Chapter 3

Molecular symmetry and symmetry point group

Part A

§ 3.1 Symmetry elements and symmetry operations

Symmetry exists all around us and many people see it as being a thing of beauty, e.g., the snow flakes.

> A symmetrical object contains within itself some parts which are **equivalent** to one another.

What are the key symmetry elements pertaining to these objects?

Why do we study the symmetry concept?

> The molecular configuration can be expressed more simply and distinctly.

The determination of molecular configuration is greatly simplified.

It assists giving a better understanding of the properties of molecules.

To direct chemical syntheses; the compatibility in symmetry is a factor to be considered in the formation and reconstruction of chemical bonds. 1. Symmetry elements and symmetry operations

Symmetry operation

An action that leaves an object the same after it has been carried out is called symmetry operation.

Example:

Rotation

Symmetry elements

Symmetry operations are carried out with respect to points, lines, or planes called symmetry elements.

(a) An NH_3 molecule has a threefold (C₃) axis

(b) an H_2O molecule has a twofold (C_2) axis.

Symmetry Operation

Symmetry operations are:

Rotation Reflection Inversion Universion

The corresponding symmetry elements are:

1) The identity (E)

- Operation by the identity operator leaves the molecule unchanged.
- All objects can be operated upon by the identity operation.

➤Matrix representation of an operator

$$\hat{C} \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} = \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} \implies \begin{aligned} x_2 &= c_{11}x_1 + c_{12}y_1 + c_{13}z_1 \\ y_2 &= c_{21}x_1 + c_{22}y_1 + c_{23}z_1 \\ z_2 &= c_{31}x_1 + c_{32}y_1 + c_{33}z_1 \end{aligned}$$

$$\begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} = \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} \quad \hat{C} = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{pmatrix}$$

> Matrix representation of *E*

$$x \xrightarrow{E} x; y \xrightarrow{E} y; z \xrightarrow{E} z$$

$$\begin{array}{c} x \xrightarrow{E} 1 \cdot x + 0 \cdot y + 0 \cdot z; \\ y \xrightarrow{E} 0 \cdot x + 1 \cdot y + 0 \cdot z; \\ z \xrightarrow{E} 0 \cdot x + 0 \cdot y + 1 \cdot z \end{array} \qquad E \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

.

9

2) Inversion and the *inversion center* (*i*)

• A molecule has a *center of* symmetry, symbolized by *i*, if the operation of *inverting* all its nuclei through the center gives a configuration indistinguishable from the original one.

For example

These objects have a center of inversion *i*.

These do not have a center of inversion.

Inverts all atoms through the centre of the object.

 \succ Its matrix representation

$$I = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \quad I \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x \\ -y \\ -z \end{pmatrix}$$

3

$$\begin{pmatrix} \frac{a_{11}}{a_{21}} & \frac{a_{12}}{a_{22}} & \frac{a_{13}}{a_{33}} \\ \frac{a_{11}}{a_{32}} & \frac{a_{23}}{a_{33}} \\ \frac{a_{11}}{a_{32}} & \frac{a_{33}}{a_{33}} \\ \end{pmatrix} \begin{pmatrix} b_{11} \\ b_{21} \\ b_{22} \\ b_{32} \\ b_{33} \\ \end{pmatrix} = \begin{pmatrix} \frac{c_{11}}{c_{21}} & \frac{c_{12}}{c_{22}} & c_{13} \\ \frac{c_{21}}{c_{31}} & c_{32} & c_{33} \end{pmatrix}$$

$$\frac{a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} = c_{11}}{a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} = c_{11}} \Rightarrow \sum_{i=1}^{3} a_{1i}b_{i1} = c_{11} \\ \frac{a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} = c_{12}}{a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} = c_{21}} \Rightarrow \sum_{i=1}^{3} a_{1i}b_{i2} = c_{12} \\ \frac{a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} = c_{21}}{a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} = c_{21}} \Rightarrow \sum_{i=1}^{3} a_{2i}b_{i1} = c_{21} \\ I^{2} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = E \\ \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = E \\ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = E \\ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = E \\ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = E$$

3) Rotation and the *n*-fold rotation axis (C_n)

A body has an *n-fold axis of symmetry* (also called *n-fold proper axis* or *n-fold rotation axis*) if rotation about this axis by *360/n* degrees gives a configuration indistinguishable from the original one.

Example: Rotation of BF₃ around its C₃ axis. Allowed rotations: C₃¹(α =2 π /3), C₃²(α =4 π /3), C₃³ = E

- There also exist three C₂ axes each along a B-F bond!
- The principal rotation axis is the axis of the highest fold.

The principal rotation axis is the axis of the highest fold.

The matrix representations of rotations around a C_n axis:

Conditions:

> Principal axis is aligned with the *z*-axis

A C_n axis gives rise to *n* unique rotational operations labeled as C_n^m (m = 1, 2, ..., n).

Matrix of allowed rotations

Angle of allowed rotations:

$$C_n^{\ m} = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\alpha = \frac{2m\pi}{n}$$
$$m = 1.2...n$$

4) Reflection and the Mirror plane (σ)

> If reflection of an object through a plane produces an indistinguishable configuration, that plane is a plane of symmetry (mirror plane, σ).

Likewise, we have

$$\sigma_{xy} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \quad \sigma_{xy} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ -z \end{pmatrix}$$

$$\sigma_{yz} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \sigma_{yz} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x \\ y \\ z \end{pmatrix}$$

➢ For molecular systems, there are three types of mirror planes:

- If the plane is **perpendicular** to the vertical principal axis, it is labeled σ_h . (*h*-horizontal)
- If the plane contains the principal axis, it is labeled σ_v . (*v*-vertical)

• If a σ_v plane contains the principal axis and more specifically **bisects** the angle between two adjacent 2fold axes, it is labeled σ_d . (*d*-diagonal)

Does BF₃ have σ_h , σ_v and/or σ_d planes ?

- The BF₃ plane is a σ_h plane.
- Each plane that contains a B-F bond and the C₃ axis is a σ_v and, meanwhile, a σ_d plane.

If the plane **contains** the principal axis then it is labeled σ_v .

- Example: H₂O
 - Has a C_2 principal axis.
 - Has two planes that contain the principal axis, σ_v and σ_v .

If a σ_v plane **contains** the principal axis and **bisects** the angle between two adjacent 2-fold axes, then it is a σ_d .(*Dihedral* mirror planes)

• Each HCH plane is a σ_v / σ_d plane!

5) The improper rotation axis

a. n-fold rotation-reflection axis of symmetry, or rotary-reflection axis (S_n)

A body has an S_n axis if rotation by $360^{\circ}/n$ about the axis, followed by reflection in a plane perpendicular to the axis, produces a configuration indistinguishable from the original one.

Special Cases: S₁ and S₂

• Neither S₁ nor S₂ axis is necessary!

We will use stereographic projections to plot the perpendicular to a general face and its symmetry equivalences, to display crystal morphology

o for upper hemisphere; x for lower

 \rightarrow S₆ = C₃ + *i* * S₆ is not independent at all! , $\stackrel{"}{}_{5}$

$$S_{4}^{1} = \sigma C_{4}^{1}; S_{4}^{2} = C_{2}^{1}$$

$$S_{4}^{3} = \sigma C_{4}^{3}; S_{4}^{4} = E$$

$$S_{4}^{3} \text{ is an independent sym. element!}$$

 $S_5 = C_5 + \sigma_h$ Not independent at all!

Possible operations pertaining to a S_5 axis:

$$S_{5}^{1} = \sigma C_{5}^{1}; S_{5}^{2} = C_{5}^{2}; S_{5}^{3} = \sigma C_{5}^{3}; S_{5}^{4} = C_{5}^{4}; S_{5}^{5} = \sigma;$$

$$S_{5}^{6} = C_{5}^{1}; S_{5}^{7} = \sigma C_{5}^{2}; S_{5}^{8} = C_{5}^{3}; S_{5}^{9} = \sigma C_{5}^{4}; S_{5}^{10} = E$$

• It demands the coexistence of a C_5 and a σ_h , which readily produce all symmetry operations arising from S_5 .

Generally, the following remarks are provable,

- i) A S_n improper axis with n = odd demands the coexistence of C_n and σ_h , i.e., S_n (n = odd) = $C_n + \sigma_h$.
- ii) A S_{2n} improper axis with n = odd demands the coexistence of C_n and *i*, i.e., S_{2n} (n = odd) = $C_n + i$.

(plz prove them after class!)

→ Neither S_n nor S_{2n} with n = odd is independent and necessary!

In conclusion,

Only S_4 and S_8 (S_{4n}) are independent symmetry elements.

b. *n*-fold rotation + inversion: Rotary-inversion axis (I_n)

Rotation around a C_n axis followed by inversion through the center of the axis.

Neither $I_5 (=C_5 + i)$ nor $I_6 (=C_3 + \sigma_h)$ is independent!

Only I_4 and I_8 are independent symmetry elements!

Summary

Ε

Element Name

- **C**_n n-fold rotation
- σ Mirror plane
- *i* Center of inversion
- S_n (n=4,8) Improper rotation axis

identity

Operation

Rotation by 360°/n

Reflection through a plane

Inversion through the center

Rotation as C_n followed by reflection in perpendicular mirror plane

Doing nothing

2. Combination rules of symmetry elements

A. Combination of two axes of symmetry

The combination of *two* C_2 *axes* intersecting at an angle of $2\pi/2n$, will create a C_n axis at the point of intersection which is perpendicular to both the C_2 axes and there are $n C_2$ -axes in the plane perpendicular to the C_n axis.

$$\mathbf{C}_{\mathbf{n}} + \mathbf{C}_{2}(\bot) \rightarrow \mathbf{n}\mathbf{C}_{2}(\bot)$$

B. Combination of two planes of symmetry.

- If *two mirrors planes* intersect at an angle of 2π/2n, there will be a C_n axis on the line of intersection.
- Similarly, the combination of an axis C_n with a mirror plane parallel to and passing through the axis will produce n mirror planes intersecting at angles of 2π/2n.

$$C_n + \sigma_v \rightarrow n \sigma_v$$

$$C_{2} + \sigma_{v} \Longrightarrow 2\sigma_{v}$$
$$C_{3} + \sigma_{v} \Longrightarrow 3\sigma_{v}$$

E.g., H₂O, NH₃

C. Combination of an even-order rotation axis with a mirror plane perpendicular to it.

- Combination of an even-order rotation axis with a mirror plane perpendicular to it will generate a center of symmetry at the point intersection. $(C_{2n} + \sigma_h \rightarrow i)$
- In other words, each of the three operations σ_h, C_{2n} and *i* is the product of the other two operations.

$$\begin{array}{c} \therefore C_{2n}^{n}(z) = C_{2}^{1}(z) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ \begin{array}{c} \sigma_{xy} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \\ \begin{array}{c} \sigma_{xy} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \\ \begin{array}{c} \sigma_{xy} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \\ \begin{array}{c} \sigma_{xy} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \\ \begin{array}{c} \sigma_{xy} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \\ \begin{array}{c} \sigma_{xy} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \\ \begin{array}{c} \sigma_{xy} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \\ \end{array} \\ \begin{array}{c} \sigma_{xy} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \\ \begin{array}{c} \sigma_{xy} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \\ \end{array} \\ \begin{array}{c} \sigma_{xy} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \\ \end{array} \\ \begin{array}{c} \sigma_{xy} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \\ \end{array} \\ \begin{array}{c} \sigma_{xy} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \\ \end{array} \\ \begin{array}{c} \sigma_{xy} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \\ \end{array} \\ \begin{array}{c} \sigma_{xy} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \\ \end{array} \\ \begin{array}{c} \sigma_{xy} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \\ \end{array} \\ \begin{array}{c} \sigma_{xy} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \sigma_{xy} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \\ \end{array} \\ \end{array}$$
§ 3.2 Groups and group multiplications

1. Definition: A mathematical group consists of a set of elements $G = \{G_1, G_2, ..., G_i, ...\}$.

(a) Closure. The product of any two elements G_i and
 G_j in the group G = {G₁, ..., G_i...}, is another element in the group, i.e.,

$$G_i \cdot G_j = G_k, \ G_m^2 = G_n, \ \dots$$

(b) Identity operation. The set includes the identity operation *E* such that AE = EA = A for all the operations in the set.

(c) Associative rule. If **A**, **B**, **C** are any three elements in the group, then $(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C} = \mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C})$.

(d) Inversion. For every element **A** in **G**, there is a unique element **X** in **G**, such that $X \cdot A = A \cdot X = E$. The element **X** is referred as the **inverse** of element **A** and is denoted A^{-1} .

The order of a group: The number of elements in a group!

Example: A C₃-symmetric molecule

- Symmetry elements:
- Symmetry operations:

tris(oxazoline)

$C_3^1 \cdot C_3^2 = C_3^3 = E C_3^1 \cdot C_3^1 = C_3^2$	$C_3^2 \cdot C_3^2 = C_3^1$ Closure.
E	Identity operation.
$(C_3^1 \cdot C_3^2) \cdot C_3^1 = C_3^1 (C_3^2 \cdot C_3^1)$	Associative rule.
$C_{3}^{1} \cdot C_{3}^{2} = E$	Inversion.

• All unique symmetry operations of this molecule constitute a group, namely C_3 . (group order = 3)

2. Multiplication of Symmetry Operations (Group multiplication)

It has symmetry elements: *E*, *C*₂, σ_{xz} , σ_{yz} Unique symmetry operations: {*E*, *C*₂¹, σ_{xz} , σ_{yz} }

Example: H_2O All unique symmetry operations: $\{E, C_2^1, \sigma_{xz}, \sigma_{yz}\}$ Multiplication table (of C_{2y})

C _{2v}	E	C ₂ ¹	σ_{xz}	σ_{yz}	
E	E	C_{2}^{1}	σ_{xz}	σ_{yz}	
C_{2}^{1}	C_{2}^{1}	Ε	σ_{yz}	σ_{xz}	
σ_{xz}	σ_{xz}	σ_{yz}	Ε	C_{2}^{1}	
σ_{yz}	σ_{yz}	σ_{xz}	C_{2}^{1}	Ε	σ _{χz}
			-	- 0	1

$$C_2^1 \cdot C_2^1 = E \quad \sigma_{xz} \cdot C_2^1 = \sigma_{yz} \quad \sigma_{yz} \cdot C_2^1 = \sigma_{xz} \quad \sigma_{yz} \cdot \sigma_{zz} = C_2^1$$

Note: The position of the O atom is unchanged upon any of the symmetry operations!

12 3

 σ_{yz}

Multiplication table	C _{2v}	Ε	C ₂ ¹	σ_{xz}	σ_{yz}
	Ε	E	C_2^{1}	σ _{xz}	σ_{yz}
	C_{2}^{1}	C_{2}^{1}	E	σ _{yz}	σ_{xz}
	σ _{xz}	σ_{xz}	σ_{yz}	Ε	C ₂ ¹
Characteristics of a Multiplication table	σ_{yz}	σ_{yz}	σ_{xz}	C_{2}^{1}	Ε

(1). In each row or each column, each operation appears once and only once. (A group of symmetry operations!)

(2) We can identify smaller groups within the larger one. For example, $\{E, C_2\}$ is a group, a *subgroup* of C_{2v} group. $\{E, \sigma\}$ is another subgroup.

(3) The total number of group elements = group order.

Example: NH₃

• Symmetry elements:

(E),
$$C_3, 3\sigma_v(\sigma, \sigma', \sigma'')$$

• Symmetry operations. $\left\{ E, C_3^1, C_3^2, \sigma, \sigma', \sigma'' \right\}$

Multiplication table of C_{3v}

C_{3v}	E	C ₃ ¹	C ₃ ²	σ_{v}	σ_v'	$\sigma_{v}^{\prime\prime}$
Ε						
C ₃ ¹						
C ₃ ²						
σ_{v}						
σ_{v}^{\prime}						
$\sigma_{v}{}^{\prime\prime}$						

Group Multiplication

C3v	E	C ₃ ¹	C ₃ ²	σ_{v}	σ_{v}'	$\sigma_{v}^{\prime\prime}$		
E	E	C ₃ ¹	C ₃ ²	$\sigma_{\rm v}$	σ_{v}'	$\sigma_{v}^{\prime\prime}$		
C ₃ ¹	C ₃ ¹	C_{3}^{2}	Ε					
C ₃ ²	C ₃ ²	Ε	C ₃ ²					
σ_{v}	σ_{v}							
σ_{v}'	σ_{v}'							
$\sigma_{v}^{\prime\prime}$	$\sigma_{v}^{\prime\prime}$							
							$\underline{\mathbf{C}_{3}^{1}}$	
	F		1			$(C^{1})^{*}$		
	Ìc			A	Ŭ	(C_3)	B	
	$\langle \Lambda \rangle$	C ₃ ¹	\sim	\wedge		ľ	C_3^2	
A	$\overline{\Delta}$		B	$\overline{\mathcal{I}}$	A	- 12		
	$\sim_{\rm B}$			-C		B	A	
C^1 .	$C^1 =$	C^2	$C^{2}.C$	$r^2 - C$		$^{-1} \cdot C^{2}$	$2^{2} - C^{3} - F$	
C_3	$C_3 -$	C_3	$C_3 \cdot C$	3 - C	³	$3^{\circ}C_{3}$	$-C_3 - L$	1

2 3

Group Multiplication

C3v	Ε	C ₃ ¹	C ₃ ²	σ_{v}	σ_{v}'	$\sigma_{v}^{\prime\prime}$
Ε	Ε	C ₃ ¹	C ₃ ²	σ_{v}	σ_{v}'	$\sigma_{v}^{\prime\prime}$
C ₃ ¹	C ₃ ¹	C ₃ ²	Ε	$\sigma_{v}^{\prime\prime}$	σ_{v}	σ_{v}'
C ₃ ²	C ₃ ²	Ε	C ₃ ²	σ_{v}'	$\sigma_{v}^{\prime\prime}$	σ_{v}
σ_{v}	σ_{v}	σ_{v}'	$\sigma_{v}^{\prime\prime}$			
σ_{v}'	σ_{v}'	$\sigma_{v}^{\prime\prime}$	σ_{v}			
$\sigma_{v}^{\prime\prime}$	$\sigma_{v}^{\prime\prime}$	σ_{v}	σ_{v}'			

9 3

Group Multiplication

C3v	E	C ₃ ¹	C ₃ ²	σ_{v}	σ_{v}'	$\sigma_{v}^{\prime\prime}$
Ε	Ε	C_{3}^{1}	C ₃ ²	σ_{v}	σ_{v}'	$\sigma_{v}^{\prime\prime}$
C ₃ ¹	C ₃ ¹	C_{3}^{2}	Ε	$\sigma_{v}^{\prime\prime}$	σ_{v}	σ_{v}'
C ₃ ²	C ₃ ²	Ε	C ₃ ²	σ_{v}'	$\sigma_{v}^{\prime\prime}$	σ_{v}
σ_{v}	σ_{v}	σ_{v}'	$\sigma_{v}^{\prime\prime}$	Ε	C ₃ ¹	C ₃ ²
σ_{v}'	σ_{v}'	$\sigma_{v}^{\prime\prime}$	σ_{v}	C ₃ ²	E	C ₃ ¹
$\sigma_{v}^{\prime\prime}$	$\sigma_{v}^{\prime\prime}$	σ_{v}	σ_{v}'	C ₃ ¹	C ₃ ²	Ε

 $\sigma_v' \sigma_v = C_3^{1}$

 σ_{v}' $\sigma_{\rm v}$ B C **C**₃¹

12 | _____3

9

Multiplication table of C_{3v}

	C3v	E	C ₃ ¹	C ₃ ²	σ_{v}	σ_{v}'	$\sigma_{v}^{\prime\prime}$
P	Ε	Ε	C ₃ ¹	C ₃ ²	σ_{v}	σ_{v}'	$\sigma_{v}^{\prime\prime}$
	C ₃ ¹	C_{3}^{1}	C ₃ ²	Ε	$\sigma_{v}^{\prime\prime}$	σ_{v}	σ_{v}^{\prime}
	C ₃ ²	C ₃ ²	Ε	C ₃ ²	σ_{v}'	$\sigma_{v}^{\prime\prime}$	σ_{v}
	σ_{v}	σ_{v}	σ_{v}'	$\sigma_{v}^{\prime\prime}$	Ε	C ₃ ¹	C ₃ ²
	σ_{v}'	σ_{v}'	$\sigma_{v}^{\prime\prime}$	σ_{v}	C ₃ ²	Ε	C ₃ ¹
	$\sigma_{v}^{\prime\prime}$	$\sigma_{v}^{\prime\prime}$	σ_{v}	σ_{v}'	C_{3}^{1}	C ₃ ²	Ε

 C_3 subgroup: {E, C₃¹,C₃²}

 C_{s} subgroup: {E, σ } C_{1} subgroup: {E}

§ 3.3 Point Groups, the symmetry classification of molecules

- The set of all the symmetry operations of a molecule forms a mathematical group.
- These symmetry operations have at least one common point unchanged (e.g., the O atom in H₂O).
- Such a group of symmetry operations is thus called point group.
- Accordingly, it is quite convenient to represent the symmetry of a molecule by the very *point group*!

The symmetry of an object(molecule) can be conveniently represented by a point group that contains all possible unique symmetry operations arising from its available symmetry elements.

ζ

Four categories of symmetry point groups

- Groups with no C_n axis: $C_1 C_s C_i$
- Groups with a single C_n axis: $C_n C_{nh} C_{nv}, S_{2n}$
- Groups with one C_n axis and $n C_2$ axes :

 $D_n D_{nd} D_{nh}$ (Dihedral groups)

• Groups with more than one C_n (n >2) axis:

 $T_d T T_h$ (Tetrahedral groups);

 O_h O (Octahedral groups);

 I_h I (Icohsahedral groups); (K_h-spherical symm.)

1. The groups: C_1, C_i , and C_s The group C_1

• A molecule belongs to the group C_1 if it has no element of symmetry other than the identity.

$$C_1 = \{\mathbf{E}\}$$

1-order group!

The group $C_i = \{E, i\}$

- An object belongs to C_i if it has the identity and inversion alone. $C_i = \{E, i\}$.
 - Examples: meso-tartaric acid, HClBrC-CHClBr

The group C_s

• An object belongs to C_s group if it has the identity E and a mirror plane σ alone.

2. The mono-axis groups C_n , C_{nv} , C_{nh} and S_n

The group $C_n = \{ E, C_n^{-1}, ..., C_n^{n-1} \}$

- A molecule belongs to the group C_n if it has <u>only</u> an *n*-fold axis.
- Example: H₂O₂

• Group order of a C_n group is ? .

 $C_2H_2CI_2$

 $C_2H_3CI_3$

The group C_{nv}

- If in addition to a C_n axis an object has *n* vertical mirror (σ_v) planes, it belongs to the C_{nv} point group.
- $C_n + \sigma_v \rightarrow n \sigma_v$

• Group elements: { E, C_n^m (m =1,...,n-1), $n \sigma_v$ }

9

• Group order: 2n

phenanthrene

 $cis-N_2H_4$

$HCCl_3$

 $H_4C_4Cl_4$

 C_{4v}

12

6

3

The group C_{nh}

Objects having a C_n axis and a horizontal mirror plane σ_h belong to C_{nh} .

Symmetry elements derived from $C_n + \sigma_h$:

a) $C_n + \sigma_h \rightarrow S_n$ ($(\sigma_h)^m (C_n^1)^m = S_n^m, m = odd$)

b) When *n=even*, a C_n is also a $C_{n/2}$ and a C_2 .

 $C_{n/2} + \sigma_h \rightarrow S_{n/2} \qquad ((\sigma_h)^m (C_{n/2})^n)^m = S_{n/2}^m, m = odd)$ $C_2 + \sigma_h \rightarrow i \quad (\sigma_h C_2^1 = i)$ C_{2h} trans-CHC1=CHC1

$$n = 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad \infty$$

$$C_{nh} \qquad \boxed{} \qquad \boxed{}$$

A C_{nh} point group is 2n-order, consisting of symmetry operations C_n^m (m=1,...,n), σ_h , and $\sigma_h C_n^m$ (m=1,..., n-1)! Note: i) When n = odd, $\begin{cases} m = odd, \sigma_h C_n^m = S_n^m \\ m = oven \ \sigma \ C^m = \sigma \ C^{n+m} = S^{n+m} \end{cases}$

ii) When
$$n = even$$
, $\sigma_h C_n^m = \sigma_h C_n^m = S_n^m$
 $m = even$, $\sigma_h C_n^m = \sigma_h C_{n/2}^m = S_{n/2}^m$
 $m = even$, $\sigma_h C_n^m = \sigma_h C_{n/2}^1 = i$
 $m = even$, $\sigma_h C_n^{n/2} = \sigma_h C_2^1 = i$

The group S_n

Objects having a S_n improper rotation axis belong to S_n.
 (n=2m, m ≥2)

• S_{2n+1} does not exist!

Some remarks on S_n axis and S_n group

1. Objects having an odd-fold S_{2n+1} axis should also have a σ_h mirror plane and a C_{2n+1} axis (*n*=1,2,...), thus actually belonging to $C_{(2n+1)h}$.

$$S_{2n+1}^{2n+1} = (C_{2n+1}^{2n+1})(\sigma_h)^{2n+1} = \sigma_h S_{2n+1} = C_{2n+1} + \sigma_h$$

2. Objects with an S_{4n+2} axis have such normal symmetry elements as $C_{2n+1} (S_{4n+2}^{2k} = C_{2n+1}^{2k})$ and i! (n>0)

$$S_{4n+2}^{2n+1} = (C_{4n+2}^{2n+1})(\sigma_h)^{2n+1} = i \quad S_{4n+2} = C_{2n+1} + i$$

Namely, objects having exclusively a C_{2n+1} (n>0) axis and *i* also have an improper axis S_{4n+2} belonging to S_{4n+2} group (sometimes denoted C_{mi} group (m=2n+1), e.g., $S_6 = C_{3i}$).¹

3. Only S_{4n} axes are independent *symmetry elements*! Objects having an S_{4n} axis also have a C_{2n} axis. (n=1,2,...)

In short,

- There exist S_n groups only when n = 2m (m > 1)!
- A S_n (n = even) point group is *n*-order with the elements { $E, S_n^{-1}, ..., S_n^{n-1}$ }.

Mono-axis groups

Such point groups as C_n , C_{nv} , C_{nh} , S_n etc. having only one rotary (or improper) axis are called **mono-axis groups**.

3. The dihedral groups: D_n , D_{nh} , D_{nd} D_n : An object that has an *n*-fold principal axis (C_n) and $n C_2$ axes perpendicular to C_n belongs to D_n .

?

The group D_{nh}

A molecule having a mirror plane (σ_h) perpendicular to a

 C_n axis, and *n* two-fold axes (C_2) in the plane, belongs to the group D_{nh} .

 $\mathbf{C}_{\mathbf{n}} + \sigma_{\mathbf{h}} \rightarrow S_{\mathbf{n}} \text{ or/and } S_{\mathbf{n}/2}$ $C_n \perp C_2 \rightarrow n C_2$ D_{nh} is 4*n*-order. $nC_2 \subset \sigma_h \rightarrow n \sigma_v$ $n C_{2} \subset \sigma_{h} \neq n \sigma_{v}$ $\sigma_{h} = S_{n}^{n} \quad (n = odd)$ $n = odd, D_{nh} = \{E, C_{n}^{-1}, \dots, C_{n}^{n-1}, nC_{2}, n\sigma_{v}, S_{n}^{-1}, \dots, S_{n}^{n}, \dots, S_{n}^{2n-1}\}.$ n= even, $D_{nh} = \{E, C_n^{-1}, ..., C_n^{n-1}, nC_2, \sigma_h, i, S_n^{-1}, S_{n/2}^{-1}, ..., S_n^{n-1}, S_{n/2}^{n-1}, (n/2)\sigma_v, (n/2)\sigma_d\}$ $i = S_n^{n/2} (n = even) (n-1) S_n^{-1} ype operations!$

D_{nh}

 $[Ni(CN)_{4}]^{2-}$

 $[M_2(COOR)_4X_2]$

 Re_2Cl_8

12

9

Bis(benzene)chromium

 $\boldsymbol{D}_{\infty h}$ O=C=O

The group D_{nd}

- A molecule that has a C_n ($n \ge 2$) principle axis and $n C_2$ axes perpendicular to C_n belongs to D_{nd} if it also possesses n diagonal mirror planes (σ_d).
- A set of operations of $\sigma_d \cdot C_2$ ($\perp C_n$) type are equivalent to S_{2n}^{m} , thus making the C_n being an S_{2n} axis. For D_{2d} , $C_2 + 2C_2(\bot) + 2\sigma_{d/v}$ The order of group $D_{nd} = 4n$ $\begin{bmatrix} \angle C_2'/C_2'' = 2\pi/2n = \pi/2 \\ \angle \sigma_d/\sigma_d' = 2\pi/2n = \pi/2 \end{bmatrix}$ $C_{2}'a = b', \sigma_{d}b' = b, S_{4}^{1}a = b$ $\Box > \sigma_{d}C_{2}' = S_{4}^{1} (//C_{2})$ $\begin{cases} \sigma_d C_2'' = S_4^3 & (a \rightarrow c' \rightarrow c); \\ C_2 = S_4^2; & E = S_4^4 \end{cases}$ \therefore The C₂ axis is also a S₄! $C_{3}H_{4}$ $D_{2d} = \{E, 3C_{2}, 2\sigma_{d}, S_{4}^{-1}, S_{4}^{-3}\}$

D_{nd} Upon introducing σ_d , the C_n axis becomes a S_{2n} axis! e.g., Ethane $-D_{3d}$. $C_{3} + 3C_{2}(\perp) + 3\sigma_{d/v}$ $\angle C_2 / C_2' / C_2'' = 2\pi/2n = \pi/3$ $\int \langle \sigma_d / \sigma_d' / \sigma_d'' \rangle = 2\pi/2n = \pi/3$ $\Box > C_2'' \bot \sigma_d', \sigma_d \bot C_2', \sigma_d'' \bot C_2$ $\Box \supset \sigma_d C2' = i \text{ or } \sigma_d' C2'' = i$ \square C₃ + *i* = S₆ $\square D_{3d} = \{E, C_3^{\ 1}, C_3^{\ 2}, 3C_2, 3\sigma_d, i, S_6^{\ 1}, S_6^{\ 5}\}$

• It is provable that an object of D_{nd} (n=odd) group also has such symmetry elements $i \& S_{2n}$. $C_n + nC_2(\bot) + n\sigma_{d/v}$ (n=odd) $\sigma_d[(n+1)/2]$

$$\therefore \angle C_2(1) / \sigma_d(\frac{n+1}{2}) = \frac{\pi}{2} \Longrightarrow C_2(1) \perp \sigma_d(\frac{n+1}{2}) \& C_2(j + \frac{n+1}{2}) \perp \sigma_d(j)$$

$$\therefore \sigma_d(\frac{n+1}{2})C_2(1) = i$$

 $C_n + i = S_{2n} \quad (n = odd)$

D_{nd}

i) Key symmetry elements:

 $C_n + nC_2 + n\sigma_{d/v} \& S_{2n}$ (derived from $\sigma_d + C_2$)

ii) Equivalent symmetry operations: $S_{2n}^{2k} = C_n^{k}$ (k= 1,..., n);

iii) When
$$n = \text{odd}$$
, $S_{2n}^{n} = i$; $\sigma_d \cdot C_2(\bot) = i$
 $S_{2n}^n = S_{4m+2}^{2m+1}$ (n = 2m + 1)
 $= (\sigma_h)^{2m+1} (C_{4m+2}^{2m+1}) = \sigma_h C_2^1 = i$

Dihedral Groups

4. High-order point groups(Polyhedral point groups)

- The aforementioned point groups have one axis or one *n*-fold axis plus *n* 2-fold axes.
- Molecules having three or more high-order symmetry elements (several *n*-fold axes, n>2) may belong to one of the following:
 - T: $4 C_3, 3 C_2$ ($T_h: +3\sigma_h$) ($T_d: +3S_4$)
 - O: $4 C_3, 3 C_4$ (O_h: $+3\sigma_h$) \implies Cubic group
 - I: $6 C_5$, $10 C_3$ (**I**_h: + *i*)

Polyhedral groups derived from Platonic Polyhedra

T_d – Species with tetrahedral symmetry

tetrahedral symmetry group

Icosahedral symmetry group

O_h – Species with octahedral symmetry (many metal complexes)

octahedral symmetry group

I_h – Icosahedral symmetry (Buckminsterfullerene, C₆₀)

 $T_{d} = \{E, 4C_{3}^{1}, 4C_{3}^{2}, 3C_{2}^{2}, 6\sigma_{d}^{1}, 3S_{4}^{1}, 3S_{4}^{3}\}$ Order =24 Note: $S_{4}^{2} = C_{2}^{2}$

Ϊ.

- The perfectly tetrahedronshaped object belongs to T_d point group.
- The windmill-like structures reduces the symmetry from T_d to T by eliminating the $\sigma_{d/v}$ planes.

T: $4 C_3 + 3 C_2$ (T_d : $+ 3S_4 \text{ or } + 6\sigma_d$)

- $T = \{E, 4C_3^1, 4C_3^2, 3C_2\}$ order =12
- **T** is a pure rotation group!

Objects of T-symmetry are chiral!

Luk Y-Y et al, Chirality, 2008, 20, 878-884.

Wang XC et al. Nature Comm., 2016, 7, 12469

$$T_{h} = \{E, 4C_{3}^{1}, 4C_{3}^{2}, 3C_{2}, 3\sigma_{h}, i, 4S_{6}^{1}, 4S_{6}^{5}\}$$

Order = 24
Note: $S_{6}^{2} = C_{3}^{1}; S_{6}^{4} = C_{3}^{2}; S_{6}^{3} = i$

No mirror plane is allowed due to the presence of windmill-like fragments at the apices of the octahedron!

9

O: 4C₃, 3C₄ $\xrightarrow{C_4 \perp C_2 \rightarrow 4C_2 (\perp C_4)} 6C_2'$

 $O = \{ E, 4C_3^{\ 1}, 4C_3^{\ 2}, 3C_4^{\ 1}, 3C_4^{\ 3}, 3C_2, 6C_2' \}$

Order =24 Pure rotation group! Molecules of O-symmetry are chiral!

 SF_6

 C_8H_8

Oh

12

9

6

3

 Rh_{13}

Typical subgroups of O_h

- $\mathbf{O} = \text{lacks } \mathbf{i}, \mathbf{S}_4, \mathbf{S}_6, \sigma_h \text{ and } \sigma_d \text{ and is called the pure}$ rotation subgroup of O_h .
- $T_d = \text{lacks } C_4$, i and σ_h and is the group of tetrahedral molecules, e.g., CH₄.
- T_h = this uncommon group is derived from T_d by removing S₄ and σ_d elements.
- \mathbf{T} = the pure rotation subgroup of T_d contains only C_3 and C_2 axes.

 $I = \{E, 12C_5, 12C_5^2, 20C_3, 15C_2\}$ **Order =60 Pure rotation group!** No i, σ , S_n -- chiral! e.g., some virus! $\{E, 12C_5, 12C_5^2, 20C_3, 15C_2, i,$ $12S_{10}, 12S_{10}^{3}, 20S_{6}, 15\sigma_{h}$ order = 120

I_h group: two long-known examples

a. $B_{12}H_{12}^{2-}$ (icosahedral borane dianion)

- b. $C_{20}H_{20}$ (dodecahedrane)
- First synthesized by Paquette in 1982, three years before the discovery of C_{60} .
- It is indeed the first fullerene derivative synthesized by mankind.

Chem. Rev. 2005, 105, 3643 and references therein.

 $B_{12}H_{12}^{2-}$ (hydrogen omitted)

Order = 120

9

C₆₀, bird-views from the 5-fold axis and 3-fold axis. 12 pentagons and 20 hexagons;

§ 3.4 Simple Applications of symmetry

3.4.1 Chirality

9

A chiral molecule is a molecule that can not be superimposed on its mirror image

- These molecules are:
- \succ not superimposed on its mirror image.
- > a pair of **enantiomers** (left- and right-handed isomers)
- > able to rotate the plane of polarized light (**Optical activity**)
- > does not possess an axis of improper rotation, $S_n(i, \sigma)$

Optical activity is the ability of a chiral molecule to rotate the plane of plane-polarized light.

12 3

Optical activity

Optically inactive: achiral molecule or racemic mixture of chiral molecules

- 50/50 mixture of two enantiomers

Optically pure: 100% of one enantiomer

Optical purity (enantiomeric excess) = percent of one enantiomer – percent of the other

> *e.g.*, 80% one enantiomer and 20% of the other = 60% e.e. or optical purity

- In summary, the groups that <u>may</u> be chiral are as follows: C_1 , C_n , and D_n .
- However, not all molecules in these groups will necessarily be chiral, they are merely permitted to be.
- For example, hydrogen peroxide belongs to the group C₂, but it is **not** chiral, as free rotation about the O-O bond is possible.

2. Polarity, Dipole Moments and molecular symmetry

A polar molecule is one with a permanent electric dipole moment.

Dipole Moments

- are due to differences in atomic electronegativity
- depend on the amount of charge and distance of separation
- in Debyes (D), $\mu = 4.8 \times \delta$ (electron charge) $\times d$ (angstroms)

H

 For one proton and one electron separated by 100 pm, the dipole moment would be:

$$\mu = (1.60 \times 10^{-19})(100 \times 10^{-12}m) \left(\frac{1D}{3.34 \times 10^{-30}C \cdot m}\right) = 4.80D$$

Permanent Dipole Moments

(a) Only molecules belonging to the groups C_n , C_{nv} and C_s may have an electric dipole moment. $\mu = 0$

Meso-tartaric acid

9

(b) Dipole moment cannot be perpendicular to any mirror plane or C_n.

Molecular Dipole Moments

Polar and Nonpolar Molecules

Summary of this chapter

Symmetry elements & symmetry operations

Element Name Operation

C_n n-fold rotation Rotate by 360° /n

σMirror planeReflection through aplane

- *i* Center of inversion
- S_n Improper rotation axis

identity

Ε

n Rotation as C_n followed by reflection in perpendicular mirror

Inversion through the

plane

center

Do nothing

summary § 3 Point Groups, the symmetry classification of molecules

Point group:

- All symmetry operations pertaining to available symmetry elements in any molecule/object have at least one common point unchanged and constitute a group, thus called point group.
- Elements of a point group are symmetry operations.
- For a given point group, its order corresponds to the total number of symmetry operations.
(1) Point groups of low symmetry:

 $C_1; C_s; C_i$

(2) Point groups with only one n-fold rotational axis:

 $C_n; C_{nh}; C_{nv}; C_{\infty v}$

(3) The S_{2n} groups: S_4 ; S_6 ; S_8

(4) Dihedral groups containing nC_2 axes perpendicular to the principal axis C_n :

9

 $\mathbf{D}_{n}; \mathbf{D}_{nh}; \mathbf{D}_{nd}; \mathbf{D}_{\infty h}$

(5) The cubic groups: T, T_h, T_d; O, O_h; I, I_h

How to discern S_n , D_n , and D_{nd} groups?

Key points:

- 1. S_n group exists only when n = even; objects of S_n group also have a $C_n/_2$ axis; a S_n group is simply norder.
- 2. Objects of D_n group have exclusively a C_n axis and n C_2 axes. A D_n group is 2n-order.
- 3. Objects of D_{nd} group have not only a C_n axis and n C_2 axes, but also $n \sigma_{d/v}$ mirror planes & a S_{2n} axis. A D_{nd} group is 4n-order.

$$S_n^{-1} = \sigma_h C_n^{-1} \qquad S_n^{-m} = (S_n^{-1})^m = (\sigma_h)^m (C_n^{-1})^m = (\sigma_h)^m C_n^{-m}$$

i) If $n = odd$,
For $m = odd = 2k - 1$ (k=1,2,..., (n+1)/2), $n + m = even$,
 $S_n^{-m} = (\sigma_h)^m C_n^{-m} = \sigma_h C_n^{-2k-1}$ (when m=n, $S_n^{-n} = \sigma_h C_n^{-n} = \sigma_h$) &
 $S_n^{m+n} = (\sigma_h)^{m+n} C_n^{-m+n} = C_n^{-m}$ (when m=n, $S_n^{-2n} = E$)
For $m = even = 2k(k=1,2,..., (n-1)/2)$, $n+m = odd$,
 $S_n^{-m} = (\sigma_h)^m C_n^{-m} = C_n^{-m}$, $S_n^{-m+n} = (\sigma_h)^{m+n} C_n^{-m+n} = \sigma_h C_n^{-m}$
Thus, a S_n ($n = odd$) axis produces a set of unique operations
{E, C_n^{-m} (m =1,...,n-1), σ_h , $\sigma_h C_n^{-m}$ (m=1,..., n-1)}, that can be
produced by $C_n + \sigma_h$.

9 3 6 ii) If $n = even \neq 4p$,

For m =even=2k (k=1,2,...,n/2), n+m =even

$$S_n^m = (\sigma_h)^m C_n^m = C_n^m = C_{n/2}^{m/2}$$
 (when m=n, $S_n^n = C_n^n = E$),
i.e., a $C_{n/2}^{m/2}$ also exists!
 $S_n^{m+n} = (\sigma_h)^{m+n} C_n^{m+n} = C_n^m = S_n^m$ (not unique!)
For m = odd = 2k-1 (k=1,2,...,n/2), n+m = odd
when m=n/2, $S_n^{n/2} = \sigma_h C_n^{n/2} = \sigma_h C_2^{-1} = i$, *i.e., an inversion center*
exists! $S_n^m = (\sigma_h)^m C_n^m = \sigma_h C_n^m = S_n^{n+m} = \sigma_h C_n^m = S_n^m$ (not unique!)
The S_n (n=even $\neq 4k$) is equivalent to $C_{n/2} + i$.

9 3 6

≻对称操作和对称元素

▶对称元素的组合及群的概念

≻分子的点群

≻对称性与偶极矩、旋光性的关系

9