Chapter 3

Molecular symmetry and symmetry point group

Part B

(ref. Chemical Application of Group Theory, 3rd ed., F.A. Cotton, by John Wiley & Sons, 1990.)

§ 3.5 Group representation Theory and irreducible representation of point groups

3.5.1 Representations of a point group:

reducible vs. irreducible

- For a point group,
- > Each element is a unique symmetry operation (operator).
- > Each operation can be represented by a square matrix.
- These matrices constitute a matrix group, i.e., a matrix representation of this point group.

Example: $C_i = \{E, i\}$ ~ a general point (x, y, z) in space.

$$\hat{i} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x \\ -y \\ -z \end{pmatrix}$$

$$\hat{i} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad \hat{E} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

a matrix group

Example: C_i one unit vector x

$$\hat{E}(x) = (1)(x) = (x)$$
 $\hat{i}(x) = (-1)(x) = (-x)$

The corresponding matrix representation of C_i is $\{(1), (-1)\}$

- Q1:How many representations can be found for a particular group?
 - A large number, limited on our ingenuity in devising ways to generate them.

Q2: If we were to assign three small unit vectors directed along the x, y and z axes to each of the atoms in H_2O and write down the matrices representing the changes and interchanges of these upon the operations, what would be obtained?

A matrix representation consisting of four 9x9 matrices would be obtained upon operating on a column matrix $(x_0, y_0, z_0, x_{HI}, y_{HI}, z_{HI}, x_{H2}, y_{H2}, z_{H2})$.

Example: C_{2v} three unit vectors (x,y,z) or a general point{E, C_2 , σ_{xz} , σ_{yz} }Principal axis: z-axis.

$$\hat{E}\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{pmatrix}\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}x\\y\\z\end{pmatrix}$$

$$\hat{C}_{2}\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}-1 & 0 & 0\\0 & -1 & 0\\0 & 0 & 1\end{pmatrix}\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}-x\\-y\\z\end{pmatrix}$$

$$\hat{\sigma}_{xz} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ -y \\ z \end{pmatrix}$$

$$\hat{\sigma}_{yz} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x \\ y \\ z \end{pmatrix}$$

a matrix representation of C_{2v}

K

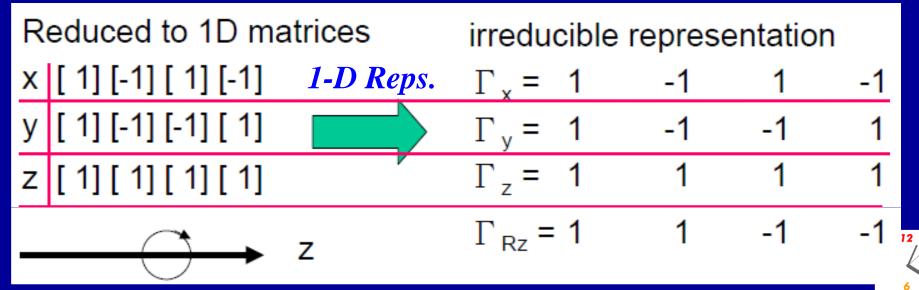
Bases, representations and their dimensions

- **Dimension of a representation = The order of matrices.**
- Different basis \rightarrow Different representation.

Example: $C_{2\nu}$ Basis ~ a general point or three unit vectors.

A 3-D rep.

Simple basis: a translational vector as \mathbf{x} , \mathbf{y} , or \mathbf{z} , or a rotor \mathbf{R}_z



Reducing of representations

- Suppose that we have a set of *n*-dimensional matrices, *A*, *B*,
 C, ..., which form a representation of a group. These *n*-D matrices themselves constitute a matrix group Γ = {*A*, *B*,...}.
- If we make the same *similarity transformation* on each matrix, we obtain a new set of matrices, namely,

$$A' = X^{-1}AX, B' = X^{-1}BX,$$

 $C' = X^{-1}CX, ...$

that forms a new matrix group: $\Gamma' = \{A', B', C', ...\}$

• *I*' is also a representation of the group!

It is provable that if any of the matrix (e.g., A') in Γ' is a block-factored matrix, then all other matrices (e.g., B',C',...) in Γ' are also blocked-factored.

$$A' = \begin{bmatrix} [A_1] & 0 & 0 & 0 \\ 0 & [A_2] & 0 & 0 \\ 0 & 0 & [A_3] & 0 \\ 0 & 0 & 0 & [A_4] \end{bmatrix}, B' = \begin{bmatrix} [B_1] & 0 & 0 & 0 \\ 0 & [B_2] & 0 & 0 \\ 0 & 0 & [B_3] & 0 \\ 0 & 0 & [B_4] \end{bmatrix}, C' = \begin{bmatrix} [C_1] & 0 & 0 & 0 \\ 0 & [C_2] & 0 & 0 \\ 0 & 0 & [C_3] & 0 \\ 0 & 0 & 0 & [C_4] \end{bmatrix}, \dots$$

in which A_1, A_2, A_3 ... are n_1, n_2, n_3 ...-order submatrices with $n = n_1 + n_2 + n_3 + \dots$

• These *n*-order matrices can be simply expressed as

$$A' = A_1 \oplus A_2 \oplus A_3 \oplus \dots, \quad B' = B_1 \oplus B_2 \oplus B_3 \oplus \dots,$$
$$C' = C_1 \oplus C_2 \oplus C_3 \oplus \dots, \quad \dots$$

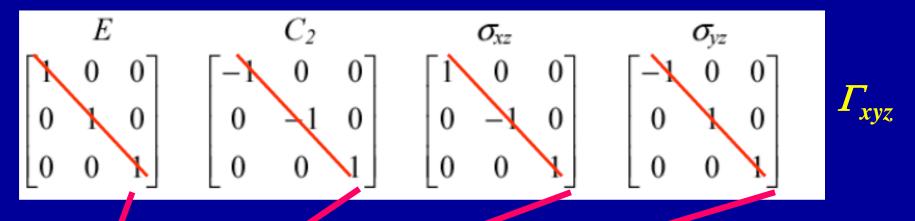
(Direct sum of submatrices!)

• It is also provable that the various sets of submatrices, $T_1 = \{A_1, B_1, C_1, ...\}, T_2 = \{A_2, B_2, C_2, ...\}, T_3 = \{A_3, B_3, C_3, ...\}, ...,$

are in themselves representations of the group.

- We then call the set of matrices $\varGamma = \{A, B, C, ...\}$ a reducible representation of the group, which breaks up into a direct sum of the representations, i.e., $\varGamma = T_1 \oplus T_2 \oplus T_3 \oplus ...$
- If it is not possible to find a similarity transformation to reduce a representation in the above manner, the representation is said to be *irreducible*.
- The irreducible representations of a point group are mostly countable and of fundamental importance!

Example: C_{2v} Is this 3-D Rep. reducible? Yes. These matrices are block-factored!



R	educed to 1D n	natrices	irredu	cible r	represe	entatior	า
х	[1] [-1] [1] [-1]	<	Γ _× =	1	-1	1	-1
у	[1] [-1] [-1] [1]		Γ _y =	1	-1	-1	1
z	[1][1][1][1]		Γ_z =	1	1	1	1

 $\Gamma_{xyz} = \Gamma_x \Theta \Gamma_y \Theta \Gamma_z$

The 3-D rep. is reduced to 3 1-D rep.

Point group R $R = \{R_A, R_B, R_C, \ldots\}$ (symm. ops.) Exerted on any set of bases (e.g., AO's, MO's, vectors, rotations etc.) A matrix group, $\Gamma = \{A, B, C, \ldots\}$ (a matrix rep. of group R, dimension = order of the matrix) Similarity transformations (reducing of a representation!) A block-factored matrix group, $\Gamma' = \{A', B', C', \ldots\}$ $(A' = A_1 \oplus A_2 \oplus \dots, B' = B_1 \oplus B_2 \oplus \dots, C' = C_1 \oplus$ $C_2 \oplus \dots$ and $\Gamma_1 = \{A_1, B_1, C_1, \dots\}, \Gamma_2 = \{A_2, B_2, C_2, \dots\}$... $\& \Gamma' = \Gamma_1 \oplus \Gamma_2 \oplus \dots$

Direct sum of irreducible representations!

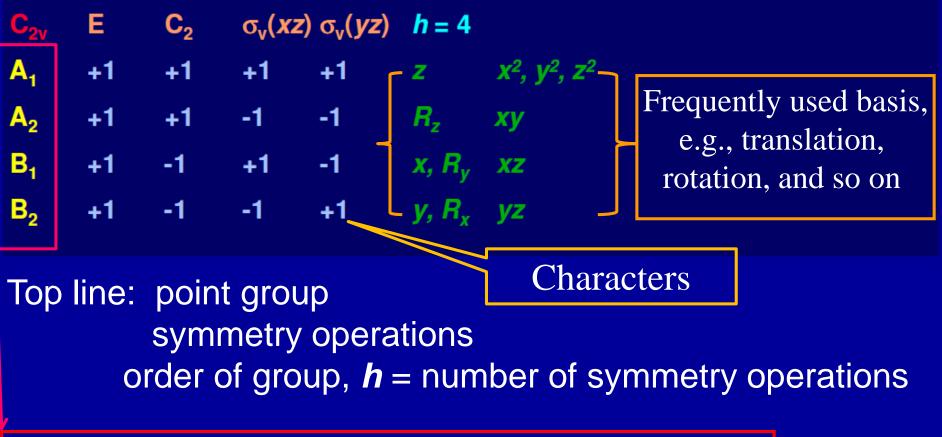
The irreducible representations of a point group are mostly countable and of fundamental importance!!!

The character table of a point group lists up all essential information of its irreducible representations.

3.5.2. Character Tables of Point Groups

Example - point group C_{2v}

Character table



Symmetry species of irreducible representations.

Characters & reducing representation!

Character of a matrix A: (sum of its diagonal elements!)

Ε

(E)

X(

$$\chi(\mathbf{A}) = \sum_{i} a_{ii}(\mathbf{A})$$

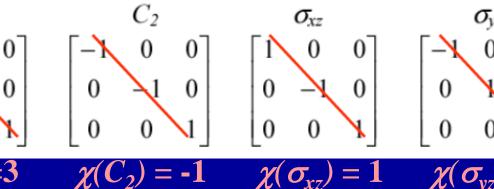
 σ_{yz}

0

0

0

0



3-D Rep.

3

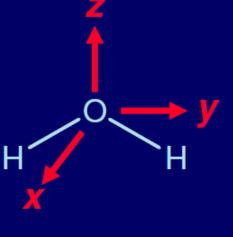
Reduced to 1D matrices		E	C_2	σ_{xz}	σ_{yz}
x [1][-1][1][-1]	\boldsymbol{B}_{1}	1	-1	1	-1
y [1][-1][-1][1]	B_2	1	-1	-1	1
z [1][1][1]	A_{I}	1	1	1	1
$\Gamma_{xyz} = A_1 \oplus B_1 \oplus B_2$	Γ_{xyz}	3	-1	1	1
If $\Gamma = \Gamma_1 \oplus \Gamma_2$	$\oplus \Gamma_3 \oplus$	$\cdot, \chi_{\Gamma}(R)$	$y = \sum_{i} \chi_{i}$	$\Gamma_i(R)$	12
Γ_i I.R.s					<mark>۶ ل</mark>

Translations

Movements of whole molecule – represent by vectors

e.g. y vectorE operationy' (after operation) = y C_2 y' = -y (i.e. $y' = -1 \times y$) $\sigma_v(XZ)$ y' = -y $\sigma_v(yz)$ y' = yz vectorall operationsz' = z

x vectorE operationx' = x C_2 x' = -x $\sigma_v(xz)$ x' = x $\sigma_v(yz)$ x' = -x



Translations

Consider effect of symmetry operation on the vector Write +1 for no change, -1 for reversal

	E	C ₂	σ _v (<i>xz</i>)	σ _v (<i>yz</i>)	
z vector	+1	+1	+1	+1	A ₁
У	+1	-1	-1	+1	B ₂
x	+1	-1	+1	-1	B ₁

C _{2v}	E	C ₂	σ _v (<i>x</i>	z) σ _v (<i>yz</i>)
A ₁	+1	+1	+1	+1
A ₂	+1	+1	-1	-1
B ₁	+1	-1	+1	-1
B ₂	+1	-1	-1	+1

Labels A₁ etc. are *symmetry species*; they summarise the effects of symmetry operations on the vectors.

Rotations

Similarly for rotations of the molecules

	E	C ₂	σ _v (<i>xz</i>)	σ _v (<i>yz</i>)	
z vector	+1	+1	+1	+1	A ₁
У	+1	-1	-1	+1	B ₂
x	+1	-1	+1	-1	B ₁
R _z	+1	+1	-1	-1	A ₂
R _y	+1	-1	+1	-1	B ₁
R _x	+1	-1	-1	+1	B_2

Characters

The numbers +1 and -1 are called *characters*.

The *character table* has all possible symmetry species for the *point group*. It is the same for all molecules belonging to the point group – e.g. C_{2v} for H_2O , SiH_2CI_2 , $Fe(CO)_4CI_2$, etc.

Note: the character table lists the symmetry species for translations and rotations.

A,B show symmetry with respect to rotation. 1,2 distinguish symmetry with respect to reflections

Character table

C _{2v}	Е	C ₂	σ _v (<i>xz</i>) σ _v (<i>yz</i>)		<i>h</i> = 4
A ₁	+1	+1	+1	+1	Z
A ₂	+1	+1	-1	-1	R _z
B ₁	+1	-1	+1	-1	<i>x, R</i> _y
B ₂	+1	-1	-1	+1	<i>y, R</i> _x

Symmetry species: Mulliken symbols

C _{3v}	Ε	$2C_{3}$	3σ _r		
A	1	1	1	Z	$x^{2} + y^{2}, z^{2}$ $(x^{2} - y^{2}, xy)(xz, yz)$
A_2	1	1	-1	R_{z}	
Ε	2	-1	0	$(x, y)(R_x, R_y)$	$(x^2 - y^2, xy)(xz, yz)$

- All 1-D irreducible reps. are labeled by either A or B, 2-D irreducible rep. by E, 3-D irreducible rep. by T and so on.
- A: symmetric with respect to C_n rotation, i.e., $\chi(C_n)=1$.
- **B**: asymmetric with respect to C_n rotation, i.e., $\chi(C_n)$ =-1.
- Subscriptions 1 or 2 designates those symmetric or asymmetric with respect to a $C_2 \perp$ or a σ_v .
- Subscripts g or u for universal parity or disparity.
- Superscripts 'or " designates those symmetric or asymmetric with respect to σ_h

3.5.3 The "Great Orthogonality Theorem" and Its Consequences

Some notations:

h – the order of a group; R – operations (elements) of a point group.

 l_i – the dimension of *i*th representation (i.e., the order of its matrices)

 $\Gamma_i(R)_{mn}$ – the element in the *m*th row and *n*th column of the matrix corresponding to the operation *R* in the *i*th representation.

$$\sum_{R} [\Gamma_i(R)_{mn}] [\Gamma_j(R)_{m'n'}]^* = \frac{h}{\sqrt{l_i l_j}} \delta_{ij} \delta_{mm'} \delta_{nn'}$$

It means that in the set of matrices constituting any one irreducible representation, any set of corresponding matrix elements, one from each matrix, behaves as the components of a vector in a *h*-dimensional space such that all these vectors are mutually orthogonal and each is normalized so that the square of its length is h/l_i .

Five important rules regarding irreducible representations and their characters: Rule 1 – the sum of the squares of the dimensions of the irreducible representations of a group is equal to the order of a

group.

$$\sum_{i} l_{i}^{2} = h$$
e.g., for C_{3v},

$$\sum_{i} l_{i}^{2} = 1^{2} + 1^{2} + 2^{2} = 6 = h$$

$$\therefore \chi_{i}(E) = l_{i} \Rightarrow \sum_{i} [\chi_{i}(E)]^{2} = h$$
Rule 2 – the sum of the square of the characters in any

Rule 2 – the sum of the square of the characters in any irreducible representation of a group equals *h*,

e.g., A_2 for C_{3v} , $1^2 + 2 \cdot 1^2 + 3 \cdot (-1)^2 = 6$

$$\sum_{R} [\chi_i(R)]^2 = h$$

Five important rules

Rule 3 – the vectors whose components are the characters of two irreducible representations are orthogonal,

$$\sum_{R} [\chi_i(R)] [\chi_j(R)] = 0$$

e.g., The A_2 and E I.R. of C_{3v} are orthogonal.

$$1(1 \cdot 2) + 2(1 \cdot (-1)) + 3((-1) \cdot 0) = 0$$

Rule 4 – In a given representation, the characters of all matrices belonging to operations in the same class are identical.

Rule 5 – the number of irreducible representations of a group is equal to the number of classes (of operations) in the group.

Illustration of the Five important rules

Example – Direct construction of the character table of C_{2v}

- *Four* classes of elements/operations: { $E, C_2, \sigma', \sigma''$ } & h = 4
- *Rule* $5 \rightarrow$ Four I.R.
- Rule $1 \rightarrow \Sigma l_i^2 = h = 4 \rightarrow l_{1-4} = 1 \rightarrow 4$ 1-D I.R.
- There is always an all-symmetric representation,

$$\Gamma_1 \sum_{R} [\chi_1(R)]^2 = h = 4 \& \chi_1(R) = 1$$

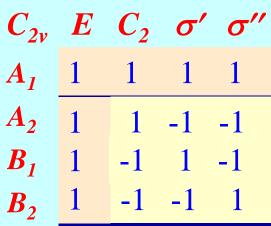
• Other 1-D I.R., $\chi_i(E) = 1$

$$\therefore \sum_{R} [\chi_i(R)]^2 = h \Longrightarrow \chi_i(R) = \pm 1$$

• Each of them is orthogonal to Γ_1 (rule3)

 $\implies \text{Two } \chi_i(R) = 1, \text{ two } \chi_i(R) = -1!$

• If necessary, define the symmetry species (Mulliken symbols).

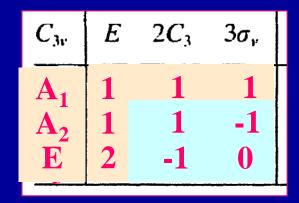


$$\Rightarrow \sum_{R} \chi_i(R) \chi_1(R) = 0$$

Illustration of the Five important rules

Example – Direct construction of the character table of C_{3v}

- *Three* classes of elements/operations: $\{E, 2C_3, 3\sigma_{\nu}\} \& h = 6$
- *Rule 5 → Three* I.R.s
- Rule $1 \rightarrow l_1^2 + l_2^2 + l_3^2 = 6 \rightarrow l_1 = l_2 = 1, l_3 = 2$
- & $\chi_1(E) = \chi_2(E) = 1, \ \chi_3(E) = 2$
- There is always an all-symmetric 1-D I.R.



$$\chi_1(E) = \chi_1(C_3) = \chi_1(\sigma_v) = 1 \quad (\Gamma_1 = A_1)$$

• Another 1-D I.R. Γ_2 should follow rules 2 &3.

$$\sum_{R} [\chi_2(R)]^2 = h \left| \sum_{R} \chi_2(R) \chi_1(R) = 0 \right| \rightarrow \chi_2(C_3) = 1, \chi_2(\sigma_v) = -1$$

- Similarly for the 2-D I.R. Γ_3 , $\rightarrow \chi_3(C_3) = -1$, $\chi_3(\sigma_v) = 0$
- If necessary, define the symmetry species (Mulliken symbols).

An important practical relationship Between any reducible representation and the I.R.s., The number of times that the *j*th I.R. $\chi(R) = \sum a_j \chi_j(R)$ occurs in a red. REP. Character of a matrix **Character of a matrix** corresponding to operation **R** corresponding to operation R in in the *j*th I.R.. a red. REP.

$$\Rightarrow \sum_{R} \chi_{i}(R) \chi(R) = \sum_{R} \chi_{i}(R) \sum_{j} a_{j} \chi_{j}(R) = \sum_{R} a_{i} [\chi_{i}(R)]^{2} = ha_{i}$$
$$\Rightarrow a_{i} = \frac{1}{h} \sum_{R} \chi(R) \chi_{i}(R) \qquad \textbf{Rule 3} \qquad \textbf{Rule 1}$$

This relationship thus provides an easy way for reducing a representation of a group.

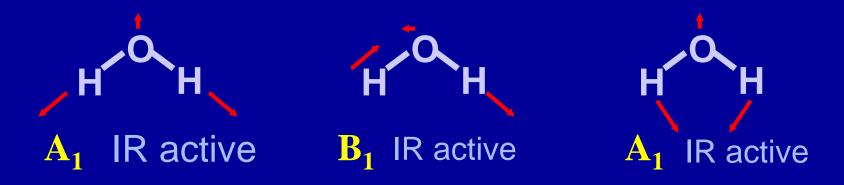
3.5.3 Symmetry of molecular properties & Application of the representation theory of group

- Translations and rotations can be assigned to symmetry species (of irreducible representations).
- So can other molecular properties, including molecular vibrations, hybrid orbitals, molecular orbitals and so on.
- The theory of molecular symmetry & point group facilitates the construction of hybrid orbitals, symmetry adapted MO's, and analyses of molecular vibrations etc.

1. Vibrational spectroscopy

The normal vibrations (or normal modes of vibrations) of a molecule are the bases of I.R.s of the point group it belongs to.

* H₂O has (3N-6)=3 normal modes of vibration!



* CO₂ has 3 normal modes of vibration - O=C=O O=C=O O=C=O Infra-red inactive! no dipole change! IR active IR active

The Number of active modes tells us about symmetry!

IR – active:

The vibrations that induce a change in dipole moment.

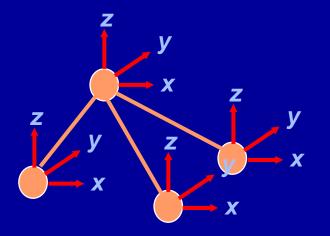
 A *IR-active* vibration and a component of *molecular dipole moment* (i.e., vectors x, y, z) belong to the same symmetry species.

Raman – active:

The vibrations that induce a change in polarizability.

 A Raman-active vibration and a component of molecular polarizability (i.e., x², y², z², xy, yz, xz and x²-y² etc.) belong to the same symmetry species.

Molecular vibrations - number of modes

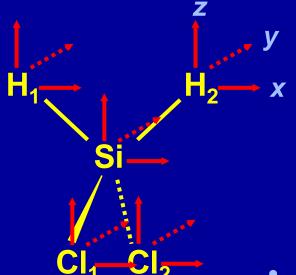


Each atom can move independently in *x*, *y*, *z* directions. **3N degrees of freedom for a N-atom molecule.** If atoms fixed, there are: 3 translational degrees 3 rotational degrees and the rest (3N-6) are vibrational modes

No. of modes of each symmetry species

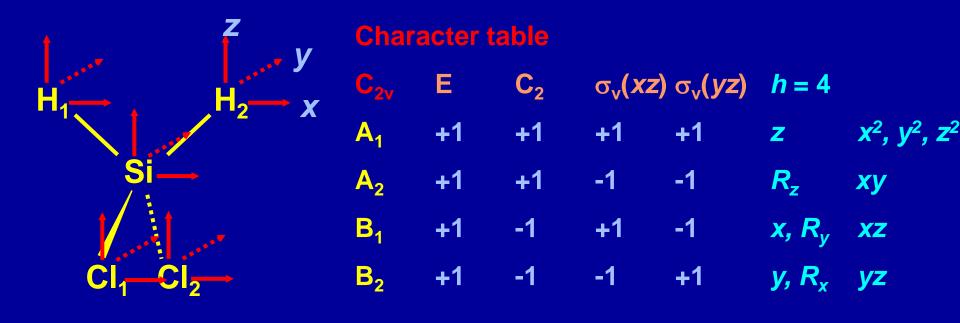
Example - SiH₂Cl₂ Point group C_{2v}

Character table



C _{2v}	Е	C ₂	σ _v (<i>x</i>	z) σ _v (<i>yz</i>)	<i>h</i> = 4	
A ₁	+1	+1	+1	+1	Z	x ² , y ² , z ²
A ₂	+1	+1	-1	-1	R _z	xy
B ₁	+1	-1	+1	-1	x, R _y	xz
B ₂	+1	-1	-1	+1	<i>y, R</i> _x	yz

- Draw *x*, *y* and *z* vectors on all atoms.
- Perform symmetry operations.
- Count +1, -1, 0 if vector transforms to itself, minus itself, or moves.



Operation E

Si atom	<i>x</i> transforms into Si <i>x</i>	count +1
	y transforms into Si y	count +1
	z transforms into Si z	count +1
		total +3

Same for other 4 atoms

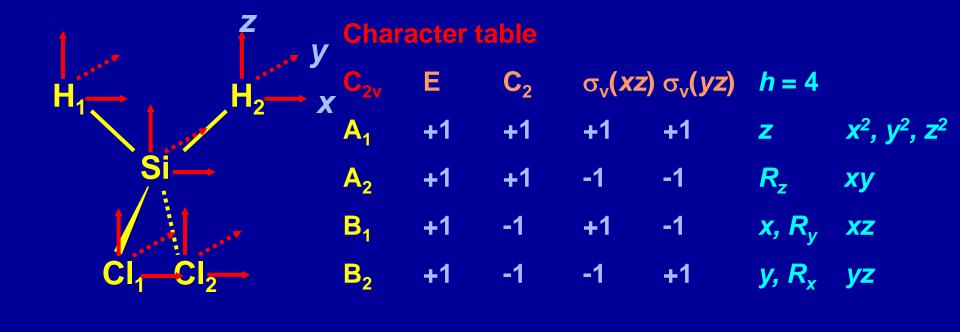
grand total +15

•	Z v	Char	acter ta	ible				
		C _{2v}	Е	C ₂	σ _v (<i>xz</i>)	σ _v (<i>yz</i>)	<i>h</i> = 4	
		4 ₁	+1	+1	+1	+1	Z	<i>x</i> ² , <i>y</i> ² , <i>z</i> ²
Si		4 ₂	+1	+1	-1	-1	R _z	ху
	E	3 ₁	+1	-1	+1	-1	x, R _y	xz
Ċĺ ₁ —Ċĺ ₂	→ E	B ₂	+1	-1	-1	+1	<i>y, R</i> _x	yz
peration C ₂	Si atom		x trans	forms	into S	i <i>-x</i> c	ount -1	
			y trans	forms	into S	i <i>-y</i> c	ount -1	
			z trans	forms	into S	iz c	ount +1	

- total -1
- count 0
 - count 0
 - grand total -1

 H_1 and H_2 move - swap places Cl₁ and Cl₂ swap places

0



Operation $\sigma_v(xz)$ Si atomx transforms into Si xcount +1y transforms into Si -ycount -1z transforms into Si zcount +1total +1total +1H1 and H2 also lie in xz plane, and behave as Sicount +1 eachCl1 and Cl2 swap placescount 0

grand total +3

	Chara	acter ta	able				
$ \begin{array}{ccc} I & \mathcal{A}^{\mathcal{A}} & & I & \mathcal{A}^{\mathcal{A}} \\ H & \mathcal{A} & & H & \mathcal{A} \end{array} $	C _{2v}	Е	C ₂	σ _v (<i>xz</i>)	σ _v (<i>yz</i>)	<i>h</i> = 4	
	A ₁	+1	+1	+1	+1	Z	x ² , y ² , z ²
Si	A ₂	+1	+1	-1	-1	R _z	ху
	B ₁	+1	-1	+1	-1	x, R _y	xz
	B ₂	+1	-1	-1	+1	<i>y, R</i> _x	yz
Dperation σ _v (<i>yz</i>) Si aton	า	x tran	sform	s into S	Si -x	count -1	1
		<i>y</i> tran	sform	s into S	Si y	count +	1
		z tran	sforms	s into S	Si z	count +	1
						total +1	
H ₁ and H ₂ swap places						count 0	
CI_1 and CI_2 also lie in yz p	olane,	and be	ehave a	as Si	count	+1 each	
					grand	total +3	
							9 × 3

6

┝

C

No. of modes of each symmetry species

Example - SiH₂Cl₂ Point group C_{2v}

Overall we have:

E C₂ $σ_v(xz)$ $σ_v(yz)$ +15 -1 +3 +3

This is the *reducible representation* of the point group on the basis of the set of 3N (=15) atomic displacement vectors.

We reduce it to the *irreducible representations*, using a formula

Reduce the reducible representation

Formula is

$$a_i = \frac{1}{h} \sum_R g_R \cdot \chi(R) \cdot \chi_i(R)$$

Character table

	C _{2v}	1E	1C ₂	1σ _v (<i>xz</i>) 1σ _v (<i>yz</i>)			h = 4	
	A ₁	+1	+1	+1	+1	z	x ² , y ² , z ²	
	A ₂	+1	+1	-1	-1	R _z	ху	
	B ₁	+1	-1	+1	-1	$\boldsymbol{x}, \boldsymbol{R}_{y}$	xz	
	B ₂	+1	-1	-1	+1	<i>y, R</i> _x	yz	
Red. Rep.	Γ	15	-1	3	3			

No. of A_1 motions = 1/4 [1.15.1 + 1.(-1).1 + 1.3.1 + 1.3.1] = 5

 $a_i = \frac{1}{h} \sum_{c} g_c \cdot \chi(c) \cdot \chi_i(c)$

Character table

Red.

			1σ _v (<i>xz</i>) 1σ _v (<i>yz</i>)			h = 4
A ₁	+1	+1	+1	+1	z	x^{2}, y^{2}, z^{2}
A ₂	+1	+1	-1	-1	R _z	xy
B ₁	+1	*	+1	-1	x , R _y	xz
B ₂	+1	-1 -1	-1	+1	<i>y, R</i> _x	
Rep. Г	15	-1	3	3		

No. of A_1 motions = 1/4 [1.15.1 + 1.(-1).1 + 1.3.1 + 1.3.1] = 5 No. of A_2 motions = 1/4 [1.15.1 + 1.(-1).1 + 1.3.(-1) + 1.3.(-1)] = 2

> , ¹² , ³

$$a_i = \frac{1}{h} \sum_c g_c \cdot \chi(c) \cdot \chi_i(c)$$

Character table

Red.

C _{2v}	1E	1C ₂	1σ _v (<i>xz</i>) 1σ _v (<i>yz</i>)			<i>h</i> = 4	
A ₁	+1	+1	+1	+1	Z	x ² , y ² , z ²	
A ₂	+1	+1	-1	-1	R _z	xy	
B ₁	+1	-1	+1	-1	x , R _y	xz	
B ₂	+1	-1	-1	+1	<i>y, R</i> _x	yz	
Rep. Г	15	-1	3	3			

No. of A_1 motions = 1/4 [1.15.1 + 1.(-1).1 + 1.3.1 + 1.3.1] = 5 No. of A_2 motions = 1/4 [1.15.1 + 1.(-1).1 + 1.3.(-1) + 1.3.(-1)] = 2 No. of B_1 motions = 1/4 [1.15.1 + 1.(-1).(-1) + 1.3.1 + 1.3.(-1)] = 4 No. of B_2 motions = 1/4 [1.15.1 + 1.(-1).(-1) + 1.3.(-1) + 1.3.1] = 4

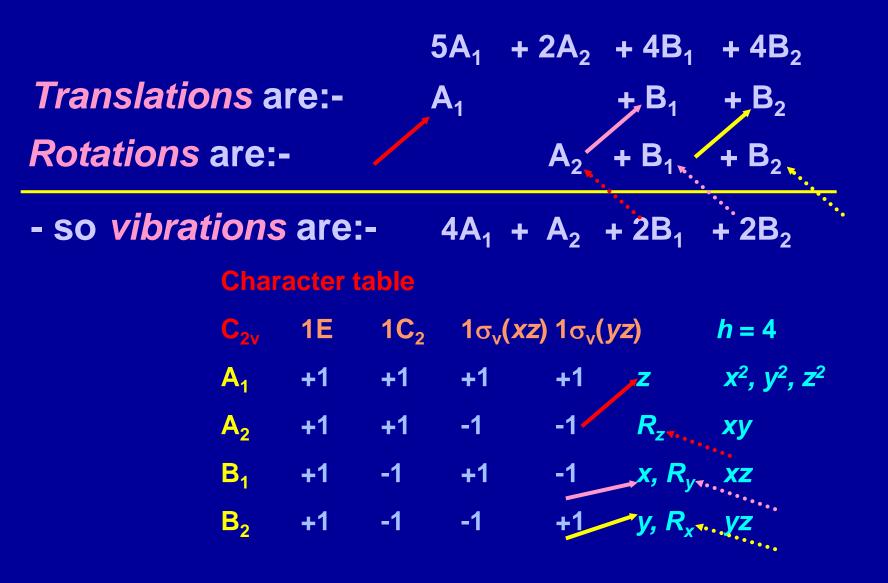
Translations, rotations, vibrations

Symmetry species of all motions are:-

 $5A_1 \oplus 2A_2 \oplus 4B_1 \oplus 4B_2$ - the *irreducible representation*

- 3 of these are *translations* of the whole molecule
- 3 are rotations
- Symmetry species of translations are given by vectors (x, y, z) in the character table.
- Symmetry species of rotations are given by *R_x*, *R_y* and *R_z* in the character table.

Translations, rotations, vibrations Symmetry species of all motions are:-



Vibrational modes of SiH₂Cl₂

Symmetry species of vibrations are:- $4A_1 + A_2 + 2B_1 + 2B_2$

What does each of these modes look like?

Two rules

(i) there is 1 stretching vibration per bond

(ii) must treat symmetry-related atoms together

Vibrational modes of SiH₂Cl₂

Two rules

- (i) there is 1 stretching vibration per bond
- (ii) we must treat symmetry-related atoms together

We therefore have:-

two stretching modes of the $SiCl_2$ group two of the SiH_2 group

The remaining five modes must be deformations (angle bending vibrations)

Vibrational modes of SiH₂Cl₂ We therefore have:two stretching modes of the SiCl₂ group We can stretch the two Si-Cl bonds together in phase Why? or together out of phase hint: 1) use the two Si-CI bond stretching as basis set: E $C_2 \sigma_{xz} \sigma_{yz}$ Γ_{2SiH} **2 0 0 2** \rightarrow $\Gamma_{2SiH} = A_1 + B_2$ 2) Use the projection operator to work on R_1 : A_1 stretching = $(R_1 + R_2)/2$ symmetric stretching CI_1 B_2 stretching = $(R_1 - R_2)/2$ anti-symmetric stretching

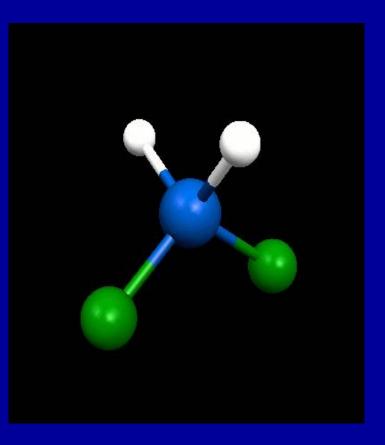
Is vibration symmetrical with respect to each symmetry operation?

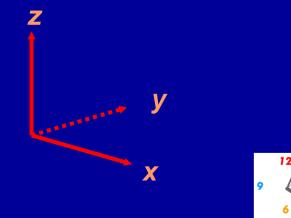
- if yes +1, if no -1

$$\begin{array}{cccc} E & C_2 & \sigma_{xz} & \sigma_{yz} \\ +1 & +1 & +1 & +1 \end{array}$$

From the character table, this belongs to the symmetry species A₁

We call the mode of vibration $v_{sym} SiCl_2$



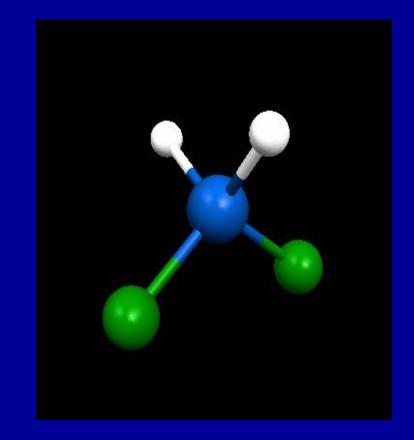


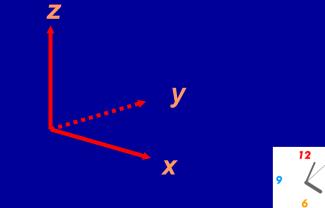
Is vibration symmetrical with respect to each symmetry operation?

- if yes +1, if no -1

From the character table, this belongs to the symmetry species B₂

We call the mode of vibration $v_{asym} SiCl_2$





Vibrational modes of SiH₂Cl₂

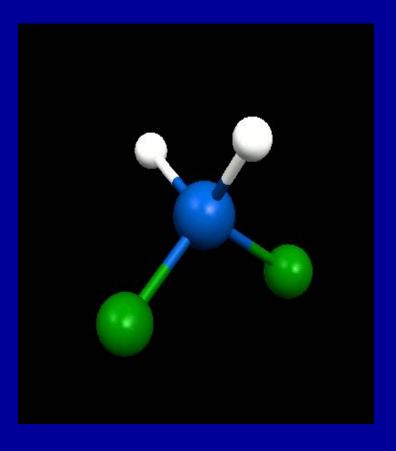
We therefore have:-

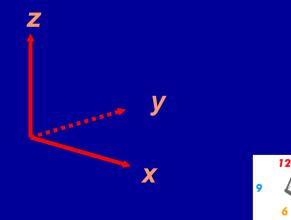
two stretching modes of the $SiCl_2$ group and two stretching modes of the SiH_2 group

We can stretch the two Si-H bonds together *in phase* or together *out of phase*

From the character table, this belongs to the symmetry species A₁

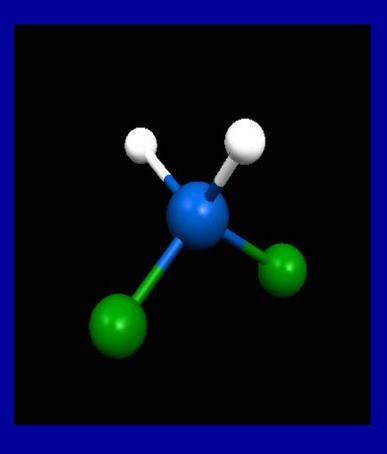
We call the mode of vibration v_{sym} SiH₂

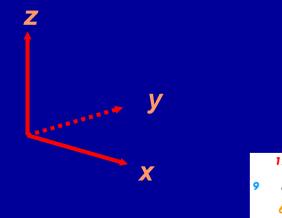




From the character table, this belongs to the symmetry species B₁

We call the mode of vibration $v_{asym} SiH_2$





Vibrational modes of SiH₂Cl₂

We now have:-

two stretching modes of the $SiCl_2$ group two of the SiH_2 group

The remaining five modes must be deformations (angle bending vibrations)

As with stretches, we must treat symmetryrelated atoms together

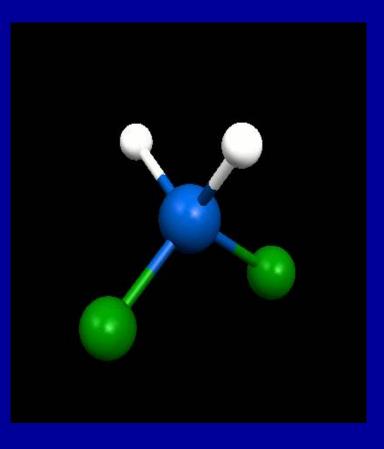
From the character table, this belongs to the symmetry species A₁

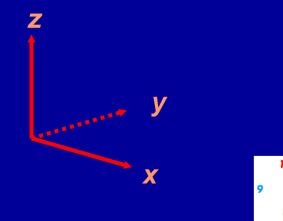
We call the mode of vibration δ_{sym} SiCl₂ (or SiCl₂ scissors)



From the character table, this belongs to the symmetry species A₁

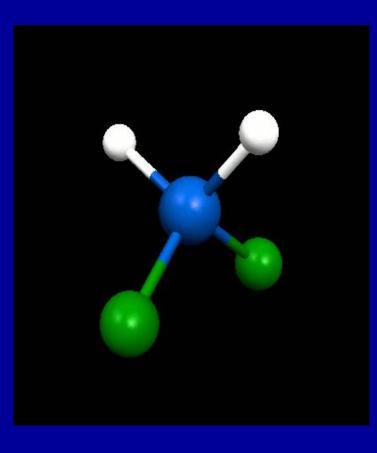
We call the mode of vibration δ_{sym} SiH₂ (or SiH₂ scissors)

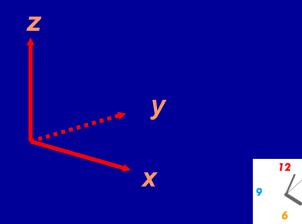




From the character table, this belongs to the symmetry species B₁

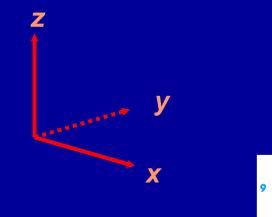
We call the mode of vibration ω SiH₂ (or SiH₂ wag)





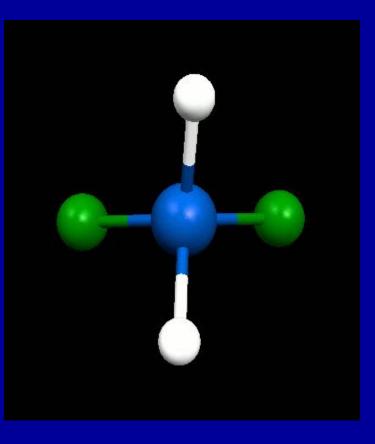
From the character table, this belongs to the symmetry species B₂

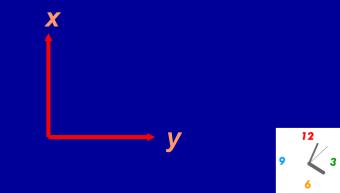
We call the mode of vibration ρ SiH₂ (or SiH₂ rock)



From the character table, this belongs to the symmetry species A₂

We call the mode of vibration τ SiH₂ (or SiH₂ twist)





Vibrational modes of SiH₂Cl₂

Overall, we now have:-

two stretching modes of the SiCl₂ group $A_1 + B_2$ two of the SiH₂ group $A_1 + B_1$ five deformation modes $2A_1 + A_2 + B_1 + B_2$

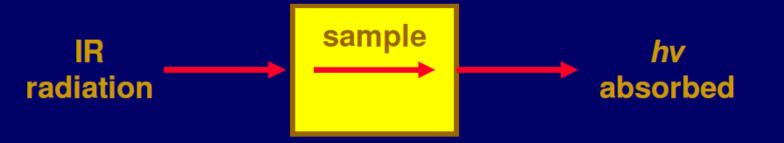
Together, these account for all the modes we expect:

 $4A_1 + A_2 + 2B_1 + 2B_2$

Infra-red spectroscopy

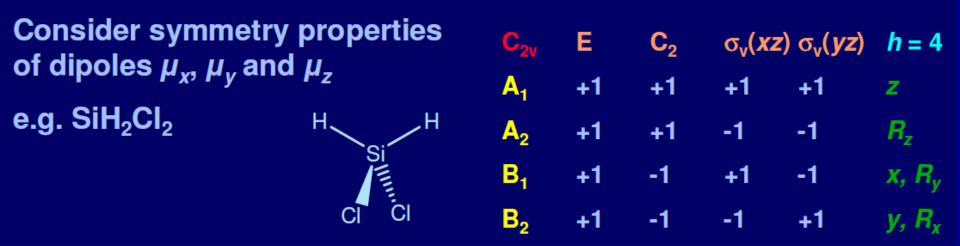
Process – quantum of energy is absorbed by exciting a vibration

may also increase or decrease rotational energy



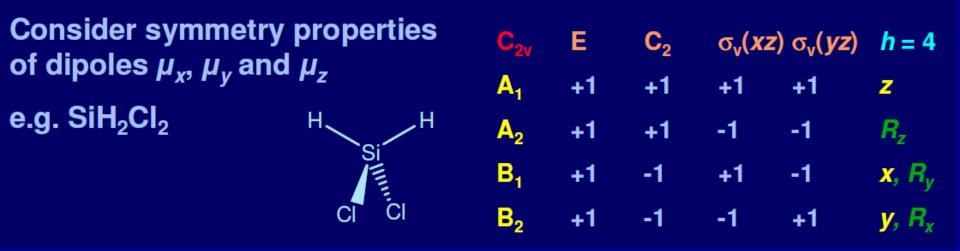
Activity – absorption possible if and only if the vibration involves a dipole change

Infra-red spectroscopy



- Dipoles are vectors, with same symmetry properties as x, y, and z. In this case, μ_z has A₁ symmetry.
- Those A₁ vibrations involve dipole changes along the z axis and so all A₁ modes must be *infra-red active*.

Infra-red spectroscopy



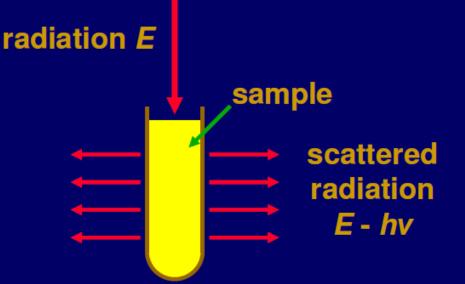
- Similarly B₁ and B₂ modes involve dipole changeds along x and y axes, and so must be *infra-red active*.
- A₂ modes cannot involve dipole changes, and are *infra-red inactive*.
- For any point group, no more than 3 IR-active symmetry species

Observing vibrations Infra-red spectroscopy Example 1: SiH₂Cl₂ $\Gamma_{\rm vib} = 4A_1 + A_2 + 2B_1 + 2B_2$ 4 + 2 + 2 active modes 8 absorption bands in IR spectrum Example 2: XeOF₄ $\Gamma_{\rm vib} = 3A_1 + 2B_1 + B_2 + 3E$ + 3 active modes 3 6 absorption bands in IR spectrum Character table $X^{2}+Y^{2}, Z^{2}$ $x^2 - y^2$ ХУ $(x, y) (R_x, R_y)$ (xz, yz)Ε +2 0 -2 0 0

9 🔏 3

Raman spectroscopy

Process – large quantum of energy E is scattered with energy E - hv



Sample usually liquid, occasionally solid or gas

Activity – vibrational mode active if and only if it involves a polarisability change

Raman spectroscopy

Dipoles are vectors - μ_x etc. – symmetry properties as x, y, z Polarisabilities are tensors – α_{xx} , α_{xy} etc. – properties as xx, xy

- listed in final column of character table

$$SiH_2CI_2$$
 $\Gamma_{vib} = 4A_1 + A_2 + 2B_1 + 2B_2$

12 6 Molecular orbitals (wavefunctions) as the bases of irreducible representations of molecular point group.
 Symmetry of wavefunctions of a molecule Symmetry Operation *R* on Schrödinger *Eq.*

$$\hat{H}\psi_{i} = E_{i}\psi_{i} \longrightarrow R\hat{H}\psi_{i} = RE_{i}\psi_{i}$$

$$\downarrow$$

$$\downarrow$$

$$\hat{I}R\psi_{i} = E_{i}R\psi_{i} \longleftarrow R\hat{H}R^{-1}R\psi_{i} = E_{i}R\psi_{i}$$

$$\downarrow$$

 $R \psi_i$ is also an eigenfunction of \hat{H} , with the same eigenvalue E_i as ψ_i corresponds to.

• If eigenvalue E_i is not degenerate, as ψ_i is normalized, it requires $P_{ij} = c_{ij} \psi_j = -\frac{1}{2} \psi_j$

$$\boldsymbol{R} \boldsymbol{\psi}_i = \boldsymbol{c} \boldsymbol{\psi}_i = \pm \boldsymbol{l} \boldsymbol{\psi}_i$$

in order that R_{ψ_i} is also normalized.

- Hence, by applying each of the operations of the group to an eigenfunction \u03c6_i with a nongenerate eigenvalue, we generate a 1-D representation of the group with each matrix, \u03c6_i(\u03c6), equal to +/-1.
- That is, each of the nondegenerate eigenfunctions is a basis of a 1-D I.R. of the very group!

If the eigenvalue E_i is *k*-fold degenerate with the eigenfunctions { $\psi_{i1}, \psi_{i2}, ..., \psi_{ik}$ },

$$\hat{H}\psi_{im} = E_i\psi_{im} \longrightarrow \hat{H}R\psi_{im} = E_iR\psi_{im}$$

where $R_{\psi_{in}}$ may be a linear combination of ψ_{ij} (j=1,2,...,k).

$$R \psi_{im} = \sum_{j=1}^{k} r_{jm} \psi_{ij} \longrightarrow R \begin{bmatrix} \psi_{i1} \\ \psi_{i2} \\ \cdots \\ \psi_{ik} \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1k} \\ r_{21} & r_{22} & \cdots & r_{2k} \\ \cdot & \cdot & \cdots & \cdot \\ r_{k1} & r_{k2} & \cdots & r_{kk} \end{bmatrix} \begin{bmatrix} \psi_{i1} \\ \psi_{i2} \\ \cdots \\ \psi_{ik} \end{bmatrix}$$

That is, the set of eigenfunctions $\{\psi_{i1}, \psi_{i2}, \dots, \psi_{ik}\}$ is a basis for this *k*-dimensional irreducible representation!

In LCAO approach of MO theory, each of the MOs can be

express as

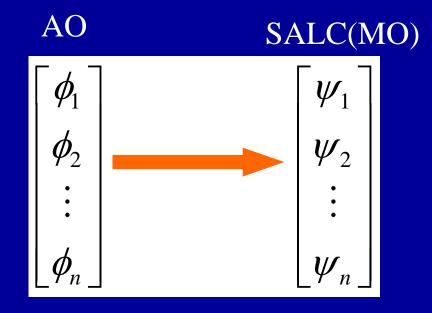
$$\psi = \sum_{i=1}^{n} c_i \phi_i \quad (AOs: \phi_1, \phi_2, \dots, \phi_n)$$

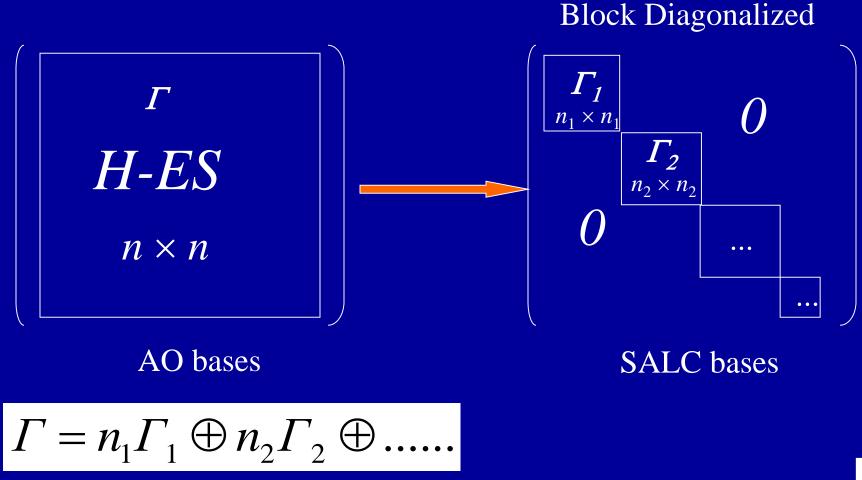
So we need to solve the secular equation

$$\sum_{i=1}^{n} c_{i} (H_{ri} - ES_{ri}) = 0 \quad (r = 1, 2, \dots, n)$$

$$\begin{bmatrix} H_{11} - ES_{11} & H_{12} - ES_{12} & \dots & H_{1n} - ES_{1n} \\ H_{21} - ES_{21} & H_{22} - ES_{22} & \dots & H_{2n} - ES_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ H_{n1} - ES_{n1} & H_{n2} - ES_{n2} & \dots & H_{nn} - ES_{nn} \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{n} \end{bmatrix} = 0$$

We can transform the original bases of AO's into Linear Combinations of AO's which have the same properties of some I.R.s (Symmetry Adapted Linear Combination), therefore the Secular Equation is block-diagonalized.





Step 1 Obtain the REP spanned by a set of AO basis (normally called basis set!)

Step 2 Reduce the REP spanned by the AO basis. Obtain the n_i 's for each I.R.

Step 3 Construct n_i SALCs for each I.R.

Step 4 Transform the hamiltonian matrix into block diagonalized form, and solve it.

Symmetry greatly facilitates the computations!

Use Projection operator to construct SALCs

• Projection operator:

$$\hat{P}^{j} = \frac{l_{j}}{h} \sum_{R} \chi_{j}(R)\hat{R}$$

j-th I.R. of the group

derived from the "great orthogonality theorem".

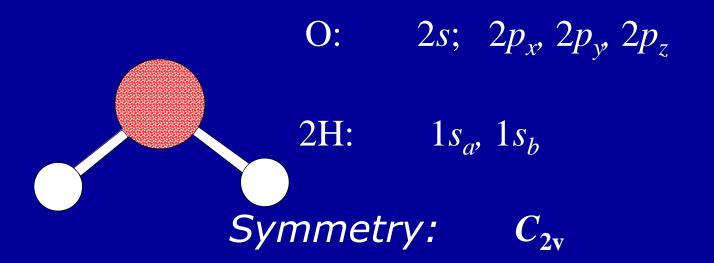
• A non-normalized *SALC* can be constructed from AO-basis set by using the formula:

$$\Psi_{SALC}^{j} = \hat{P}^{j} \phi_{i} = \frac{l_{j}}{h} \sum_{R} \chi_{j}(R) \hat{R} \phi_{i}$$

An AO from the set of AO bases.

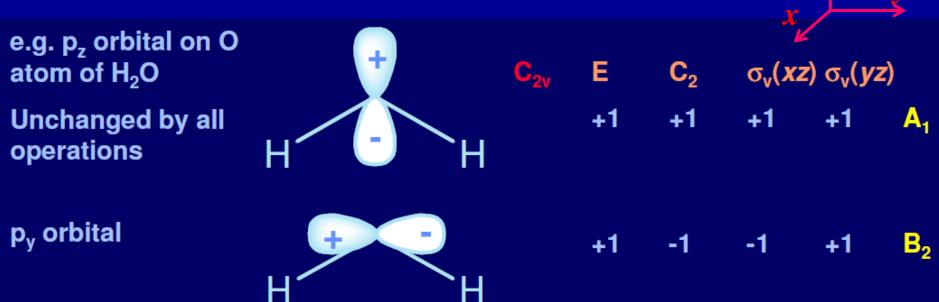
Example 1: H₂0

LCAO with the following atomic orbitals



First classify these AOs according to symmetry!

• Neglecting the O 1s orbital/electrons.



Character Table

C_{2v}	E	<i>C</i> ₂	$\sigma_{ m v}$	$\sigma_{ m v}$ '		Symmetry of AOs from Oxygen		
A_1	1	1	1	1	Ζ			
A_2	1	1	-1	-1	xy	A_1 :	$2s, 2p_z$	
$\boldsymbol{B_1}$	1	-1	1	-1	X, XZ	<i>B</i> ₁ :	$2p_x$	
B ₂	1	-1	-1	1	y, yz	<i>B</i> ₂ :	$2p_y$	

2H:
$$1s_{a}, 1s_{b}$$

Symmetry Reduction of 2-D Basis Set $\{1s_{a}, 1s_{b}\}$
 $\frac{C_{2v}}{A_{1}}$ $\frac{E}{1}$ $\frac{C_{2}}{\sigma_{v}}$ $\frac{\sigma_{v}'}{\sigma_{v}'}$
 A_{1} 1 1 1 1 1 z
 A_{2} 1 1 -1 -1 xy
 B_{1} 1 -1 1 -1 xy
 B_{2} 1 -1 -1 1 yyz
 Γ 2 0 0 2
 $n_{A_{1}} = (1 \times 2 + 1 \times 0 + 1 \times 0 + 1 \times 2)/4 = 1$
 $n_{B_{2}} = (1 \times 2 - 1 \times 0 - 1 \times 0 + 1 \times 2)/4 = 1$
 $n_{B_{2}} = (1 \times 2 - 1 \times 0 - 1 \times 0 + 1 \times 2)/4 = 1$
 $\therefore \Gamma = A_{1} \oplus B_{2}$ \longrightarrow Two 1-D LR.s

K 3

9

SALC - Symmetry Adapted Linear Combination of AOs

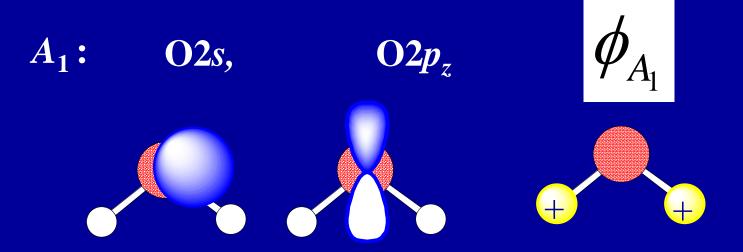
For this trivial problem, it is very simple. We intuitively determined the new basis as

$$A_{1}: \frac{1}{\sqrt{2}} (1s_{A} + 1s_{B}) + +$$

$$B_{2}: \frac{1}{\sqrt{2}} (1s_{A} - 1s_{B}) + +$$

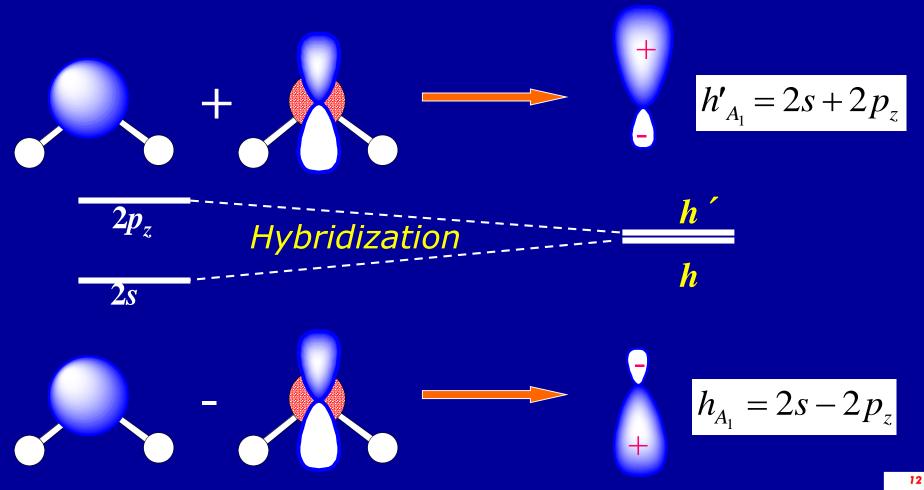
For more complicated problem, the projection operator can be used to construct SALC of AOs. Plz confirm the above two SALCs by using the projection operator.

A₁ symmetry AOs or SALCs for LCAO

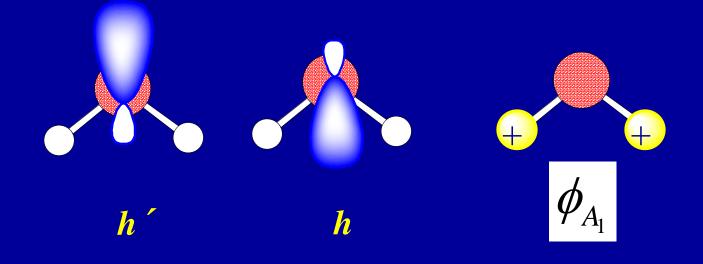


- Both AOs of the O atom can interact with the SALC of H 1s AOs.
- Hybridization of the two AOs of O atom is needed!

H_2O - Hybridization of Oxygen's 2s and $2p_z$



H₂O- Hybridization of Oxygen's 2s and $2p_{\tau}$



 $\int h^{*} \phi_{A_{1}} d au$

Large, effective bonding

H₂O- Chemical Bonding in A₁ REP

h ′

h

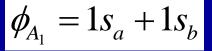
 $h'_{A_1} = 2s + 2p_z$

+

 $h_{A_1} = 2s - 2p_z$

 $0 < \lambda_i < 1$

Anti-bonding!



+

+

 $h'_{A_1} - \lambda_2 \phi_{A_1}$ Weakly bonding/ almost nonbonding

Strongly $h_{A_1} + \lambda_1 \phi_{A_1}$ Bonding!

 $\lambda_3 h_{A_1} - \phi_{A_1}$

 $\overline{}$

+

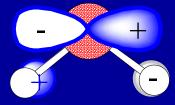
+

H₂O- Chemical Bonding in B₂ REP

+

 $2p_{v}$

 $0 \le \lambda \le 1$



+

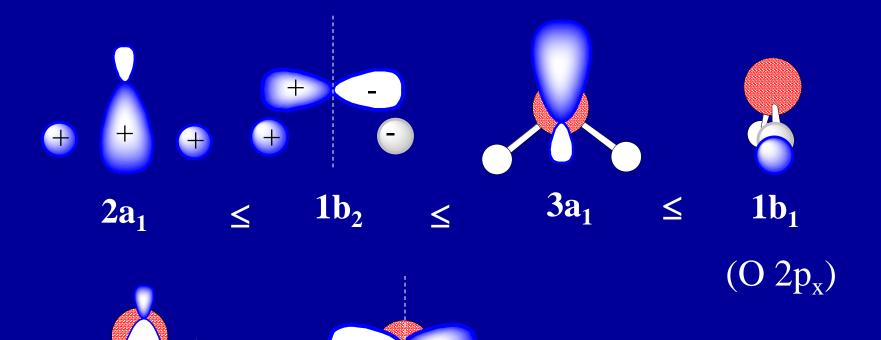
+

 $\lambda 2p_y - \phi_{B_2}$ Anti-bonding!

 ϕ_{B_2}

 $2p_y + \lambda \phi_{B_2}$ Bonding!

H₂O- Summary on Molecular Energy Level Sequences

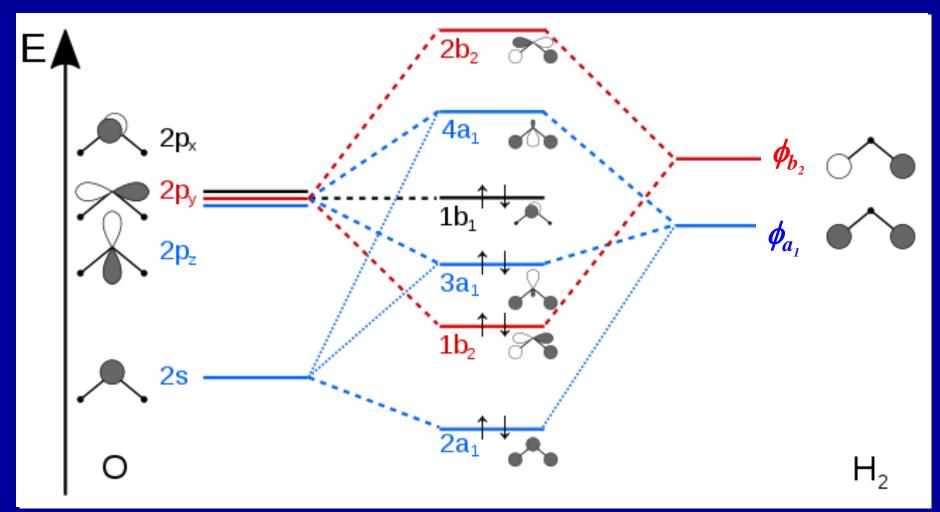


 $2b_2$

 $4a_1$

 \leq

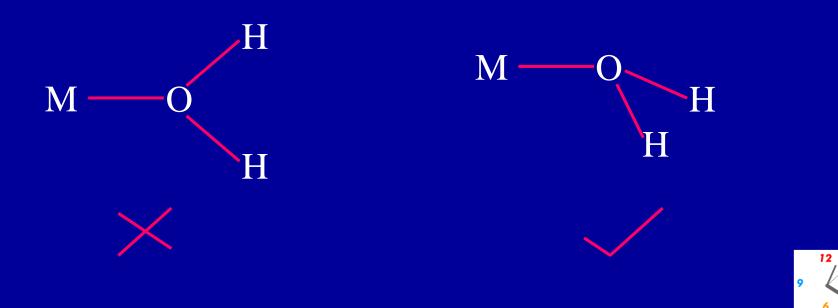
H₂O- Summary on Chemical Bonding



The lowest energy transitions are broad at 7.61 and 9.36 eV for the $4a_1 \leftarrow 1b_1$ and $4a_1 \leftarrow 3a_1$ transitions respectively for the gas phase and at 8.09 and 9.74 eV in the liquid.

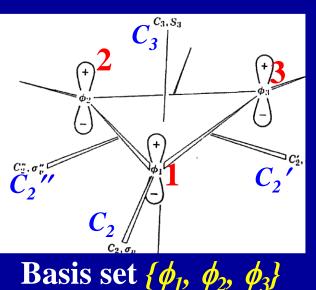
J. Chem. Phys., 130 (2009) 084501 & 125(2006) 184501.

- For H₂O, which two MOs of its MO model can be regarded as equivalence of the two lone pairs of its VB model?
- H₂O can form hydrated cations with metal cations in aqueous solution. However, it is seldom to find the M-H₂O bonding in the coplanar manner. Why?



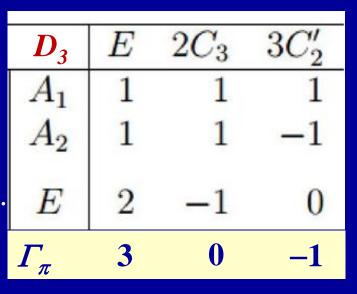
Examp	ole 2:	π-MO	s of $C_3 H$	$H_{3}(D_{3h})$		۲ ۱	$\Psi = \sum_{i} c_i \phi_i$
D_{3h}	E	$2C_3$	3 <i>C</i> ₂	σ_h	$2S_3$	$3\sigma_{\nu}$	$\phi = p_{\pi} = p_z$)
A_1'	1	1	1	1	1	1	Basis set
A_2'	1	1	-1	1	1	-1	$\{\phi_1, \phi_2, \phi_3\}$
<i>E'</i>	2	-1	0	2	-1	0	Stop 1: got
A_1''	1	1	1	-1	-1	-1	Step 1: get the REP.
A_2''	1	1	-1	-1	-1	1	
E''	2	-1	0	-2	1	0	
Г	3	0	-1	-3	0	1	Reducible!
• Step 2: By applying $a_i = \frac{1}{h} \sum_{c} g_c \cdot \chi(c) \cdot \chi_i(c)$ to all I.R.s, we have						C_{3},S	$\begin{pmatrix} & & & \\ & & \\ & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $
$\Gamma = I$		Ξ''	$(\hat{R})\hat{R}\phi_1$		+		
 Step 3: use projection operator to 						,σ ″ μ	$C_2';\sigma'$
obta	in SAI	_Cs. (a		$C_2, \sigma_{c_2,\sigma_v}$	٤ 3		

To save time, use subgroup D_3



 $a_{A_1} = -$

sym. op. \rightarrow count 1,-1,0 if an AO transforms to itself, minus itself or moves.



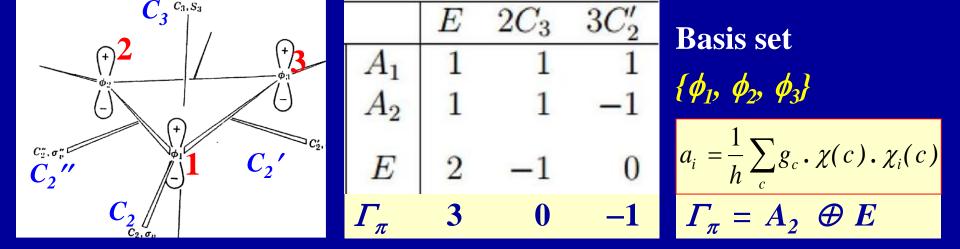
Now reduce Γ_{π} by using the formula,

$$3 \cdot 1 + 2 \cdot (0 \cdot 1) + 3 \cdot (-1) \cdot 1 = 0 \qquad a_{A_2} = \frac{1}{6} \{3 \cdot 1\}$$

$$a_i = \frac{1}{h} \sum_{c} g_c \cdot \chi(c) \cdot \chi_i(c)$$

$$a_{A_2} = \frac{1}{6} \{ 3 \cdot 1 + 2 \cdot (0 \cdot 1) + 3 \cdot (-1)(-1) \} = 1$$

$$a_E = \frac{1}{6} \{ 3 \cdot 2 + 2 \cdot 0 \cdot (-1) + 3(-1) \cdot 0 \} = 1$$



• Now use the projection operator to derive the SALCs (MOs).

$$\hat{P}^{\Gamma_i}\phi_1 = \frac{l_i}{h}\sum_R \chi_i(\hat{R})\hat{R}\phi_1$$

$$\hat{P}^{A_2}\phi_1 = \frac{l_{A_2}}{h} \sum_R \chi_{A_2}(\hat{R})\hat{R}\phi_1 = \frac{1}{6}(E\phi_1 + C_3^1\phi_1 + C_3^2\phi_1 - C_2\phi_1 - C_2^{'}\phi_1 - C_2^{''}\phi_1)$$

1

$$=\frac{1}{6}(\phi_1+\phi_2+\phi_3+\phi_1+\phi_3+\phi_2)$$

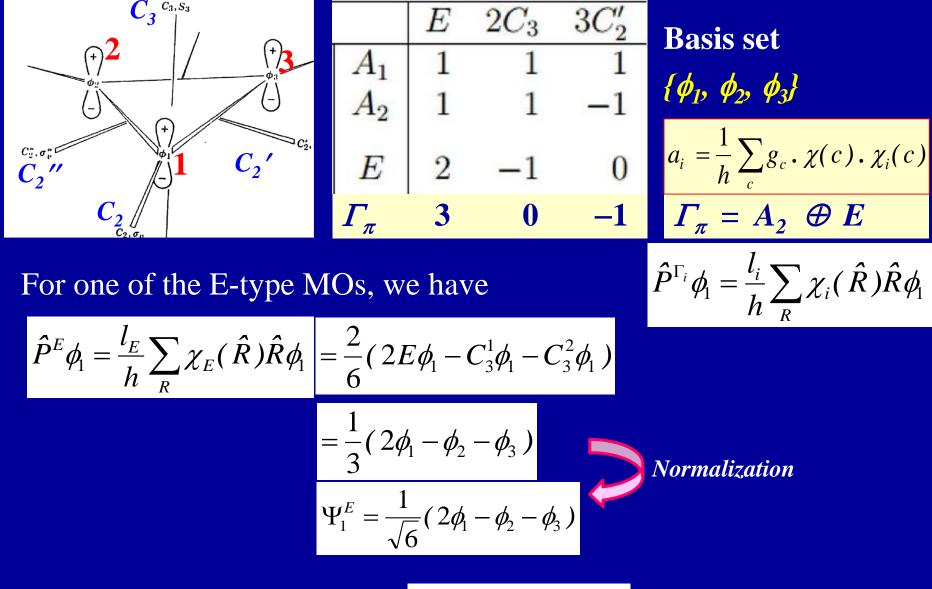
suppose
$$\int \phi_i \phi_j d\tau \approx \delta_{ij}$$

Hückel approx.

Normalization

$$=\frac{1}{3}(\phi_1 + \phi_2 + \phi_3) \quad (not \ normalized \ yet!)$$

$$\Psi^{A_2} = \frac{1}{\sqrt{3}} (\phi_1 + \phi_2 + \phi_3)$$



• Using orthogonality and normalization, we have

$$\Psi_{2}^{E} = \frac{1}{\sqrt{2}}(\phi_{2} - \phi_{3})$$

Another way to derive the third MO:

Step 1. Find an operation to covert the second wavefunction into an nonequivalent one (not +/- of the original one). A C₃ operation works well. Then we have $C^1 \Psi^E = (2 \phi, \phi, \phi)$

$$C_{3}^{1}\Psi_{1}^{E} = (2\phi_{2} - \phi_{3} - \phi_{1})$$

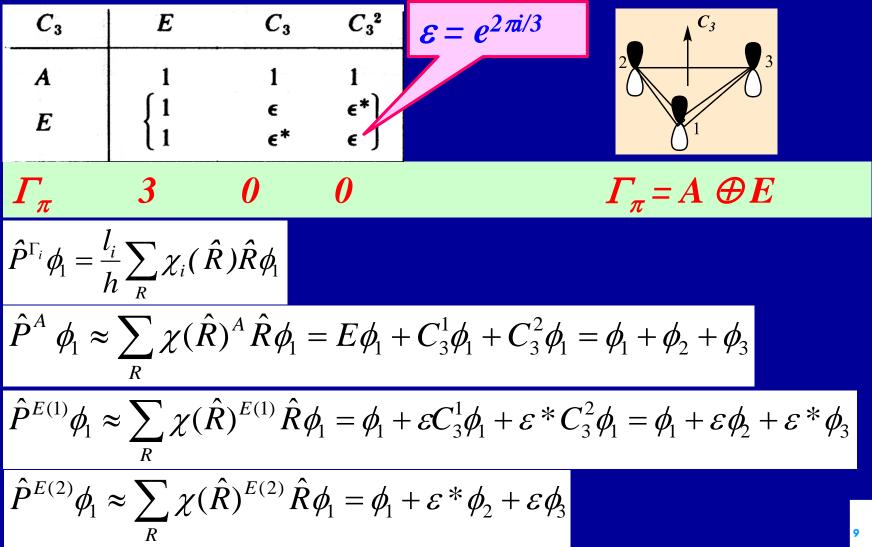
Step 2. A linear combination of this new one and the original one gives rise to

For high-symmetry molecules that have degenerate MOs pertaining to 2- or 3-D I.R.s, it is more convenient to make use of cyclic group REP!

A general simplification

• Further reducing the symmetry to C_3 subgroup, a cyclic group.

(* I.R.s of a cyclic group can sometimes have complex characters.)



$$\Psi_1^A = A\hat{P}^A\phi_1$$

= $A(\phi_1 + \phi_2 + \phi_3) = \frac{1}{\sqrt{3}}(\phi_1 + \phi_2 + \phi_3)$

A for normalization!

(Note that the Hückel approximation is used in the normalization of these MOs!)

define $\int \phi_i \phi_j d\tau \approx \delta_{ij}$

$$\Psi_{1}^{E} = A(\hat{P}^{E(1)}\phi_{1} + \hat{P}^{E(2)}\phi_{1})$$

$$= A(2\phi_{1} + 2\cos(\frac{2\pi}{3})\phi_{2} + 2\cos(\frac{2\pi}{3})\phi_{3}) = \frac{1}{\sqrt{6}}(2\phi_{1} - \phi_{2} - \phi_{3})$$

$$\Psi_{2}^{E} = A(\hat{P}^{E(1)}\phi_{1} - \hat{P}^{E(2)}\phi_{1})$$

$$= Ai(2\sin(\frac{2\pi}{3})\phi_{2} - 2\sin(\frac{2\pi}{3})\phi_{3}) = \frac{1}{\sqrt{2}}(\phi_{2} - \phi_{3})$$

Now Let's return to the D_{3h} point group. we can prove that Ψ_1^A belongs to A_2'' , and $\{\Psi_1^E, \Psi_2^E\}$ belongs to E''.

C_6H_6 $D_{6h} \rightarrow C_6$

<i>C</i> ₆	E	<i>C</i> ₆	<i>C</i> ₃	<i>C</i> ₂	C_{3}^{2}	<i>C</i> ⁵		<i>в</i> = exp(2 лі/6)
A	1	1	1	1	1	1	z, R_z	$x^2 + y^2, z^2$
В	1	-1	1	-1	1	-1		
E_{1}		Е	-8	-1	-8	\mathcal{E}^*	(<i>x</i> , <i>y</i>)	(<i>xz</i> , <i>yz</i>)
		\mathcal{E}^*	-8	-1	$-\mathcal{E}^*$	ک ک	(R_x, R_y)	
E_2	$\int 1$	$-\mathcal{E}^*$	-E	1	$-\mathcal{E}^*$	-8		(x^2-y^2, xy)
		-8	$-\mathcal{E}^*$	1	-8	-&*		
Γ_{π} 6 0 0 0 0 0 $\Gamma_{\pi} = A \oplus B \oplus E_1 \oplus E_2$								
$\hat{P}^{E_1(1)}\phi_1 \approx \sum_R \chi(\hat{R})^{E_1(1)} \hat{R}\phi_1 = E\phi_1 + \varepsilon C_6^1 \phi_1 - \varepsilon * C_6^2 \phi_1 - C_6^3 \phi_1 - \varepsilon C_6^4 \phi_1 + \varepsilon * C_6^5 \phi_1$								
$=\phi_1 + \varepsilon \phi_2 - \varepsilon * \phi_3 - \phi_4 - \varepsilon \phi_5 + \varepsilon * \phi_6$								
$\hat{P}^{E_1(2)}\phi_1 \approx \sum_R \chi(\hat{R})^{E_1(2)} \hat{R}\phi_1 = E\phi_1 + \varepsilon * C_6^1\phi_1 - \varepsilon C_6^2\phi_1 - C_6^3\phi_1 - \varepsilon * C_6^4\phi_1 + \varepsilon C_6^5\phi_1$								
$=\phi_1 + \varepsilon * \phi_2 - \varepsilon \phi_3 - \phi_4 - \varepsilon * \phi_5 + \varepsilon \phi_6$								

$$\Psi^{E_1}(1) = A(\hat{P}^{E_1(1)}\phi_1 + \hat{P}^{E_1(2)}\phi_1) = 2A(\phi_1 + \cos(\frac{\pi}{3})\phi_2 - \cos(\frac{\pi}{3})\phi_3 - \phi_4 - \cos(\frac{\pi}{3})\phi_5 + \cos(\frac{\pi}{3})\phi_6)$$
$$= \frac{1}{\sqrt{12}}(2\phi_1 + \phi_2 - \phi_3 - 2\phi_4 - \phi_5 + \phi_6)$$

$$\Psi^{E_1}(2) = A(\hat{P}^{E_1(1)}\phi_1 - \hat{P}^{E_1(2)}\phi_1) = 2Ai(-\sin(\frac{\pi}{3})\phi_2 - \sin(\frac{\pi}{3})\phi_3 + \sin(\frac{\pi}{3})\phi_5 + \sin(\frac{\pi}{3})\phi_6)$$
$$= \frac{1}{2}(\phi_2 + \phi_3 - \phi_5 - \phi_6)$$

Similarly, we have

$$\Psi^{E_2}(1) = A(\phi_5 + \phi_6) = \frac{1}{\sqrt{12}} (2\phi_1 - \phi_2 - \phi_3 + 2\phi_4 - \phi_5 + \phi_6)$$

$$\Psi^{E_2}(2) = A(\phi_5 - \phi_6) / i = \frac{1}{2} (-\phi_2 + \phi_3 - \phi_5 + \phi_6)$$

Assignments:

Please figure out all the normal vibrations of NH₃ and discern whether they are IR- or Raman-active!

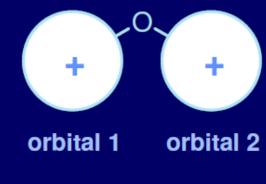
Construct the π -MOs of Naphthalene with the p_{π} AOs of carbon atoms.

The End of Chapter 3!

Characters for more than one object or action

We can make representations of several things

e.g. H 1s orbitals in H₂O



E operation

orbital 1' = orbital 1 orbital 2' = orbital 2 $E \begin{pmatrix} 1s_1 \\ 1s_2 \end{pmatrix} = \begin{pmatrix} 1s_1 \\ 1s_2 \end{pmatrix}$ $\Rightarrow E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

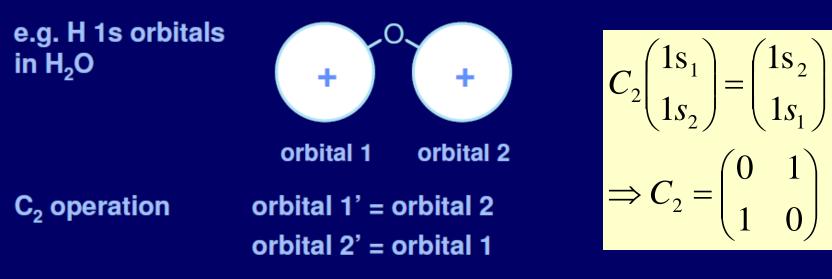
Each is unchanged (= 1 x itself), so the character is 2

Strictly speaking the character is the *trace* (sum of diagonal terms) of the *transformation matrix*.

$$\left(\begin{array}{cc}
1 & 0\\
0 & 1
\end{array}\right)$$

Characters for more than one object or action

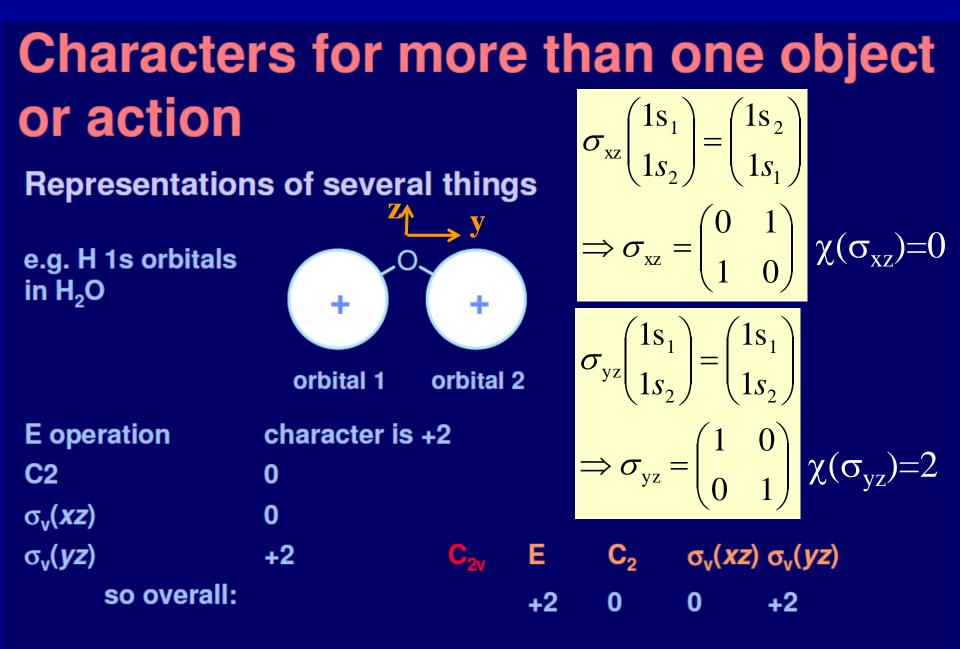
Representations of several things



There is no contribution from the old orbital 1 to the new one (= 0 x itself), so the character is 0

The trace of the transformation matrix is zero.

$$\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)$$



This the *reducible representation* of the set of 2 orbitals.

Reducible representations

This set of characters does not appear in the character table

- but it can always be expressed as a sum of lines

Character table

C _{2v}	Е	C ₂	σ _v (<i>x</i> ,	<i>h</i> = 4	
A ₁	+1	+1	+1	+1	z
A ₂	+1	+1	-1	-1	R _z
B ₁	+1	-1	+1	-1	x , R _y
B ₂	+1	-1	-1	+1	<i>y, R</i> _x

Must be an A and a B to make the second number = 0

Must then be $A_1 + B_2$ to make final number = 2

 A_1 is the symmetric combination B_2 is the asymmetric combination $A_1 + B_2$ is the *irreducible representation* of the two orbitals