Chapter 3

Molecular symmetry and symmetry point group

Part B

(ref. *Chemical Application of Group Theory*, 3rd ed., F.A. Cotton, by John Wiley & Sons, 1990.)

§ 3.5 Group representation Theory and irreducible representation of point groups

3.5.1 Representations of a point group:

reducible vs. irreducible For a point group,

- > Each element is a unique symmetry operation (operator).
- Each operation can be represented by a square matrix.
- ➤ These *matrices* constitute a **matrix group**, i.e., a matrix representation of this **point group**.

Example: $C_i = \{E, i\}$ ~ a general point (x, y, z) in space.

$$\hat{i} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x \\ -y \\ -z \end{pmatrix} \qquad \begin{cases} \hat{i} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \hat{E} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{cases}$$
a matrix group

Example: C_i one unit vector x

$$\hat{E}(x) = (1)(x) = (x)$$
 $\hat{i}(x) = (-1)(x) = (-x)$

The corresponding matrix representation of C_i is $\{(1), (-1)\}$

Q1:How many representations can be found for a particular group?

A large number, limited on our ingenuity in devising ways to generate them.

Q2: If we were to assign three small unit vectors directed along the x, y and z axes to each of the atoms in H_2O and write down the matrices representing the changes and interchanges of these upon the operations, what would be obtained?

A matrix representation consisting of four 9x9 matrices would be obtained upon operating on a column matrix $(x_0, y_0, z_0, x_{HI}, y_{HI}, z_{HI}, x_{H2}, y_{H2}, z_{H2})$.

Example: C_{2y} three unit vectors (x,y,z) or a general point $\{E, C_2, \sigma_{xz}, \sigma_{vz}\}$ Principal axis: z-axis.

$$\hat{E} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\hat{E} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x \\ -y \\ z \end{pmatrix}$$

$$\hat{\sigma}_{xz} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ -y \\ z \end{pmatrix} \qquad \hat{\sigma}_{yz} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x \\ y \\ z \end{pmatrix}$$

$$\hat{\sigma}_{yz} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x \\ y \\ z \end{pmatrix}$$

\implies a matrix representation of C_{2} ,

$$\left\{
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
 \begin{pmatrix}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{pmatrix}
 \begin{pmatrix}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{pmatrix}
 \begin{pmatrix}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\right\}$$

Bases, representations and their dimensions

- Dimension of a representation = The order of matrices.
- Different basis → Different representation.

Example: C_{2v} Basis ~ a general point or three unit vectors.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A 3-D rep.$$

Simple basis: a translational vector as \mathbf{x} , \mathbf{y} , or \mathbf{z} , or a rotor $\mathbf{R}\mathbf{z}$

Reduced to 1D matrices irreducible representation

x [1] [-1] [1] [-1]	1-D Reps.	$\Gamma_x = 1$	-1	1	-1
y [1] [-1] [-1] [1]		$\Gamma_y = 1$	-1	-1	1
z [1][1][1][1]	,	$\Gamma_z = 1$	1	1	1
	z	$\Gamma_{Rz} = 1$	1	-1	-1

Reducing of representations

- Suppose that we have a set of *n*-dimensional matrices, *A*, *B*,
 C, ..., which form a representation of a group. These *n*-D matrices themselves constitute a matrix group Γ = {A, B,...}.
- If we make the same similarity transformation on each matrix, we obtain a new set of matrices, namely,

$$A' = X^{-1}AX, B' = X^{-1}BX,$$

 $C' = X^{-1}CX, ...$

that forms a new matrix group: $\Gamma' = \{A', B', C', ...\}$

• Γ' is also a representation of the group!

It is provable that if any of the matrix (e.g., A') in Γ' is a block-factored matrix, then all other matrices (e.g., B',C',...) in Γ' are also blocked-factored.

$$A' = \begin{bmatrix} [A_1] & 0 & 0 & 0 \\ 0 & [A_2] & 0 & 0 \\ 0 & 0 & [A_3] & 0 \\ 0 & 0 & 0 & [A_4] \end{bmatrix}, B' = \begin{bmatrix} [B_1] & 0 & 0 & 0 \\ 0 & [B_2] & 0 & 0 \\ 0 & 0 & [B_3] & 0 \\ 0 & 0 & 0 & [B_4] \end{bmatrix}, C' = \begin{bmatrix} [C_1] & 0 & 0 & 0 \\ 0 & [C_2] & 0 & 0 \\ 0 & 0 & [C_3] & 0 \\ 0 & 0 & 0 & [C_4] \end{bmatrix}, \dots$$

in which $A_1, A_2, A_3...$ are $n_1, n_2, n_3...$ -order submatrices with $n = n_1 + n_2 + n_3 + ...$

• These *n*-order matrices can be simply expressed as

$$A' = A_1 \oplus A_2 \oplus A_3 \oplus \dots, \quad B' = B_1 \oplus B_2 \oplus B_3 \oplus \dots,$$

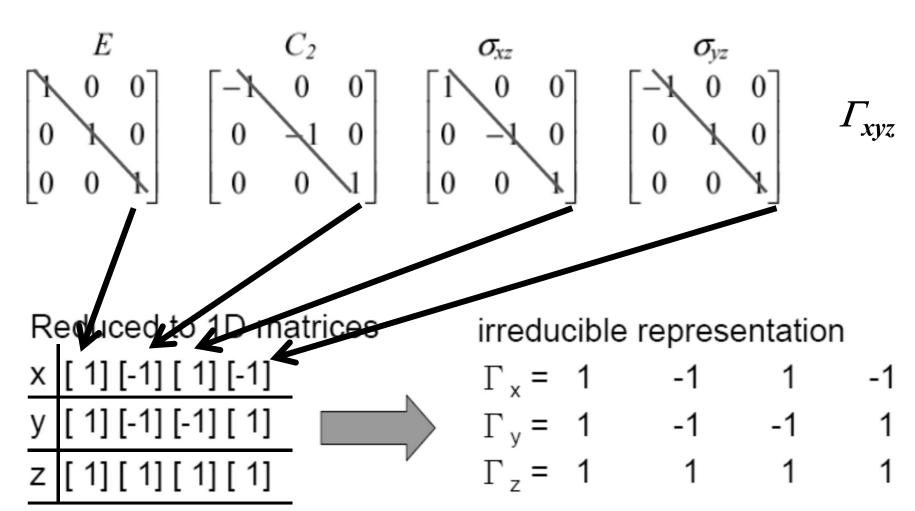
$$C' = C_1 \oplus C_2 \oplus C_3 \oplus \dots, \quad \dots$$

(Direct sum of submatrices!)

- It is also provable that the various sets of submatrices, T_1 ={A₁,B₁,C₁...}, T_2 ={A₂,B₂,C₂...}, T_3 ={A₃,B₃,C₃...}, ..., are in themselves representations of the group.
- We then call the set of matrices $\Gamma = \{A,B,C,...\}$ a reducible representation of the group, which breaks up into a direct sum of the representations, i.e., $\Gamma = T_1 \oplus T_2 \oplus T_3 \oplus ...$
- If it is not possible to find a similarity transformation to reduce a representation in the above manner, the representation is said to be *irreducible*.
- The irreducible representations of a point group are mostly countable and of fundamental importance!

Example: C_{2v} Is this 3-D Rep. reducible?

Yes. These matrices are block-factored!



$$\Gamma_{xyz} = \Gamma_x \oplus \Gamma_y \oplus \Gamma_z$$

The 3-D rep. is reduced to 3 1-D rep.


```
Point group R = \{R_A, R_B, R_C, ...\} (symm. ops.)
        Exerted on any set of bases
          (e.g., AO's, MO's, vectors, rotations etc.)
A matrix group, \Gamma = \{A, B, C, ...\}
(a matrix rep. of group \mathbf{R}, dimension = order of the matrix)
     Similarity transformations (reducing of a representation!)
A block-factored matrix group, \Gamma' = \{A', B', C', ...\}
(A' = A_1 \oplus A_2 \oplus ..., B' = B_1 \oplus B_2 \oplus ..., C' = C_1 \oplus
C_2 \oplus ..., ... and \Gamma_1 = \{A_1, B_1, C_1, ...\}, \Gamma_2 = \{A_2, B_2, C_2, ...\}...
& \Gamma' = \Gamma_1 \oplus \Gamma_2 \oplus \dots
```

Direct sum of irreducible representations!

The irreducible representations of a point group are mostly countable and of fundamental importance!!!

The character table of a point group lists up all essential information of its irreducible representations.

3.5.2. Character Tables of Point Groups

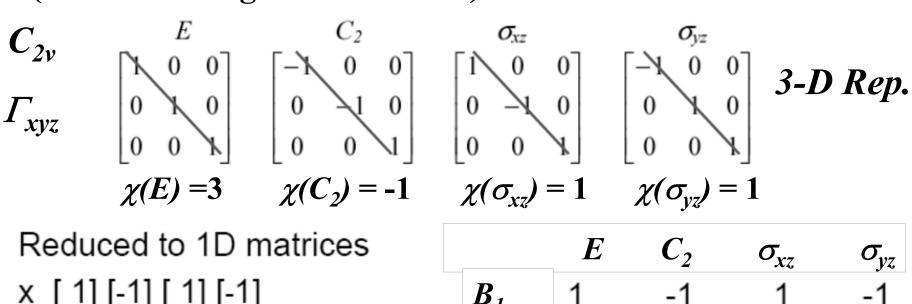
```
Example - point group C<sub>2v</sub>
Character table
     E C_2 \sigma_v(xz) \sigma_v(yz) h = 4
    +1 +1 +1 +1 z x^2, y^2, z^2
    +1 +1 -1 -1 R_z xy
    +1 -1 +1 -1 x, R_y xz
    +1 -1 -1 +1 y, R_x yz
                                 Characters
Top line: point group
         symmetry operations
       order of group, h = number of symmetry operations
```

Symmetry species of irreducible representations.

Characters & reducing representation!

Character of a matrix A: (sum of its diagonal elements!)

$$\chi(\mathbf{A}) = \sum_{i} a_{ii}(\mathbf{A})$$



z [1][1][1][1]

$$\Gamma_{xyz} = A_1 \oplus B_1 \oplus B_2$$

	$oldsymbol{E}$	C_2	σ	σ
B_1	1	-1	$\frac{\sigma_{xz}}{1}$	σ_{yz}
\boldsymbol{B}_2	1	-1	-1	1
A_{1}	1	1	1	1
Γ_{xyz}	3	-1	1	1

If
$$\Gamma = \Gamma_1 \oplus \Gamma_2 \oplus \Gamma_3 \oplus ...$$
, $\chi_{\Gamma}(R) = \sum_i \chi_{\Gamma_i}(R)$

$$\Gamma_i --- \text{I.R.s}$$

Translations

Movements of whole molecule – represent by vectors

e.g. y vector E operation y' (after operation) = y

 C_2 y' = -y (i.e. y' = -1 x y)

 $\sigma_{v}(xz)$ y' = -y

 $\sigma_{v}(yz)$ y' = y

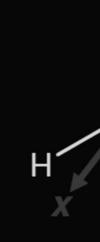
z vector all operations z' = z

x vector E operation x' = x

 C_2 X' = -X

 $\sigma_{v}(xz)$ x' = x

 $\sigma_{v}(yz)$ x' = -x



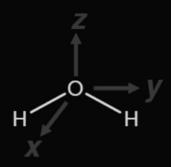
Translations

Consider effect of symmetry operation on the vector Write +1 for no change, -1 for reversal

	E	C_2	$\sigma_{\rm v}({\it xz})$	$\sigma_{v}(yz)$	
z vector	+1	+1	+1	+1	\mathbf{A}_{1}
у	+1	-1	-1	+1	B_2
X	+1	-1	+1	-1	B_1

$$C_{2v}$$
 E C_2 $\sigma_v(xz) \sigma_v(yz)$
 A_1 +1 +1 +1 +1
 A_2 +1 +1 -1 -1
 B_1 +1 -1 +1 -1
 B_2 +1 -1 -1 +1

Labels A₁ etc. are symmetry species; they summarise the effects of symmetry operations on the vectors.



Rotations

Similarly for rotations of the molecules

	E	C_2	$\sigma_{v}(xz)$	$\sigma_{v}(yz)$	
z vector	+1	+1	+1	+1	\mathbf{A}_{1}
у	+1	-1	-1	+1	B_2
X	+1	-1	+1	-1	B ₁
R_z	+1	+1	-1	-1	A_2
R_y	+1	-1	+1	-1	B ₁
R_x	+1	-1	-1	+1	B ₂
					,0,
					Н
					X

Characters

The numbers +1 and -1 are called *characters*.

The *character table* has all possible symmetry species for the *point group*. It is the same for all molecules belonging to the point group – e.g. C_{2v} for H_2O , SiH_2Cl_2 , $Fe(CO)_4Cl_2$, etc.

Note: the character table lists the symmetry species for translations and rotations.

A,B show symmetry with respect to rotation.

1,2 distinguish symmetry with respect to reflections

Character table

$$C_{2v}$$
 E C_{2} $\sigma_{v}(xz) \sigma_{v}(yz)$ $h = 4$
 A_{1} +1 +1 +1 +1 z
 A_{2} +1 +1 -1 -1 R_{z}
 B_{1} +1 -1 -1 +1 y, R_{x}

Symmetry species: Mulliken symbols

C_{3v}	Ε	$2C_3$	$3\sigma_{\nu}$		
A_1	1	1	1	Z	$x^2 + y^2, z^2$ $(x^2 - y^2, xy)(xz, yz)$
A_2	1	1	-1	R_z	
E	2	-1	0	$(x, y)(R_x, R_y)$	$(x^2-y^2,xy)(xz,yz)$

- All 1-D irreducible reps. are labeled by either A or B, 2-D irreducible rep. by E, 3-D irreducible rep. by T and so on.
- **A**: symmetric with respect to C_n rotation, i.e., $\chi(C_n)=1$.
- **B**: asymmetric with respect to C_n rotation, i.e., $\chi(C_n)$ =-1.
- Subscriptions **1** or **2** designates those symmetric or asymmetric with respect to a $C_2 \perp$ or a σ_v .
- Subscripts g or u for universal parity or disparity.
- Superscripts 'or '' designates those symmetric or asymmetric with respect to σ_{h}

3.5.3 The "Great Orthogonality Theorem" and Its Consequences

Some notations:

广义正交定理

h – the order of a group; R – operations (elements) of a point group.

 l_i – the dimension of *i*th representation (i.e., the order of its matrices)

 $\Gamma_i(R)_{mn}$ – the element in the *m*th row and *n*th column of the matrix corresponding to the operation R in the *i*th representation.

$$\sum_{R} [\Gamma_{i}(R)_{mn}] [\Gamma_{j}(R)_{m'n'}] * = \frac{h}{\sqrt{l_{i}l_{j}}} \delta_{ij} \delta_{mm'} \delta_{nn'}$$

It means that in the set of matrices constituting any one irreducible representation, any set of corresponding matrix elements, one from each matrix, behaves as the components of a vector in a h-dimensional space such that all these vectors are mutually orthogonal and each is normalized so that the square of its length is h/l_i .

Five important rules

regarding irreducible representations and their characters:

Rule 1 – the sum of the squares of the dimensions of the irreducible representations of a group is equal to the order of a

group.
$$\sum_{i} l_{i}^{2} = h$$
e.g., for C_{3v} ,
$$\sum_{i} l_{i}^{2} = 1^{2} + 1^{2} + 2^{2} = 6 = h$$

$$\therefore \chi_{i}(E) = l_{i} \Rightarrow \sum_{i} [\chi_{i}(E)]^{2} = h$$

Rule 2 – the sum of the square of the characters in any irreducible representation of a group equals **h**,

$$\sum_{R} [\chi_{i}(R)]^{2} = h$$

$$\sum_{R} [\chi_i(R)]^2 = h \left[e.g., A_2 \text{ for } C_{3v}, 1^2 + 2 \cdot 1^2 + 3 \cdot (-1)^2 = 6 \right]$$

Five important rules

Rule 3 – the vectors whose components are the characters of two irreducible representations are orthogonal,

$$\sum_{R} [\chi_{i}(R)][\chi_{j}(R)] = 0$$
e.g., The A_{2} and E I.R. of C_{3v} are orthogonal.
$$1(1\cdot2) + 2(1\cdot(-1)) + 3((-1)\cdot0) = 0$$

$$\frac{C_{3v}}{A_{1}} = \frac{E}{2C_{3}} = 3\sigma_{v}$$

$$\frac{A_{1}}{A_{1}} = \frac{1}{1} = \frac{1}{1} = -1$$

$$\frac{A_{2}}{E} = \frac{1}{2} = -1 = 0$$

Rule 4 – In a given representation, the characters of all matrices belonging to operations in the same class are identical.

Rule 5 – the number of irreducible representations of a group is equal to the number of classes (of operations) in the group.

Illustration of the Five important rules

Example – Direct construction of the character table of C_{2v}

- Four classes of elements/operations: $\{E, C_2, \sigma', \sigma''\}$ & h = 4
- *Rule* $5 \rightarrow$ Four I.R.
- Rule $1 \to \Sigma l_i^2 = h = 4 \to l_{1-4} = 1 \to 4$ 1-D I.R.
- There is always an all-symmetric representation, $A_1 = \begin{bmatrix} 1 & 1 & 1 \\ & & 1 \end{bmatrix}$

$$\Gamma_1 \sum_{R} [\chi_1(R)]^2 = h = 4 \& \chi_1(R) = 1$$

• Other 1-D I.R., $\chi_i(E) = 1$

$$\because \sum_{R} [\chi_i(R)]^2 = h \Rightarrow \chi_i(R) = \pm 1$$

• Each of them is orthogonal to Γ_1 (rule3)

$$\Rightarrow \sum_{R} \chi_i(R) \chi_1(R) = 0$$

$$\implies \text{Two } \chi_i(R) = 1, \text{ two } \chi_i(R) = -1!$$

• If necessary, define the symmetry species (Mulliken symbols).

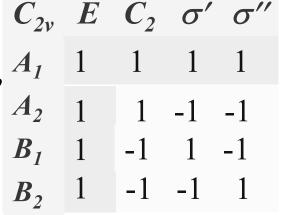


Illustration of the Five important rules

Example – Direct construction of the character table of C_{3v}

- Three classes of elements/operations: $\{E, 2C_3, 3\sigma_v\}$ & h = 6
- Rule $5 \rightarrow Three I.R.s$

• Rule
$$1 \rightarrow l_1^2 + l_2^2 + l_3^2 = 6 \rightarrow l_1 = l_2 = 1, l_3 = 2$$

• &
$$\chi_1(E) = \chi_2(E) = 1$$
, $\chi_3(E) = 2$

C_{3v}	E	$2C_3$	$3\sigma_{\nu}$
$\overline{\mathbf{A}_1}$	1	1	1
$\mathbf{A_2}$	1	1	<u>-1</u>
E	2	-1	0

$$\chi_1(E) = \chi_1(C_3) = \chi_1(\sigma_v) = 1 \quad (\Gamma_1 = A_1)$$

• Another 1-D I.R. Γ_2 should follow rules 2 &3.

$$\sum_{R} [\chi_2(R)]^2 = h \sum_{R} \chi_2(R) \chi_1(R) = 0 \qquad \Rightarrow \chi_2(C_3) = 1, \chi_2(\sigma_v) = -1$$

- Similarly for the 2-D I.R. Γ_3 , $\rightarrow \chi_3(C_3)=-1$, $\chi_3(\sigma_v)=0$
- If necessary, define the symmetry species (Mulliken symbols).

An important practical relationship

Between any reducible representation and the I.R.s,

 $\chi(R) = \sum_{j} a_{j} \chi_{j}(R)$

The number of times that the *j*th I.R. occurs in a red. REP.

Character of a matrix corresponding to operation *R* in a red. REP.

Character of a matrix corresponding to operation *R* in the *j*th I.R..

$$\Rightarrow \sum_{R} \chi_{i}(R) \chi(R) = \sum_{R} \chi_{i}(R) \sum_{j} a_{j} \chi_{j}(R) = \sum_{R} a_{i} [\chi_{i}(R)]^{2} = ha_{i}$$

$$\Rightarrow a_{i} = \frac{1}{h} \sum_{R} \chi(R) \chi_{i}(R)$$
Rule 3
Rule 1

This relationship thus provides an easy way for reducing a representation of a group.

12

3.5.3 Symmetry of molecular properties & Application of the representation theory of group

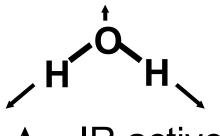
- Translations and rotations can be assigned to symmetry species (of irreducible representations).
- So can other molecular properties, including molecular vibrations, hybrid orbitals, molecular orbitals and so on.
- The theory of molecular symmetry & point group facilitates the construction of hybrid orbitals, symmetry adapted MO's, and analyses of molecular vibrations etc.

1. Vibrational spectroscopy

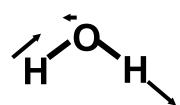
正则振动

The normal vibrations (or normal modes of vibrations) of a molecule are the bases of I.R.s of the point group it belongs to.

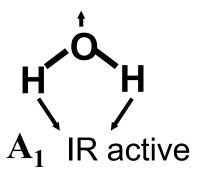
* H₂O has (3N-6)=3 normal modes of vibration!



IR active



 $\mathbf{B_1}$ IR active



* CO₂ has 3 normal modes of vibration

Infra-red inactive! no dipole change!

IR active

IR – active:

The vibrations that induce a change in dipole moment.

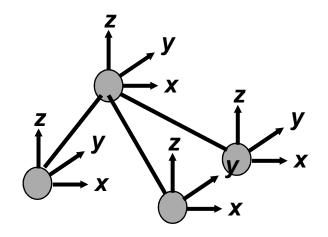
• A *IR-active* vibration and a component of *molecular* dipole moment (i.e., vectors x, y, z) belong to the same symmetry species.

Raman – active:

The vibrations that induce a change in polarizability.

 A Raman-active vibration and a component of molecular polarizability (i.e., x², y², z², xy, yz, xz and x²-y² etc.) belong to the same symmetry species.

Molecular vibrations - number of modes



Each atom can move independently in x, y, z directions.

3N degrees of freedom for a N-atom molecule.

If atoms fixed, there are: 3 translational degrees

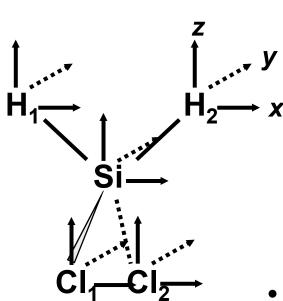
3 rotational degrees

and the rest (3N-6) are vibrational modes

No. of modes of each symmetry species

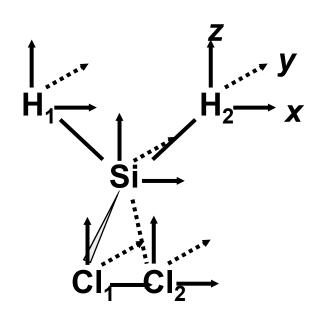
Example - SiH₂Cl₂

Point group C_{2v}



Character table

- Draw x, y and z vectors on all atoms.
 - Perform symmetry operations.
- Count +1, -1, 0 if vector transforms to itself, minus itself, or moves.



Character table

$$C_{2v}$$
 E C_2 $\sigma_v(xz)$ $\sigma_v(yz)$ $h = 4$

$$A_1$$
 +1 +1 +1 z x^2 , y^2 , z^2

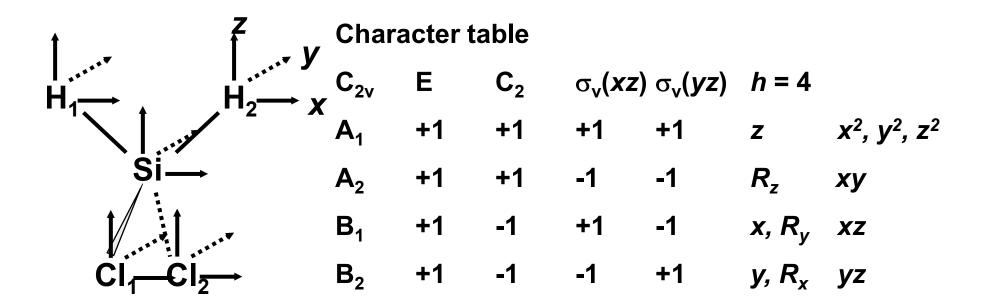
$$A_2$$
 +1 +1 -1 -1 R_z xy

$$B_1$$
 +1 -1 +1 -1 x, R_y xz B_2 +1 -1 -1 +1 y, R_x yz

$$B_2 +1 -1 -1 +1 y, R_x yz$$

Operation E

Si atom
$$x$$
 transforms into Si x count +1



Operation C₂

Si atom

x transforms into Si -x count -1

y transforms into Si -y

count -1

z transforms into Si z

count +1

total -1

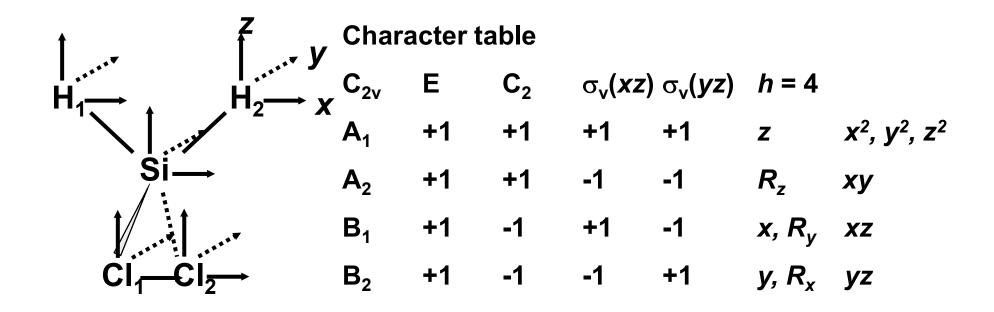
H₁ and H₂ move - swap places

count 0

Cl₁ and Cl₂ swap places

count 0

grand total -1



Operation $\sigma_{v}(xz)$ Si atom x transforms into Si x count +1

y transforms into Si -y count -1

z transforms into Si z count +1

total +1

 H_1 and H_2 also lie in xz plane, and behave as Si count +1 each

Cl₁ and Cl₂ swap places count 0

grand total +3

Character table $C_{2v} = C_2 \quad \sigma_v(xz) \, \sigma_v(yz) \quad h = 4$

Operation $\sigma_v(yz)$ Si atom x transforms into Si -x count -1

y transforms into Si y count +1

z transforms into Si z count +1

total +1

H₁ and H₂ swap places count 0

Cl₁ and Cl₂ also lie in *yz* plane, and behave as Si count +1 each grand total +3

No. of modes of each symmetry species

Example - SiH₂Cl₂

Point group C_{2v}

Overall we have:

E C_2 $\sigma_v(xz)$ $\sigma_v(yz)$ +15 -1 +3 +3

This is the *reducible representation* of the point group on the basis of the set of 3N (=15) atomic displacement vectors.

We reduce it to the *irreducible representations*, using a formula

Reduce the reducible representation

Formula is

$$a_i = \frac{1}{h} \sum_{R} g_{R} \cdot \chi(R) \cdot \chi_i(R)$$

Character table

$$C_{2v}$$
 1E $1C_2$ $1\sigma_v(xz) 1\sigma_v(yz)$ $h = 4$
 A_1 +1 +1 +1 +1 z x^2 , y^2 , z^2
 A_2 +1 +1 -1 -1 R_z xy
 B_1 +1 -1 +1 -1 y , R_x yz
 $Red. Rep. Γ 15 -1 3 3$

No. of A_1 motions = 1/4 [1.15.1 + 1.(-1).1 + 1.3.1 + 1.3.1] = 5

$$a_i = \frac{1}{h} \sum_{c} g_c \cdot \chi(c) \cdot \chi_i(c)$$

Character table

$$C_{2v}$$
 1E 1 C_2 1 $\sigma_v(xz)$ 1 $\sigma_v(yz)$ $h = 4$
 A_1 +1 +1 +1 +1 z x^2 , y^2 , z^2
 A_2 +1 +1 -1 -1 R_z xy
 B_1 +1 +1 -1 +1 y , R_x yz

Red. Rep. Γ

15 -1 3

No. of
$$A_1$$
 motions = 1/4 [1.15.1 + 1.(-1).1 + 1.3.1 + 1.3.1] = 5
No. of A_2 motions = 1/4 [1.15.1 + 1.(-1).1 + 1.3.(-1) + 1.3.(-1)] = 2

$$a_i = \frac{1}{h} \sum_{c} g_c \cdot \chi(c) \cdot \chi_i(c)$$

Character table

C_{2v} 1E 1C₂ 1
$$\sigma_v(xz)$$
1 $\sigma_v(yz)$ $h = 4$
A₁ +1 +1 +1 +1 z x^2, y^2, z^2
A₂ +1 +1 -1 -1 R_z xy
B₁ +1 -1 +1 -1 x, R_y xz
B₂ +1 -1 -1 +1 y, R_x yz

Red. Rep. Γ 15 -1 3 3

No. of
$$A_1$$
 motions = 1/4 [1.15.1 + 1.(-1).1 + 1.3.1 + 1.3.1] = 5

No. of
$$A_2$$
 motions = 1/4 [1.15.1 + 1.(-1).1 + 1.3.(-1) + 1.3.(-1)] = 2

No. of
$$B_1$$
 motions = 1/4 [1.15.1 + 1.(-1).(-1) + 1.3.1 + 1.3.(-1)] = 4

No. of
$$B_2$$
 motions = $1/4$ [1.15.1 + 1.(-1).(-1) + 1.3.(-1) + 1.3.1] = 4

Translations, rotations, vibrations

Symmetry species of all motions are:-

 $5A_1 \oplus 2A_2 \oplus 4B_1 \oplus 4B_2$ - the *irreducible representation*

- 3 of these are translations of the whole molecule
- 3 are rotations
- Symmetry species of translations are given by vectors (x, y, z) in the character table.
- Symmetry species of rotations are given by R_x , R_y and R_z in the character table.

Translations, rotations, vibrations

Symmetry species of all motions are:-

$$5A_1 + 2A_2 + 4B_1 + 4B_2$$
 $A_1 + B_1 + B_2$
 $A_{2*} + B_{1*} + B_{2*}$

Translations are:-

Rotations are:-

- so vibrations are:-

$$C_{2v}$$
 1E $1C_2$ $1\sigma_v(xz) 1\sigma_v(yz)$ $h = 4$
 A_1 +1 +1 +1 +1 z x^2, y^2, z^2
 A_2 +1 +1 -1 -1 R_z xy
 B_1 +1 -1 +1 P_1 P_2 P_3 P_4 P_5 P_5 P_5 P_6 P_7 P_8 P_8

Symmetry species of vibrations are:- $4A_1 + A_2 + 2B_1 + 2B_2$

What does each of these modes look like?

Two rules

- (i) there is 1 stretching vibration per bond
- (ii) must treat symmetry-related atoms together

Two rules

- (i) there is 1 stretching vibration per bond
- (ii) we must treat symmetry-related atoms together

We therefore have:-

two stretching modes of the SiCl₂ group two of the SiH₂ group

The remaining five modes must be deformations (angle bending vibrations)

We therefore have:-

two stretching modes of the SiCl₂ group

We can stretch the two Si-CI bonds together *in phase*or together *out of phase*

hint: 1) use the two Si-Cl bond stretching as basis

set:
$$E C_2 \sigma_{xz} \sigma_{yz}$$

$$\Gamma_{2SiH}$$
 2 0 0 2 $\rightarrow \Gamma_{2SiH} = A_1 + B_2$

2) Use the projection operator to work on R₁:

$$A_1$$
 stretching = $(R_1 + R_2)/2$ symmetric stretching CI_1 CI_2
 B_2 stretching = $(R_1 - R_2)/2$ anti-symmetric stretching

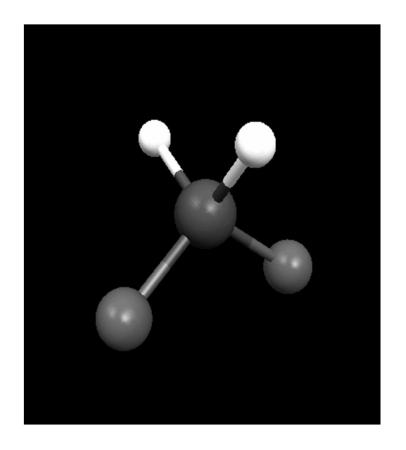
Is vibration symmetrical with respect to each symmetry operation?

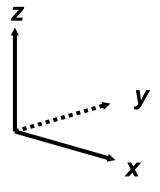
- if yes +1, if no -1

$$m{E}$$
 $m{C}_2$ $m{\sigma}_{xz}$ $m{\sigma}_{yz}$ +1 +1

From the character table, this belongs to the symmetry species A₁

We call the mode of vibration $v_{\text{sym}} \text{ SiCl}_2$





Is vibration symmetrical with respect to each symmetry operation?

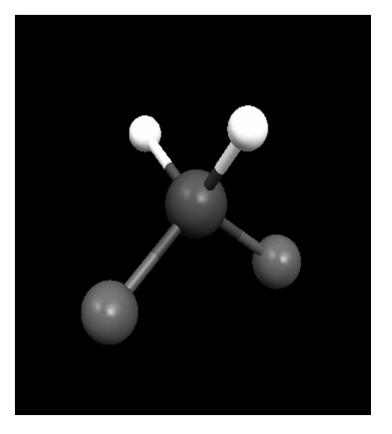
- if yes +1, if no -1

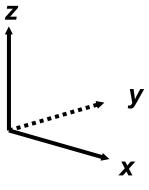
$$E$$
 C_2
 σ_{xz}
 σ_{yz}

 +1
 -1
 -1
 +1

From the character table, this belongs to the symmetry species B₂

We call the mode of vibration v_{asym} SiCl₂





We therefore have:-

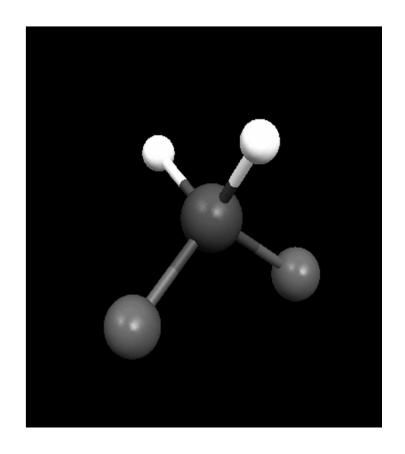
two stretching modes of the SiCl₂ group and two stretching modes of the SiH₂ group

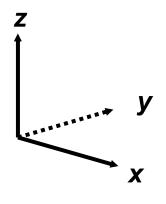
We can stretch the two Si-H bonds together *in phase* or together *out of phase*

$$E$$
 C_2 σ_{xz} σ_{yz} +1 +1 +1

From the character table, this belongs to the symmetry species A₁

We call the mode of vibration v_{sym} SiH₂

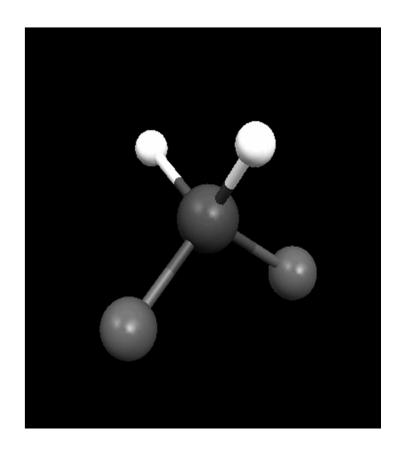


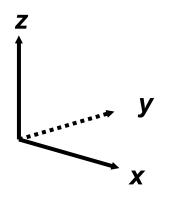


$$E$$
 C_2 σ_{xz} σ_{yz} +1 -1

From the character table, this belongs to the symmetry species B₁

We call the mode of vibration v_{asym} SiH₂





We now have:-

two stretching modes of the SiCl₂ group two of the SiH₂ group

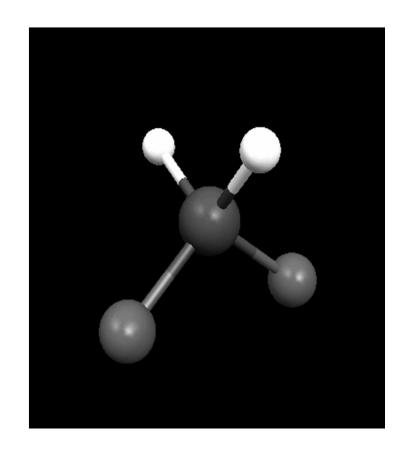
The remaining five modes must be deformations (angle bending vibrations)

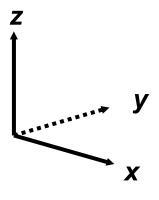
As with stretches, we must treat symmetryrelated atoms together

$$E$$
 C_2 σ_{xz} σ_{yz} +1 +1 +1

From the character table, this belongs to the symmetry species A₁

We call the mode of vibration δ_{sym} SiCl₂ (or SiCl₂ scissors)

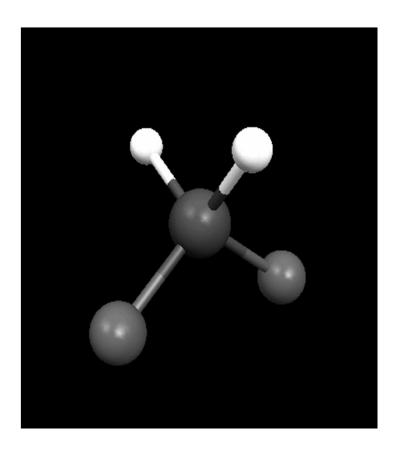


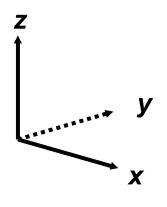


$$E$$
 C_2 σ_{xz} σ_{yz} +1 +1 +1

From the character table, this belongs to the symmetry species A₁

We call the mode of vibration δ_{sym} SiH₂ (or SiH₂ scissors)

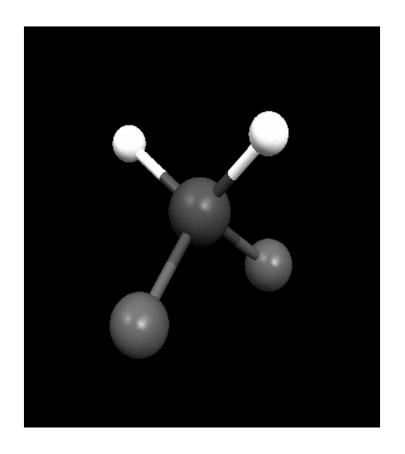


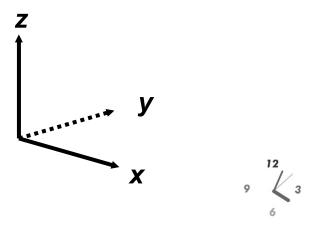


$$E$$
 C_2 σ_{xz} σ_{yz} +1 -1 -1

From the character table, this belongs to the symmetry species B₁

We call the mode of vibration ω SiH₂ (or SiH₂ wag)

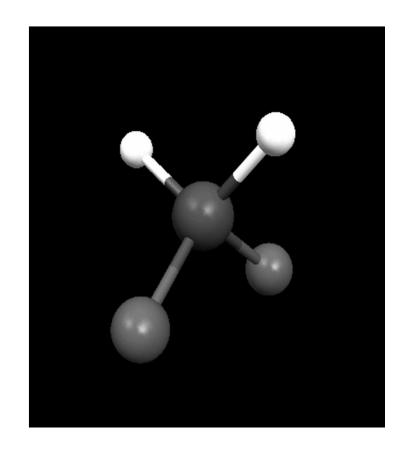


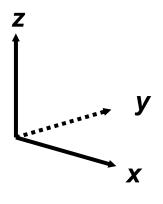


$$E$$
 C_2 σ_{xz} σ_{yz} +1 -1 -1 +1

From the character table, this belongs to the symmetry species B₂

We call the mode of vibration ρ SiH₂ (or SiH₂ rock)

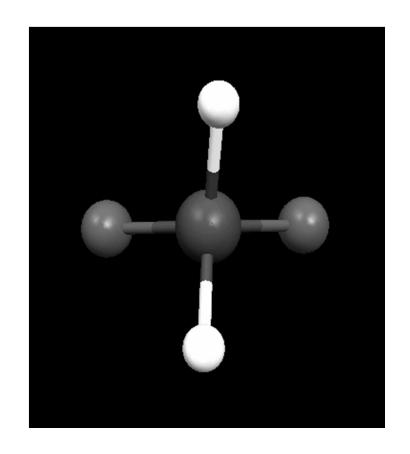


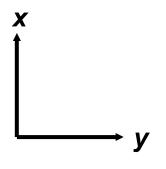


$$E$$
 C_2 σ_{xz} σ_{yz} +1 +1 -1 -1

From the character table, this belongs to the symmetry species A₂

We call the mode of vibration τ SiH₂ (or SiH₂ twist)





Overall, we now have:-

two stretching modes of the SiCl₂ group

$$A_1 + B_2$$

two of the SiH₂ group

$$A_1 + B_1$$

five deformation modes

$$2A_1 + A_2 + B_1 + B_2$$

Together, these account for all the modes we expect:

$$4A_1 + A_2 + 2B_1 + 2B_2$$

Infra-red spectroscopy

Process – quantum of energy is absorbed by exciting a vibration

may also increase or decrease rotational energy

Activity — absorption possible if and only if the vibration involves a dipole change

Infra-red spectroscopy

```
Consider symmetry properties
                                                                C_2 \qquad \sigma_{v}(xz) \ \sigma_{v}(yz)
                                                                                          h = 4
of dipoles \mu_x, \mu_v and \mu_z
                                                          +1
                                                                 +1
                                                                         +1
                                                                                 +1
e.g. SiH<sub>2</sub>Cl<sub>2</sub>
                                                  A_2
                                                          +1
                                                                 +1
                                                                                          R_z
                                                                         -1
                                                                                -1
                                                  B₁
                                                                                          x, R_v
                                                          +1
                                                                         +1
                                                  B_2
                                                                                 +1
                                                                                          y, R_x
                                                                         -1
```

- Dipoles are vectors, with same symmetry properties as x, y, and z. In this case, μ_z has A_1 symmetry.
- Those A₁ vibrations involve dipole changes along the z axis and so all A₁ modes must be infra-red active.

Infra-red spectroscopy

Consider symmetry properties of dipoles
$$\mu_{x}$$
, μ_{y} and μ_{z}
e.g. SiH₂Cl₂

$$H = \begin{cases} C_{2} & \sigma_{v}(xz) \sigma_{v}(yz) & h = 4 \\ A_{1} & +1 & +1 & +1 & +1 & z \\ A_{2} & +1 & +1 & -1 & -1 & R_{z} \\ B_{1} & +1 & -1 & +1 & -1 & x, R_{y} \\ B_{2} & +1 & -1 & -1 & +1 & y, R_{x} \end{cases}$$

- Similarly B₁ and B₂ modes involve dipole changeds along x and y axes, and so must be infra-red active.
- A₂ modes cannot involve dipole changes, and are infra-red inactive.
- For any point group, no more than 3 IR-active symmetry species.

Infra-red spectroscopy

Example 1: SiH₂Cl₂

$$\Gamma_{\text{vib}} = 4A_1 + A_2 + 2B_1 + 2B_2$$
4 + 2 + 2 active modes

8 absorption bands in IR spectrum

Example 2: XeOF₄

$$\Gamma_{\text{vib}} = 3A_1 + 2B_1 + B_2 + 3E$$

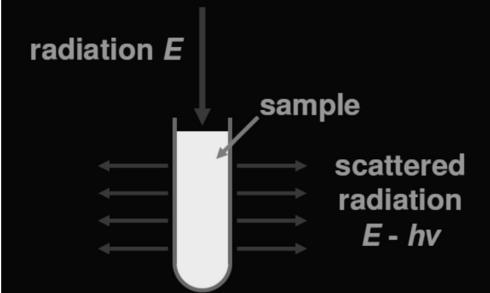
3 + 3 active modes

6 absorption bands in IR spectrum

Character table							
C_{4v}	Ε	$2C_4$	C_2	$2\sigma_{v}$	$2\sigma_{v}$	h = 8	
A_1	+1	+1	+1	+1	+1	Z	$X^2 + y^2, Z^2$
A_2	+1	+1	+1	-1	-1	R_z	
B_{1}	+1	-1	+1	+1	-1		x² - y²
B_2	+1	-1	+1	-1	+1		xy
E	+2	0	-2	0	0	$(x, y) (R_x, R_y)$	(xz, yz)

Raman spectroscopy

Process – large quantum of energy E is scattered with energy E - hv



Sample usually liquid, occasionally solid or gas

Activity — vibrational mode active if and only if it involves a polarisability change

Raman spectroscopy

Dipoles are vectors - μ_x etc. – symmetry properties as x, y, z

Polarisabilities are tensors – α_{xx} , α_{xy} etc. – properties as xx, xy

- listed in final column of character table

$$SiH_2Cl_2$$
 $\Gamma_{vib} = 4A_1 + A_2 + 2B_1 + 2B_2$

$$C_{2v}$$
 E C_{2} $\sigma_{v}(xz) \sigma_{v}(yz) h = 4$
 A_{1} +1 +1 +1 +1 z x^{2} , y^{2} , z^{2}
 A_{2} +1 +1 -1 -1 R_z xy

 B_{1} +1 -1 +1 -1 y, R_{y} xz

 B_{2} +1 -1 -1 +1 y, R_{x} yz

2. Molecular orbitals (wavefunctions) as the bases of irreducible representations of molecular point group.

Symmetry of wavefunctions of a molecule

Symmetry Operation R on Schrödinger Eq.

$$\hat{H}\psi_i = E_i\psi_i - R\hat{H}\psi_i = RE_i\psi_i$$

$$\hat{H}\mathbf{R}\psi_i = E_i\mathbf{R}\psi_i \quad \longleftarrow \quad \mathbf{R}\hat{H}\mathbf{R}^{-1}\mathbf{R}\psi_i = E_i\mathbf{R}\psi_i$$

 $R\psi_i$ is also an eigenfunction of \hat{H} , with the same eigenvalue E_i as ψ_i corresponds to.

• If eigenvalue E_i is not degenerate, as ψ_i is normalized, it requires $R \psi_i = c \psi_i = \pm 1 \psi_i$

in order that $\mathbf{R}\psi_i$ is also normalized.

- Hence, by applying each of the operations of the group to an eigenfunction ψ_i with a nongenerate eigenvalue, we generate a 1-D representation of the group with each matrix, $\Gamma_i(R)$, equal to +/-1.
- That is, each of the nondegenerate eigenfunctions is a basis of a 1-D I.R. of the very group!

If the eigenvalue E_i is k-fold degenerate with the eigenfunctions $\{\psi_{i1}, \psi_{i2}, ..., \psi_{ik}\}$,

$$\hat{H}\psi_{im} = E_i\psi_{im} \Longrightarrow \hat{H}R\psi_{im} = E_iR\psi_{im}$$

where $R\psi_{im}$ may be a linear combination of ψ_{ij} (j=1,2,...,k).

$$R \psi_{im} = \sum_{j=1}^{k} r_{jm} \psi_{ij} \longrightarrow R \begin{bmatrix} \psi_{i1} \\ \psi_{i2} \\ \dots \\ \psi_{ik} \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & \dots & r_{1k} \\ r_{21} & r_{22} & \dots & r_{2k} \\ \vdots & \ddots & \ddots & \vdots \\ r_{k1} & r_{k2} & \dots & r_{kk} \end{bmatrix} \begin{bmatrix} \psi_{i1} \\ \psi_{i2} \\ \vdots \\ \psi_{ik} \end{bmatrix}$$

That is, the set of eigenfunctions $\{\psi_{i1}, \psi_{i2}, ..., \psi_{ik}\}$ is a basis for this k-dimensional irreducible representation!

In LCAO approach of MO theory, each of the MOs can be express as

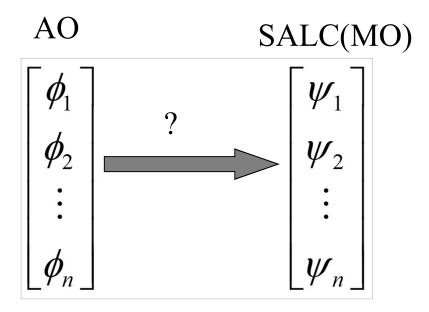
$$\psi = \sum_{i=1}^{n} c_i \phi_i \quad (AOs: \phi_1, \phi_2, ..., \phi_n)$$

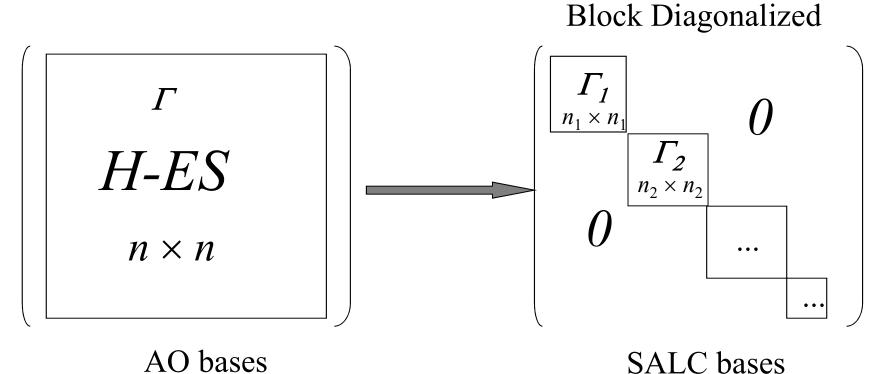
So we need to solve the secular equation

$$\sum_{i=1}^{n} c_i (H_{ri} - ES_{ri}) = 0 \quad (r=1, 2, \dots, n)$$

$$\begin{bmatrix} H_{11} - ES_{11} & H_{12} - ES_{12} & \cdots & H_{1n} - ES_{1n} \\ H_{21} - ES_{21} & H_{22} - ES_{22} & \cdots & H_{2n} - ES_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ H_{n1} - ES_{n1} & H_{n2} - ES_{n2} & \cdots & H_{nn} - ES_{nn} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} = 0$$

We can transform the original bases of AO's into Linear Combinations of AO's which have the same properties of some I.R.s (Symmetry Adapted Linear Combination), therefore the Secular Equation is block-diagonalized.





$$\Gamma = n_1 \Gamma_1 \oplus n_2 \Gamma_2 \oplus \dots$$

SALC bases

Step 1 Obtain the REP spanned by a set of AO basis (normally called basis set!)

Step 2 Reduce the REP spanned by the AO basis. Obtain the n_i 's for each I.R.

Step 3 Construct n_i SALCs for each I.R..

Step 4 Transform the hamiltonian matrix into block diagonalized form, and solve it.

Symmetry greatly facilitates the computations!

Use Projection operator to construct SALCs

• Projection operator: $\hat{P}^{j} = \frac{l_{j}}{h} \sum_{R} \chi_{j}(R) \hat{R}$ **j**-th I.R. of the group

derived from the "great orthogonality theorem".

• A non-normalized *SALC* can be constructed from AO-basis set by using the formula:

$$\Psi_{SALC}^{j} = \hat{P}^{j} \phi_{i} = \frac{l_{j}}{h} \sum_{R} \chi_{j}(R) \hat{R} \phi_{i}$$

An AO from the set of AO bases.

Example 1: H₂0

LCAO with the following atomic orbitals

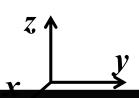
O:
$$2s$$
; $2p_x$, $2p_y$, $2p_z$

2H:
$$1s_a$$
, $1s_b$

Symmetry:
$$C_{2v}$$

First classify these AOs according to symmetry!

• Neglecting the O 1s orbital/electrons.



e.g. p_z orbital on O atom of H₂O

Unchanged by all operations

 $C_2 \qquad \sigma_v(xz) \ \sigma_v(yz)$

p_v orbital

 B_2

Character Table

$\mathbf{c}_{2\mathbf{v}}$

 C_2 $\sigma_{\rm v}$ $\sigma_{\rm v}$ '

 \mathbf{Z}

Symmetry of AOs from Oxygen

$$A_1$$

xy

 A_1 :

2s, $2p_z$

 \boldsymbol{B}_1

 A_2

X, XZ

 B_1 :

 B_2

y, yz

 B_2 : $2p_y$

2H:
$$1s_a$$
, $1s_b$

H_a X H_b

Symmetry Reduction of 2-D Basis Set $\{1s_a, 1s_b\}$

0

0

$$\mathbf{x},\mathbf{x},\mathbf{z} \qquad a_i = \frac{1}{h} \sum_{R} g_R \cdot \chi(R) \cdot \chi_i(R)$$

$$n_{A_1} = (1 \times 2 + 1 \times 0 + 1 \times 0 + 1 \times 2)/4 = 1$$

2

$$n_{B_1} = 0 \& n_{A_2} = 0$$

$$n_{B_2} = (1 \times 2 - 1 \times 0 - 1 \times 0 + 1 \times 2)/4 = 1$$

$$\therefore \Gamma = A_1 \oplus B_2$$
 = Two 1-D I.R.s

SALC - Symmetry Adapted Linear Combination of AOs

For this trivial problem, it is very simple. We intuitively determined the new basis as

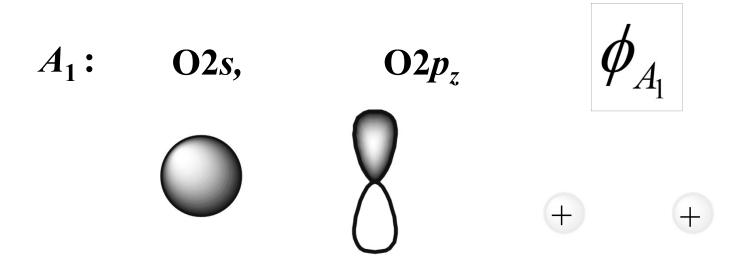
$$A_1$$
: $\frac{1}{\sqrt{2}}(1s_A + 1s_B)$ + +

$$B_2$$
: $\frac{1}{\sqrt{2}} (1s_A - 1s_B)$ +

For more complicated problem, the projection operator can be used to construct SALC of AOs. Plz confirm the above two SALCs by using the projection operator.

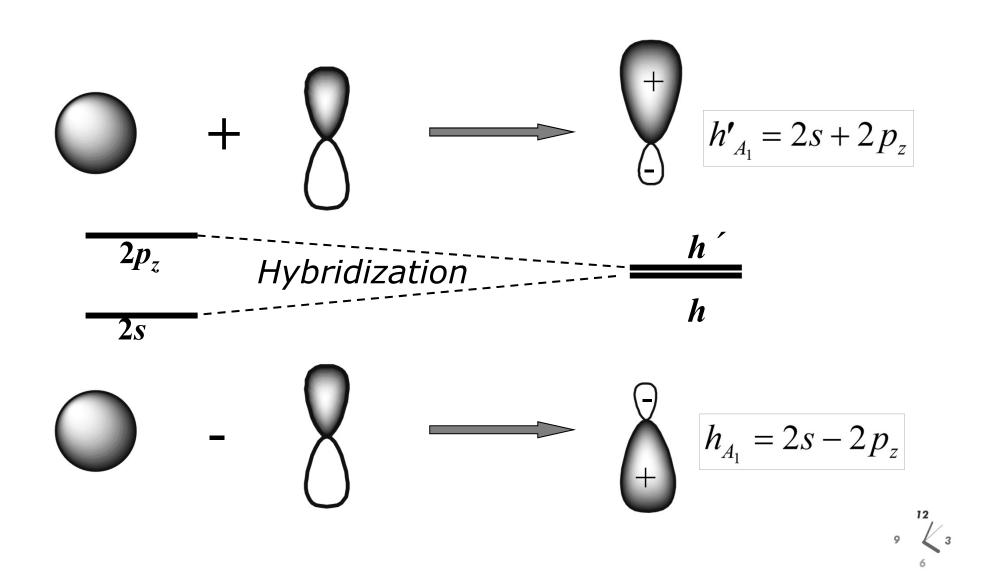
H_2O

A_1 symmetry AOs or SALCs for LCAO

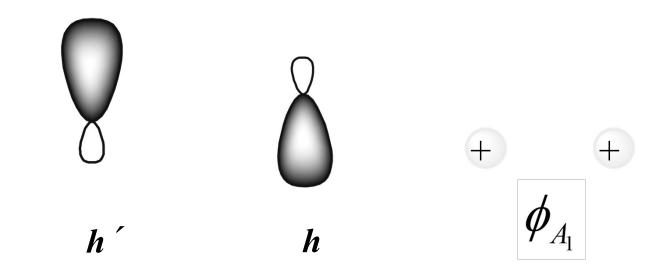


- Both AOs of the O atom can interact with the SALC of H 1s AOs.
- Hybridization of the two AOs of O atom is needed!

H_2O - Hybridization of Oxygen's 2s and $2p_z$



$\mathbf{H_2O}$ - Hybridization of Oxygen's 2s and $2p_z$

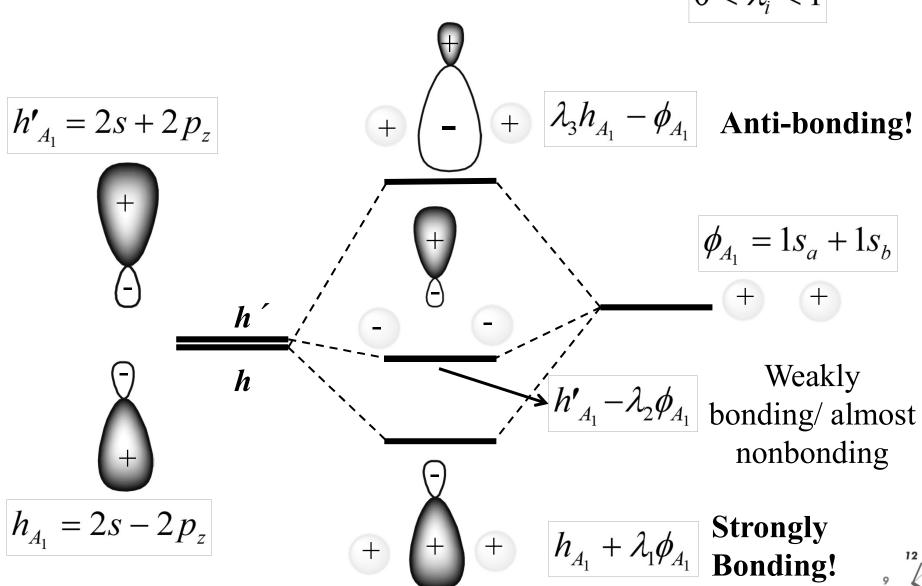


$$\int h'^* \phi_{A_1} d\tau$$
 Small, not effective bonding

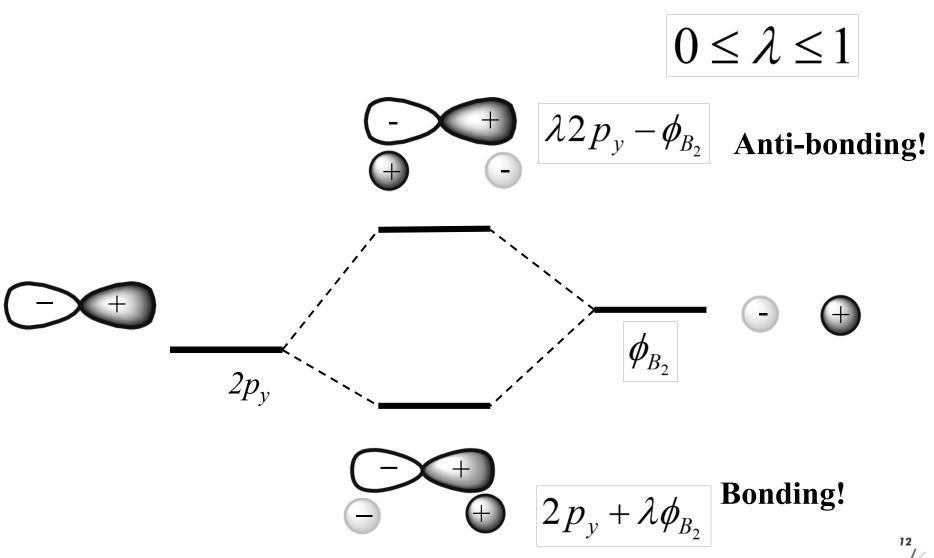
$$\int h^* \phi_{A_1} d au$$
 Large, effective bonding

H_2O - Chemical Bonding in A_1 REP

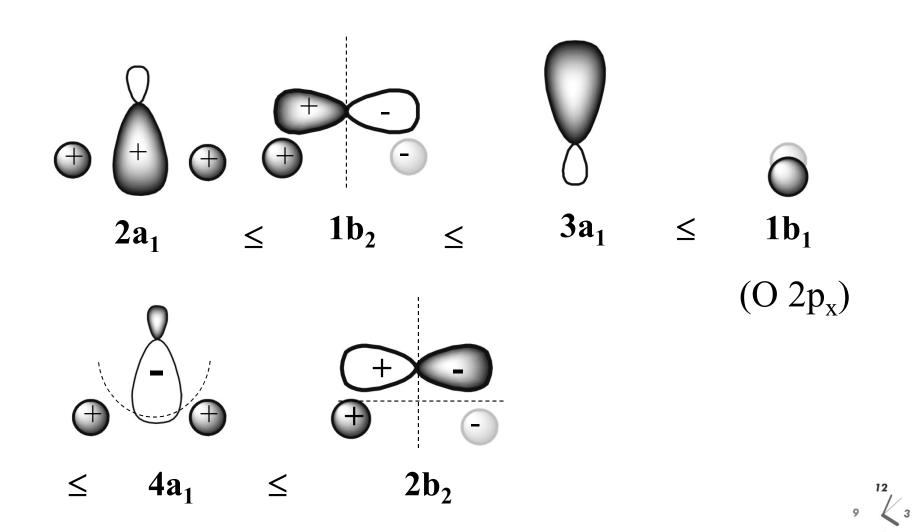
 $0 < \lambda_i < 1$



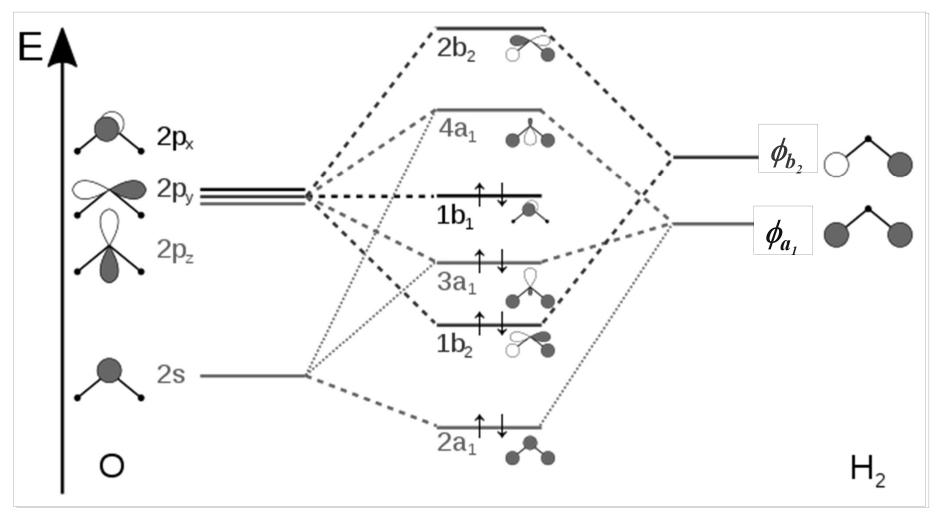
H₂O- Chemical Bonding in B₂ REP



H₂O- Summary on Molecular Energy Level Sequences



H₂O- Summary on Chemical Bonding

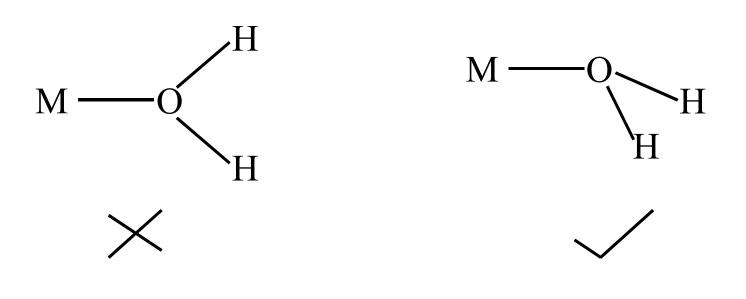


The lowest energy transitions are broad at 7.61 and 9.36 eV for the $4a_1 \leftarrow 1b_1$ and $4a_1 \leftarrow 3a_1$ transitions respectively for the gas phase and at 8.09 and 9.74 eV in the liquid.

J. Chem. Phys., 130 (2009) 084501 & 125(2006) 184501.

Questions

- For H₂O, which two MOs of its MO model can be regarded as equivalence of the two lone pairs of its VB model?
- H₂O can form hydrated cations with metal cations in aqueous solution. However, it is seldom to find the M-H₂O bonding in the coplanar manner. Why?



Example 2: π -MOs of C_3H_3 (D_{3h})

_			5	<i>J</i> \ <i>J</i> <i>J</i> <i>J</i>			;
D_{3h}	E	$2C_3$	$3C_2$	σ_h	$2S_3$	$3\sigma_{\nu}$	$(\phi = p_{\pi} = p_{z})$
A_1'	1	1	1	1.	1	1	Basis set
A_2'	1	1	-1	1	1	-1	$\{\phi_1, \phi_2, \phi_3\}$
E'	2	-1	0	2	-1	0	Stop 1: got
A_1''	1	. 1	1	-1	-1	-1	Step 1: get the REP.
A_2''	1	1	-1	-1	-1	1	
E''	2	-1	0	-2	1	0	
Γ	3	0	-1	-3	0	1	Reducible!

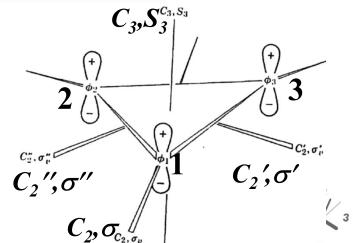
 Step 2: By applying to all I.R.s, we have

all I.R.s, we have
$$\begin{bmatrix} a_i = \frac{1}{h} \sum_c g_c \cdot \chi(c) \cdot \chi_i(c) \end{bmatrix}$$

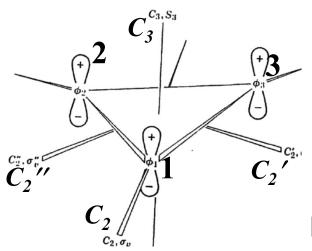
$$\Gamma = A_2^{"} \oplus E^{"}$$

$$\hat{P}^{\Gamma_i}\phi_1 = rac{l_i}{h}\sum_R \chi_i(\hat{R})\hat{R}\phi_1$$

• Step 3: use projection operator to obtain SALCs. (a bit tedious!)



To save time, use subgroup D_3



sym. op. → count 1,-1,0 if an AO transforms to itself, minus itself or moves

	950		
D_3	E	$2C_3$	$3C_2'$
A_1	1	1	1
A_2	1	1	-1
E	2	-1	0
Γ	3	0	_1

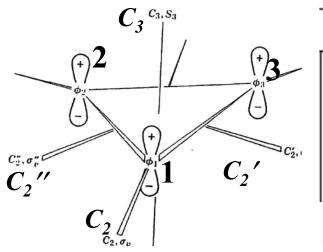
Basis set $\{\phi_1, \phi_2, \phi_3\}$

Now reduce Γ_{π} by using the formula,

$$a_i = \frac{1}{h} \sum_{c} g_c \cdot \chi(c) \cdot \chi_i(c)$$

$$\left| a_{A_1} = \frac{1}{6} \{ 3 \cdot 1 + 2 \cdot (0 \cdot 1) + 3 \cdot (-1) \cdot 1 \} = 0 \right| \quad \left| a_{A_2} = \frac{1}{6} \{ 3 \cdot 1 + 2 \cdot (0 \cdot 1) + 3 \cdot (-1) \cdot (-1) \} = 1 \right|$$

$$a_E = \frac{1}{6} \{3 \cdot 2 + 2 \cdot 0 \cdot (-1) + 3(-1) \cdot 0\} = 1$$



	E	$2C_3$	$3C_2'$
A_1	1	1	1
A_2	1	1	-1
E	2	-1	0
-		•	_

Basis set

$$\{\phi_1, \phi_2, \phi_3\}$$

$$a_i = \frac{1}{h} \sum_{c} g_c \cdot \chi(c) \cdot \chi_i(c)$$

$$\Gamma_{\pi} = A_2 \oplus E$$

Now use the projection operator to derive the SALCs (MOs).

$$\hat{P}^{\Gamma_i}\phi_1 = \frac{l_i}{h}\sum_R \chi_i(\hat{R})\hat{R}\phi_1$$

$$\hat{P}^{A_2}\phi_1 = \frac{l_{A_2}}{h} \sum_{R} \chi_{A_2}(\hat{R}) \hat{R} \phi_1 = \frac{1}{6} (E\phi_1 + C_3^1 \phi_1 + C_3^2 \phi_1 - C_2 \phi_1 - C_2^{'} \phi_1 - C_2^{''} \phi_1)$$

$$= \frac{1}{6} (\phi_1 + \phi_2 + \phi_3 + \phi_1 + \phi_3 + \phi_2)$$

$$= \frac{1}{3} (\phi_1 + \phi_2 + \phi_3) \quad (\text{not normalized yet!})$$

suppose
$$\int \phi_i \phi_j d\tau \approx \delta_{ij}$$

Hückel approx.

Normalization

$$\Psi^{A_2} = \frac{1}{\sqrt{3}} (\phi_1 + \phi_2 + \phi_3)$$

$$C_{3}^{c_{3}, s_{3}}$$
 $C_{3}^{c_{3}, s_{3}}$
 $C_{2}^{c_{2}, \sigma_{v}}$
 $C_{2}^{c_{2}, \sigma_{v}}$
 $C_{2}^{c_{3}, s_{3}}$

	E	$2C_3$	$3C_2'$
A_1	1	1	1
A_2	1	1	-1
E	2	-1	0
Γ_π	3	0	-1

- Basis set

$$\{\phi_1, \phi_2, \phi_3\}$$

$$a_i = \frac{1}{h} \sum_{c} g_c \cdot \chi(c) \cdot \chi_i(c)$$

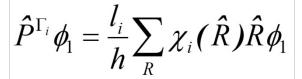
$$\Gamma_{\pi} = A_2 \oplus E$$

For one of the E-type MOs, we have

$$|\hat{P}^{E}\phi_{1} = \frac{l_{E}}{h} \sum_{R} \chi_{E}(\hat{R}) \hat{R} \phi_{1}| = \frac{2}{6} (2E\phi_{1} - C_{3}^{1}\phi_{1} - C_{3}^{2}\phi_{1})$$

$$=\frac{1}{3}(2\phi_{1}-\phi_{2}-\phi_{3})$$

$$\Psi_{1}^{E}=\frac{1}{\sqrt{6}}(2\phi_{1}-\phi_{2}-\phi_{3})$$



Normalization

Using orthogonality and normalization, we have

$$\Psi_2^E = \frac{1}{\sqrt{2}} (\phi_2 - \phi_3)$$
 Yet not simple!

Another way to derive the third MO:

Step 1. Find an operation to covert the second wavefunction into an nonequivalent one (not +/- of the original one). A C_3 operation works well. Then we have $C_3^1 \Psi_1^E = (2\phi_2 - \phi_3 - \phi_1)$

Step 2. A linear combination of this new one and the original one gives rise to

$$C_{3}^{1}\Psi_{1}^{E} + A \bullet \Psi_{1}^{E} = (2\phi_{2} - \phi_{3} - \phi_{1}) + (\frac{1}{2})(2\phi_{1} - \phi_{2} - \phi_{3})$$

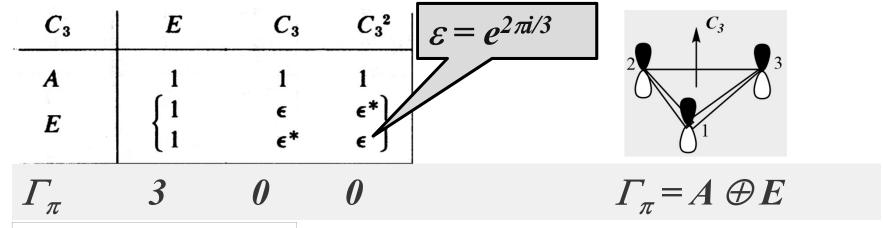
$$= \frac{3}{2}(\phi_{2} - \phi_{3})$$
normalization
$$\Psi_{2}^{E} = \frac{1}{\sqrt{2}}(\phi_{2} - \phi_{3})$$

For high-symmetry molecules that have degenerate MOs pertaining to 2- or 3-D I.R.s, it is more convenient to make use of cyclic group REP!

A general simplification

• Further reducing the symmetry to C_3 subgroup, a cyclic group.

(* I.R.s of a cyclic group can sometimes have complex characters.)



$$\hat{P}^{\Gamma_i}\phi_1 = \frac{l_i}{h}\sum_R \chi_i(\hat{R})\hat{R}\phi_1$$

$$\hat{P}^{A} \phi_{1} \approx \sum_{R} \chi(\hat{R})^{A} \hat{R} \phi_{1} = E \phi_{1} + C_{3}^{1} \phi_{1} + C_{3}^{2} \phi_{1} = \phi_{1} + \phi_{2} + \phi_{3}$$

$$\hat{P}^{E(1)}\phi_{1} \approx \sum_{R} \chi(\hat{R})^{E(1)} \hat{R}\phi_{1} = \phi_{1} + \varepsilon C_{3}^{1}\phi_{1} + \varepsilon * C_{3}^{2}\phi_{1} = \phi_{1} + \varepsilon \phi_{2} + \varepsilon * \phi_{3}$$

$$\hat{P}^{E(2)}\phi_1 \approx \sum_{R} \chi(\hat{R})^{E(2)} \hat{R}\phi_1 = \phi_1 + \varepsilon * \phi_2 + \varepsilon \phi_3$$

$$\Psi_1^A = A\hat{P}^A \phi_1$$

$$= A(\phi_1 + \phi_2 + \phi_3) = \frac{1}{\sqrt{3}} (\phi_1 + \phi_2 + \phi_3)$$

A for normalization!

(Note that the Hückel approximation is used in the normalization of these MOs!)

define
$$\int \phi_i \phi_j d\tau \approx \delta_{ij}$$

$$\Psi_1^E = A(\hat{P}^{E(1)}\phi_1 + \hat{P}^{E(2)}\phi_1)$$

$$= A(2\phi_1 + 2\cos(\frac{2\pi}{3})\phi_2 + 2\cos(\frac{2\pi}{3})\phi_3) = \frac{1}{\sqrt{6}}(2\phi_1 - \phi_2 - \phi_3)$$

$$\Psi_2^E = A(\hat{P}^{E(1)}\phi_1 - \hat{P}^{E(2)}\phi_1)$$

$$= Ai(2\sin(\frac{2\pi}{3})\phi_2 - 2\sin(\frac{2\pi}{3})\phi_3) = \frac{1}{\sqrt{2}}(\phi_2 - \phi_3)$$

Now Let's return to the D_{3h} point group. we can prove that Ψ_1^A belongs to A_2'' , and $\{\Psi_1^E, \Psi_2^E\}$ belongs to E''.

Example 2: C_6H_6 $D_{6h} \rightarrow C_6$ Basis set $\{\phi_1, \phi_2, ..., \phi_6\}$

C_6	E	C_6	C_3	C_2	C_3^2	C_6^{5}		$\varepsilon = \exp(2\pi i/6)$
A	1	1	1	1	1	1	z , R_z	x^2+y^2, z^2
В	1	-1	1	-1	1	-1		
E_{I}	$\lceil 1 \rceil$	\mathcal{E}	<i>-</i> ε	-1	-E	\mathcal{E}^*	(x, y)	(xz,yz)
	$ \frac{1}{2} $	$\mathcal{E}^{m{*}}$	<i>-</i> Е	-1	$-\mathcal{E}^*$	ε	(R_x, R_y)	
E_2	$\int 1$	$-\varepsilon^*$	<i>-</i> ε	1	$-\varepsilon^*$	$-\varepsilon$		(x^2-y^2, xy)
	1	-E	$-\varepsilon^*$	1	-E	$-\varepsilon^*$		

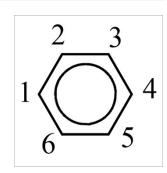
$$\Gamma_{\pi}$$
 6 0 0 0 0 $\Gamma_{\pi} = A \oplus B \oplus E_1 \oplus E_2$

$$\hat{P}^{A} \phi_{1} \approx \sum_{R} \chi(\hat{R})^{A} \hat{R} \phi_{1} = E \phi_{1} + C_{6}^{1} \phi_{1} + C_{6}^{2} \phi_{1} + C_{6}^{3} \phi_{1} + C_{6}^{4} \phi_{1} + C_{6}^{5} \phi_{1}$$

$$= \phi_1 + \phi_2 + \phi_3 + \phi_4 + \phi_5 + \phi_6 \Rightarrow \Psi^A = \frac{1}{\sqrt{6}} (\phi_1 + \phi_2 + \phi_3 + \phi_4 + \phi_5 + \phi_6)$$

$$\hat{P}^{B}\phi_{1} \approx \sum_{R} \chi(\hat{R})^{B} \hat{R}\phi_{1} = E\phi_{1} - C_{6}^{1}\phi_{1} + C_{6}^{2}\phi_{1} - C_{6}^{3}\phi_{1} + C_{6}^{4}\phi_{1} - C_{6}^{5}\phi_{1}$$

$$= \phi_1 - \phi_2 + \phi_3 - \phi_4 + \phi_5 - \phi_6 \Rightarrow \Psi^B = \frac{1}{\sqrt{6}} (\phi_1 - \phi_2 + \phi_3 - \phi_4 + \phi_5 - \phi_6)$$



$$\phi_i = p_{\pi}$$

 C_6H_6 $D_{6h} \rightarrow C_6$

C_6	E	C_6	C_3	C_2	C_3^2	C_6^{5}		$\varepsilon = \exp(2\pi i/6)$
A	1	1	1	1	1	1	z , R_z	x^2+y^2 , z^2
B	1	-1	1	-1	1	-1		
E_{I}		${\cal E}$	<i>-</i> ε	-1	-E	\mathcal{E}^*	(x, y)	(xz,yz)
	$ \frac{1}{2} $	$\mathcal{E}^{m{*}}$	- Е	-1	$-\mathcal{E}^*$	ε	(R_x, R_y)	
E_2	$\int 1$	$-\varepsilon^*$	<i>-</i> ε	1	$-\varepsilon^*$	$-\varepsilon$		(x^2-y^2, xy)
	1	-E	$-\varepsilon^*$	1	-E	$-\varepsilon^*$		
$arGamma_\pi$	6 0	0	0	0	0	Γ	$G_{\pi} = A \oplus B$	$\mathbf{B} \oplus \mathbf{E}_1 \oplus \mathbf{E}_2$

$$\hat{P}^{E_{1}(1)}\phi_{1} \approx \sum_{R} \chi(\hat{R})^{E_{1}(1)} \hat{R} \phi_{1} = E \phi_{1} + \varepsilon C_{6}^{1} \phi_{1} - \varepsilon * C_{6}^{2} \phi_{1} - C_{6}^{3} \phi_{1} - \varepsilon C_{6}^{4} \phi_{1} + \varepsilon * C_{6}^{5} \phi_{1}$$

$$= \phi_{1} + \varepsilon \phi_{2} - \varepsilon * \phi_{3} - \phi_{4} - \varepsilon \phi_{5} + \varepsilon * \phi_{6}$$

$$\hat{P}^{E_{1}(2)}\phi_{1} \approx \sum_{R} \chi(\hat{R})^{E_{1}(2)} \hat{R}\phi_{1} = E\phi_{1} + \varepsilon * C_{6}^{1}\phi_{1} - \varepsilon C_{6}^{2}\phi_{1} - C_{6}^{3}\phi_{1} - \varepsilon * C_{6}^{4}\phi_{1} + \varepsilon C_{6}^{5}\phi_{1}$$

$$= \phi_{1} + \varepsilon * \phi_{2} - \varepsilon \phi_{3} - \phi_{4} - \varepsilon * \phi_{5} + \varepsilon \phi_{6}$$

3

$$\Psi^{E_1}(1) = A(\hat{P}^{E_1(1)}\phi_1 + \hat{P}^{E_1(2)}\phi_1) = 2A(\phi_1 + \cos(\frac{\pi}{3})\phi_2 - \cos(\frac{\pi}{3})\phi_3 - \phi_4 - \cos(\frac{\pi}{3})\phi_5 + \cos(\frac{\pi}{3})\phi_6)$$

$$= \frac{1}{\sqrt{12}}(2\phi_1 + \phi_2 - \phi_3 - 2\phi_4 - \phi_5 + \phi_6)$$

$$\Psi^{E_1}(2) = A(\hat{P}^{E_1(1)}\phi_1 - \hat{P}^{E_1(2)}\phi_1) = 2Ai(-\sin(\frac{\pi}{3})\phi_2 - \sin(\frac{\pi}{3})\phi_3 + \sin(\frac{\pi}{3})\phi_5 + \sin(\frac{\pi}{3})\phi_6)$$

$$= \frac{1}{2}(\phi_2 + \phi_3 - \phi_5 - \phi_6)$$

Similarly, we have

$$\Psi^{E_2}(1) = A(\phi_5 + \phi_6) = \frac{1}{\sqrt{12}} (2\phi_1 - \phi_2 - \phi_3 + 2\phi_4 - \phi_5 + \phi_6)$$

$$\Psi^{E_2}(2) = A(\phi_5 - \phi_6) / i = \frac{1}{2} (-\phi_2 + \phi_3 - \phi_5 + \phi_6)$$

Assignments:

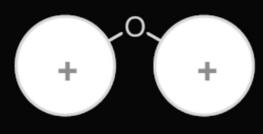
- ➤ Please figure out all the normal vibrations of NH₃ and discern whether they are IR- or Raman-active!
- \triangleright Construct the π -MOs of Naphthalene with the p_{π} AOs of carbon atoms.

The End of Chapter 3!

Characters for more than one object or action

We can make representations of several things

e.g. H 1s orbitals in H₂O



orbital 1 orbital 2

E operation

orbital 1' = orbital 1 orbital 2' = orbital 2

$$E \begin{pmatrix} 1s_1 \\ 1s_2 \end{pmatrix} = \begin{pmatrix} 1s_1 \\ 1s_2 \end{pmatrix}$$
$$\Rightarrow E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Each is unchanged (= 1 x itself), so the character is 2

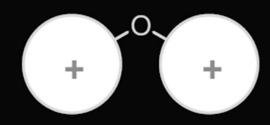
Strictly speaking the character is the *trace* (sum of diagonal terms) of the *transformation matrix*.

$$\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)$$

Characters for more than one object or action

Representations of several things

e.g. H 1s orbitals in H₂O



orbital 1 orbital 2

$$C_{2} \begin{pmatrix} 1s_{1} \\ 1s_{2} \end{pmatrix} = \begin{pmatrix} 1s_{2} \\ 1s_{1} \end{pmatrix}$$
$$\Rightarrow C_{2} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

There is no contribution from the old orbital 1 to the new one (= $0 \times itself$), so the character is 0

The trace of the transformation matrix is zero.

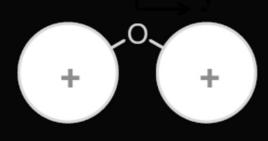
$$\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)$$

Characters for more than one object

or action

Representations of several things

e.g. H 1s orbitals in H₂O



orbital 1

orbital 2

		_
E oporation	character i	ie . 9
E operation	character i	3 +4

C₂

 $\sigma_{v}(xz)$

 $\sigma_{v}(yz)$ +2

so overall:

$$\Rightarrow \sigma_{yz} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\mathsf{E} \qquad \mathsf{C}_2 \qquad \mathsf{\sigma}_{\mathsf{v}}(\mathit{xz}) \; \mathsf{\sigma}_{\mathsf{v}}(\mathit{yz})$$

 $\sigma_{xz} \begin{pmatrix} 1s_1 \\ 1s_2 \end{pmatrix} = \begin{pmatrix} 1s_2 \\ 1s_1 \end{pmatrix}$

 $\Rightarrow \sigma_{xz} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

 $\sigma_{yz} \begin{pmatrix} 1s_1 \\ 1s_2 \end{pmatrix} = \begin{pmatrix} 1s_1 \\ 1s_2 \end{pmatrix}$

This the reducible representation of the set of 2 orbitals.

Reducible representations

This set of characters does not appear in the character table

- but it can always be expressed as a sum of lines

Character table

$$C_{2v}$$
 E C_2 $\sigma_v(xz)$ $\sigma_v(yz)$ $h=4$

$$A_1$$
 +1 +1 +1 Z

$$A_2$$
 +1 +1 -1 -1 R_z

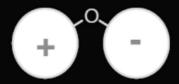
$$B_1$$
 +1 -1 +1 -1 x, R_y

$$B_2$$
 +1 -1 -1 +1 y, R_x

Must be an A and a B to make the second number = 0

Must then be $A_1 + B_2$ to make final number = 2





A₁ is the symmetric combination

B₂ is the asymmetric combination

A₁ + B₂ is the *irreducible representation* of the two orbitals