$_{lm} = m_l \hbar \psi$	V _{nlm}		
l	0	1	2	3	4	5	6 7			
Letter	S	p	d	f	<i>g</i>	h	i k			
• For $\hat{L}^2 \Psi =$ Term system	two or n L(L+1 Umbol	nore e)ħ²Ψ	lectron	\hat{L}_z Ψ	$V = M_L \hbar$	Ψ	All-electro wavefunct of atom in given ener	on tion a rgy		
L	0 1		2	3	4	5	7			
Letter	S I	D	D	F	G	H .	••••			
$M_L = -L, -L+1,, L$ (2L+1)								1		

9

ļ

Note: For any fully occupied sublevel (e.g, ns², np⁶, nd¹⁰ etc), the total electronic orbital angular momentum is, $\sum_{i} \vec{m}_{i}(i) = 0$

Example: Find the possible values of the quantum number *L* for states of carbon atom that arise from the electron configuration $1s^22s^22p^13d^1$.

Solution: Simply consider 2p¹3d¹.

The total-orbital-angular-momentum quantum number ranges from 1+2=3 to |1-2|=1 \downarrow L=3, 2, 1

ule

C. The total electronic spin angular momentum

a. Electron spin: Uhlenbeck and Goudsmit proposed in 1925 that the electron has an intrinsic "spin" angular momentum in addition to its orbital angular momentum, like the Earth revolving about both the Sun and its own axis.

However, electron "spin" is not a classical effect, and the picture of an electron rotating about an axis has no physical reality.

The total electronic spin angular momentum S of an Nb. electron atom is defined as the vector sum of the spins of the individual electrons:

Total spin quantum number S.

$$\vec{S} = \sum_{i} \vec{m}_{s}(i) \qquad \hat{S}^{2} \Psi = S(S+1)\hbar^{2} \Psi \qquad \hat{S}_{z} \Psi = M_{s} \hbar \Psi$$

For a fixed S value, the quantum number $M_{\rm S}$ takes on <u>2S+1 values</u> ranging from -S to S (to reflect the different directions of the total spin angular momentum)
Example: Find the possible values of the quantum number *S* for states of carbon atom that arise from the electron configuration $1s^22s^22p^13d^1$.

Solution:

1s electrons: $M_s = +\frac{1}{2} - \frac{1}{2} = 0$ Pauli exclusion principle 2s electrons: $M_s = +\frac{1}{2} - \frac{1}{2} = 0$ Pauli exclusion principle 2p electron: $s_1 = \frac{1}{2}$ ($m_s = \frac{1}{2}$ or $-\frac{1}{2}$) 3d electron: $s_2 = \frac{1}{2}$ Addition of two angular momenta rule $S = s_1 + s_2, \dots, |s_1 - s_2|$ S =1, 0 0 -1 $\mathbf{M}_{\mathbf{s}}$ 1

D. The total angular momentum

$$\vec{J} = \vec{L} + \vec{S}$$

Total angular momentum quantum number J = (L + S), (L + S) - 1, ..., /L - S /

Spin – orbit coupling

For a given J, there are (2J+1) values of M_J ranging from J to -J.

$$J \ge M_J \ge -J$$

e.g., J = 3/2, M_J = 3/2, 1/2, -1/2, -3/2

1

2.5.2 Atomic term and term symbol

A set of equal-energy atomic states that arise from the same electronic configuration and that have the same *L* value and the same *S* value constitute an *atomic term*.

Term symbol: ^{2S+1}L

Each term consists of (2L+1)(2S+1) microstates. (In case spin-orbit interaction can be neglected!)

• The quantity 2S + 1 is called the *electron-spin multiplicity*, reflecting that a given total spin angular momentum quantum number S has 2S+1 possible M_S values (different directions of total spin angular momentum.

2.5.3 Derivation of Atomic Term

 $m_{11} = 0$, $m_{12} = 0$, $M_{L} = 0$

a. Configurations of completely filled subshells (ns², np⁶, nd¹⁰ etc.):

$$M_{s} = \sum_{i} m_{s}(i) = 0 \implies S = 0; \quad M_{L} = \sum_{i} m_{i}(i) = 0 \implies L = 0 \implies \text{only } IS$$

$$s^{2} \stackrel{\frown}{\longrightarrow} \stackrel{\frown}{\longleftarrow} One \text{ microstate} \longrightarrow p^{6} \stackrel{\frown}{\longrightarrow} \stackrel{\frown}{\longrightarrow} \stackrel{\frown}{\longrightarrow} \stackrel{\frown}{\longrightarrow} \\ m_{s1} = 1/2, \quad m_{s2} = -1/2, \quad M_{S} = 0$$

b. Nonequivalent electrons in open subshells.

 $(2p)^{I}(3p)^{I}$ Total number of microstates = $(3x2) \times (3x2) = 36$. We need not worry about any restrictions imposed by the *Exclusion Principle*!

$$l_1=1, l_2=1 \rightarrow L=2, 1, 0$$

$$s_1 = \frac{1}{2}, s_2 = \frac{1}{2} \rightarrow S=1, 0$$

$$J = 2, 1, 0$$

c. Equivalent electrons. E.g., np²

The number of microstates: $C_6^2 = 15 \neq C_6^1 \times C_6^1$

Equivalent electrons (x) having common n and l values should avoid to have the same four quantum numbers (i.e., differing in m_l or m_s)! -- Pauli exclusion principle The number of allowed microstates: $C_{2(2l+1)}^x$

$$l_1=1, l_2=1 \rightarrow L = 2, 1, 0 \qquad \longleftarrow \ ^3D, {}^1D, {}^3P, {}^1P, {}^3S, {}^1S$$
$$m_{s1} = \frac{1}{2}, m_{s2} = \frac{1}{2} \rightarrow S = 1, 0 \qquad \text{terms}$$

Instead, $np^2 \longrightarrow {}^{1}D, {}^{3}P, {}^{1}S$ Only three terms

A simple deduction for two equivalent electrons: L + S = even!

c. Equivalent electrons. E.g., np² Enumeration method! m_l 1 0 - 1 The number of microstates: $C_6^2 = 15$ * $(M_I)_{max} = 2$ accompanied by $M_s = 0$ \rightarrow L = 2, S = 0; $(\mathbf{5})$ * $(M_s)_{max} = 1$ accompanied by $M_L = 1$, and $= 0 \& -1 \rightarrow S = 1$, L = 1; (9) \rightarrow L=0,S=0; (1) $* M_{\rm L} = 0, M_{\rm s} = 0,$ $M_L = \sum m_l(i)$ $M_s = \sum m_s(i)$ m_l Term $\uparrow M_L$ No 0 -1 1 \↑ 2 $^{1}\mathbf{D}$ 1 0 \uparrow ↑ 2 1 1 **3P** ↑ \downarrow 3 0 ¹D ³P 1 0 4 1 T 5 1 -1 **3P** \mathbf{X} ∕↓ M_{s} 6 0 0 ↑ 7 0 0 ¹**D** ³**P** ¹**S** \downarrow 0 8 0 ↑ 9 **3P** 0 T -1 10 0 **3P** ↑ 11 -1 0 $^{1}\mathbf{D}$ 3**P** ↑ 12 -1 0 ¹D, ³P, ¹S ↑ ↑ **3P** 13 -1 1 **3P** 14 -1 -1 12 J↑ $1\mathbf{D}$ -2 15 0 **5**+**9**+**1** -> **15**

As mentioned above, the microstate with both electrons in the AO $(l=1,m_l=0)$ contributes to three different energy-states (i.e. spectral terms ¹D, ³P, ¹S). How to understand this?

 $e_1: l=1, m_l=0; e_2: l=1, m_l=0 \rightarrow M_S = 0$ (may belong $\rightarrow M_L = 0$, but *L* can be 2, 1, or 0. to S = 1 or 0)

Case 1: $L = 2, M_L = 0$ Case 2: $L = 1, M_L = 0$ Case 3: $L = 0, M_L = 0$

 L_v

- This microstate contains *three* different patterns of e-e interactions
 and is not an eigenfunction of atomic
 Hamiltonian!
- Two other microstates contain similar patterns of e-e interactions.
- Linear combinations of all three microstates can be the eigenfunctions of atomic Hamiltonian.

Alternative process to determine the spectral terms of np^2 The number of microstates: $N_{ms} = C_6^2 = 15$ $m_1 \ 1 \ 0 \ -1$ Pauli exclusion: Equivalent electrons $l_1=1, l_2=1 \rightarrow L=2, 1, 0$ have the same value of **n** and the same $m_{s1} = \frac{1}{2}, m_{s2} = \frac{1}{2} \rightarrow S = 1, 0$ value of *l*. Two electrons should avoid to have the same four quantum numbers! \rightarrow ³D, ¹D, ³P, ¹P, ³S, ¹S However, combination of the computed L and S values is no longer arbitarily due to Pauli exclusion! 1) $L = 2 \rightarrow (M_1)_{max} = 2 = 1(m_{11}) + 1(m_{12})$ \rightarrow (M_S)_{max} = 0 \rightarrow S = 0 \rightarrow ¹D N₁ = 5 0 - 1 m_1 1 2) $S = 1 \rightarrow (M_S)_{max} = 1 \rightarrow (M_L)_{max} = 1(m_{11}) + 0(m_{12})$ \rightarrow L = 1 \rightarrow ³P N₂ = 9 - 1 m_1 1 0 3) $N_3 = N_{ms} - N_1 - N_2 = 1 \rightarrow {}^{1}S$ Not strict!

• The terms arising from a subshell containing *N* electrons are the same as the terms for a subshell that is *N* electrons short of being full. Terms

- Term: $p^0 === p^6$ ¹S $p^1 === p^5$ ²P $p^2 === p^4$ ¹D, ³P, ¹S $p^3 = 2D, ^4S, ^2P$
- For *m* electrons within a (n, l) subshell, the total number of allowed microstates is $C_{2(2l+1)}^{m}$.
- So far, we have introduced *two different ways* to describe the microstates pertaining to a electronic configuration of a many-electron atom!

D. Energy level of spectral terms (microstates).

Hund's Rule: (works very well for ground-state configuration!)

1. For terms arising from the same electron configuration, the term with the largest value of S lies lowest! np^2 : ³P < ¹D < ¹S

2. For the same *S*, the term with the largest *L* lies lowest.

E. Spin-orbit Interaction & Total angular momentum

Spin-orbital angular momentum coupling

$$\vec{J} = \vec{L} + \vec{S}$$

The total angular momentum

$$J = (L + S), (L + S) - 1, \dots |L - S|$$

Spin – orbit coupling

Term symbol:

 $^{2S+1}L_J$

E. Spin-Orbit interaction.

The spin-orbit interaction splits an atomic term into levels, giving rise to the observed fine structure in atomic spectra.

 $^{2S+1}L \rightarrow ^{2S+1}L_J$ (J = L+S, L+S-1, ..., |L-S|)

F. Ground state of the terms (ground-state term) Hund's Second Rule:

3. For the same *L* and *S* values, when the number of electrons is half-filled or less, the term with the smallest *J* lies lowest; whereas when the number of electrons is more than half-filled, the term with the largest *J* lies lowest.

 $M_{S}(\max) = 3/2 \text{ with } M_{L}(\max) = 3$ $L=3, S=3/2, J_{\min}=3/2 \rightarrow {}^{4}F_{3/2}$ $L=1, S=1, J_{\max}=2 \rightarrow {}^{3}P_{2}$ $L=0, S=3/2, J_{\min}=3/2 \rightarrow {}^{4}S_{3/2}$ $L=1, S=1, J_{\min}=0 \rightarrow {}^{3}P_{0}$

By following Pauli exclusion and Hund's Rules, a practical way to derive the ground-state term for a given electronic configuration can be drawn:

1. Equivalent vs. nonequivalent electrons; for equivalent ones, please follow steps 2-4 derived from Hund's rule.

2. Find $(M_S)_{max}$, which gives the ground-state S value.

3. For thus-defined S, find $(M_L)_{max}$ as the ground-state L value.

4. find
$$J_{min} = |L - S|$$
 in case $n_e \leq 2l + 1$,

or $J_{max} = L + S$ in case $n_e \ge 2l + 1$, for the ground-state J value.

 $(M_{S})_{max} = 1 \rightarrow S = 1 \rightarrow nd^{8} \qquad nd^{8} \qquad$

Likewise, the ground term is ${}^{3}\mathbf{F}_{2}$ for nd^{2} .

Question: Why is the atomic transition from $2p \rightarrow 1s$ allowed? Selection rule for atomic transition: $\Delta l = \pm 1$, $\Delta j = 0, \pm 1$; $\Delta m_j = 0, \pm 1$,

2.5 Atomic spectra and spectral term

Note that the orbital angular momenta of an electron in a given AO are distributed in a cone shape!

Suppose a microstate with $e_1: l=2, m_1=0 e_2: l=1, m_1=0$ $M_L = \sum m_l(i) = 0$ Case 1: $M_L = 0$ of L = 3Case 2: $M_L = 0$ of L = 2Case 3: $M_L = 0 of L = 1$

The wavefunction of this microstate is not an eigen-function of atomic Hamiltonian!!

2.5.1 Total Electronic Orbital and Spin Angular Momenta

a. Addition of two angular momenta:

The addition of two angular momenta characterized by quantum number j_1 and j_2 results in a total angular momentum whose quantum number J has the possible values:

 $J=j_1+j_2, j_1+j_2-1, ..., |j_1-j_2|$

Angular momenta are vectors!

 $d^{1}p^{1}$

B. The total electronic orbital angular momentum

The total electronic orbital angular momentum of an n-electron atom is defined as the vector sum of the angular momenta of the individual electron:

$$\vec{L} = \sum_{i} \vec{m}_{i}(i)$$

The total-electronic-orbital-angular-momentum quantum number *L* of an atom is indicated by a code letter:

L	0	1	2	3	4	5	6	7
Letter	S	P	D	F	G	H	I	K

For a fixed L value, the quantum number M_L ($M_L\hbar$ --- the z component of the total electronic orbital angular momentum) takes on <u>2L+1 values</u> ranging from -L to L.

Orbital symbol			$\hat{M}^2 \psi_i = l(l+1)\hbar^2 \psi_i$			$\hat{M}_z \psi_i = m_l \hbar \psi_i$		
l	0	1	2	3	4	5	б	7
Letter	S	р	d	f	g	h	i	k

Term symbol			$\hat{L}^2 \Psi = L(L+1)\hbar^2 \Psi$			$\hat{L}_{z}\Psi$ =	$\hat{L}_z \Psi = M_L \hbar \Psi$		
L	0	1	2	3	4	5	б	7	
Letter	S	Р	D	F	G	Η	Ι	K	

$$M_L = -L, -L+1, ..., L$$

(2L+1)

C. The total electronic spin angular momentum

The total electronic spin angular momentum \mathbf{S} of an n-electron atom is defined as the vector sum of the spins of the individual electron:

$$\vec{S} = \sum_{i} \vec{m}_{s}(i)$$

For a fixed S value, the quantum number M_S takes on <u>2S+1</u> values ranging from –S to S.

D. The total angular momentum

$$\vec{J} = \vec{L} + \vec{S}$$

$$J = (L + S), (L + S) - 1, \dots / L - S / Spin - orbit coupling$$

2.5.2 Atomic term and term symbol

2.5.3 Derivation of Atomic term

- a. Configurations of Completely filled subshells
 - $\overline{M_{S}}=\overline{\Sigma_{i}}m_{s}(i)=0 \quad \rightarrow \quad S=0$
 - $M_L = \Sigma_i m_l(i) = 0 \rightarrow L = 0$
 - Only one term: ¹S
- **b.** Nonequivalent electrons.

(2p)¹(3p)¹ *Here we need not worry about any restrictions imposed by the exclusion principle.*

$$\begin{array}{cccc} l_1 = 1, l_2 = 1 & L = 2, 1, 0 \\ m_{s1} = \frac{1}{2} & m_{s2} = \frac{1}{2} & S = 1, 0 \end{array} \xrightarrow{3D, 1D, 3P, 1P, 3S, 1S} \\ \begin{array}{c} \longrightarrow & 1S \\ 1S \\ \end{array}$$

c. Equivalent electrons

 $1s^22s^22p^2$ (two electrons in the same subshell)

<i>l</i> ₁ =1, <i>l</i> ₂ =1	L= 2, 1, 0
$s_1 = \frac{1}{2}, s_2 = \frac{1}{2}$	S=1, 0

Only when L+S is even, the Pauli exclusion principle is fulfilled

¹D, ³P, ¹S 5 9 1 \rightarrow 15

 $p^2 \longleftrightarrow p^4$

No		ml		$M_{L} = \sum m_{L}(i)$	$M_{\rm s} = \sum m_{\rm s}(i)$	
	1	0	-1		$\frac{5}{i}$	
1	$\downarrow \uparrow$			2	0	
2	\uparrow	\rightarrow		1	1	
3	\uparrow	\rightarrow		1	0	
4	\rightarrow	\uparrow		1	0	
5	\rightarrow	\rightarrow		1	-1	
6		$\uparrow \downarrow$		0	0	
7	\uparrow		\rightarrow	0	0	
8	\rightarrow		\leftarrow	0	0	
9	\uparrow		\uparrow	0	1	
10	\rightarrow		\rightarrow	0	-1	
11		\leftarrow	\rightarrow	-1	0	
12		\rightarrow	\uparrow	-1	0	
13		\uparrow	\uparrow	-1	1	
14		\rightarrow	\rightarrow	-1	-1	
15			\downarrow	-2	0	

c. Equivalent electrons

 $1s^22s^22p^2$ (two electrons in the same subshell)

	¹ D, ³ P,		
	59	1 → 15	
M _L 2, 1, 0, M _S 0	-1, -2	L=2 S=0	¹ D
M _L 1, 0, -1 M _S 1, 0, -1		L=1 S=1	³ P
$egin{array}{c} \mathbf{M}_{\mathrm{L}} \ 0 \ \mathbf{M}_{\mathrm{S}} \ 0 \end{array}$		L=0 S=0	¹ S

12

• The term arising from a subshell containing N electrons are the same as the terms for a subshell that is N electrons short of being full.

Term : $p^0 == p^6$ $p^1 == p^5$ $p^2 == p^4$ **D. Energy level of microstates:** (terms).Hund's Rule:

1. For terms arising from the same electron configuration the term with the largest value of S lies lowest.

2. For the same S, the term with the largest L lies lowest.

E. Spin-Orbit interaction.

The spin-orbit interaction gives the observed fine structure in atomic spetra.

 $^{2S+1}L \rightarrow ^{2S+1}L_J \quad J = L+S, L+S-1, ..., |L-S|$ $^{4}S \rightarrow ^{4}S_{3/2}, ^{2}D \rightarrow ^{2}D_{5/2}, ^{2}D_{3/2}$

$np^3 - 4S, ^2D, ^2P$

20 microstates in total.

N(microstate) = $C_{10}^2 = 45$

1) Ms(overall max) = 1 \rightarrow S =1, (Ms = 1, 0, -1) & ML(Max) =3, \rightarrow L =3 \rightarrow ³F, N(microstate) = (2L+1)(2S+1) = 28

2) $M_L(\text{overallmax}) = 4 \rightarrow L = 4$, $Ms(max) = 0, \rightarrow S = 0$ $\rightarrow {}^1G$, N(microstate) = (2L+1)(2S+1) = 9

Nobel Prizes in Chemistry (1980-present) Awarded to Theoretical and Computational Chemists

• 2013:

Martin Karplus, Michael Levitt and Arieh Warshel

"for the development of multiscale models for complex chemical systems"

• 1998:

Walter Kohn "for his development of the density-functional theory" John A. Pople "for his development of computational methods in quantum chemistry"

• 1981:

Kenichi Fukui and Roald Hoffmann

"for their theories, developed independently, concerning the course of chemical reactions" **<u>Example</u>**: Find the possible values of the total-angularmomentum quantum number resulting from the addition of two angular momenta with quantum number $j_1 = 2$ and $j_2 = 3/2$.

Solution: $J_{max} = j_1 + j_2 = 2 + 3/2 = 7/2$

 $J_{min} = |j_1 - j_2| = |2 - 3/2| = 1/2$

 \rightarrow The possible J values are: 7/2, 5/2, 3/2, 1/2

Multiscales modelling of Multicopper-oxidase embedded in water

* Nobel Prizes in Physics for Quantum mechanics: M. Planck (1918), N. Bohr (1922), Prince de Broglie (1929), W. Heisenberg (1932), E. Schrödinger (1933)
Effects of e-e interactions in an atom:

- For the same *n*, different $l \rightarrow$ different E(AO)1)
- Different occupation patterns for a given number 2) of electrons within the same subshell differ in

energy.

$$\begin{array}{c|c}
\uparrow \downarrow \\
n_1 & 1 & 0 & -1
\end{array}$$

Single electron No e-e interaction

Many-e atom e-e interactions

Energy	n (shell)	Electronic configurations
Angular momentum		$\vec{L} = \sum \vec{m}_l(i)$ or L
orbital	\vec{M} or l, m_l	
Spin	\vec{m}_s or m_s	$S = \sum_{i} \vec{m}_{s}(i) or \ S$

9

The energy of the interaction between a magnetic dipole μ and an external magnetic field *B* is angular momentum $E_B = -\mu \bullet B = \frac{e}{2m_e} M \bullet B$ Magnetic induction or magnetic flux density

We take the z axis along the direction of the applied field: B = Bk, where k is a unit vector in the z direction. We have

$$E_{B} = \frac{e}{2m_{e}}B(\underbrace{M_{x}\mathbf{i} + M_{y}\mathbf{j} + M_{z}\mathbf{k}}_{z}) \bullet \mathbf{k} = \frac{e}{2m_{e}}BM_{z} = \frac{\beta_{e}}{\hbar}BM_{z}$$

angular momentum z-component of angular momentum

We now replace M_z by the operator M_z to give the additional term in the Hamiltonian operator: $\hat{H}_B = \beta_e B \hbar^{-1} \hat{M}_z$

The Schrodinger equation for the H-like atom in a magnetic field is

$$(\hat{H}_0 + \hat{H}_B)\psi = E\psi$$

$$\psi_{n,l,m} = R_{n,l}(r)\Theta_{l,m}(\theta)\Phi_m(\phi) = R(r)Y_l^m(\theta,\phi)$$

$$(\hat{H}_{0} + \hat{H}_{B})R(r)Y_{l}^{m}(\theta,\phi) = \hat{H}_{0}R(r)Y_{l}^{m} + \hbar^{-1}\beta_{e}B\hat{M}_{z}R(r)Y_{l}^{m}$$

Field-free Hamiltonian

$$= \left(-\frac{Z^2 R}{n^2} + \beta_e Bm\right) R(r) Y_l^m$$

- There is an additional term in the energy.
- The external magnetic field removes the *m* degeneracy of AO's in the same *l* subshell.
- For such obvious reasons, *m* is often called the *magnetic quantum number*.