Chapter 5 Structures of Polyatomic Molecules (I) Introduction

Molecular Orbital Theory vs. Valence Bond Theory

- VB theory: focusing on the (*localized*) bonds formed between valence electrons/atomic orbitals of neighboring atom(s), easier to visualize/imagine VB model of a molecule, i.e., "of chemical intuition!". e.g., CH₄
- MO theory: more powerful and more sophisticated than VB theory in many aspects, e.g., description of electron delocalization in Benzene, but sometimes not so easy to visualize/imagine a MO model e.g., for CH₄!

Comparison of MO and VB theories

VB Theory

- The electrons pair to *localize* in a bond. $\psi^{bond} \approx AO_1 \cdot AO_2$
- Demands hybridization of AO
- Basis of Lewis structures, resonance, and hybridization.
- Good theory for predicting molecular structure.
- Easier to visualize/imagine VB model for a molecule, i.e., "of chemical intuition!".

Molecular orbital theory

- MOs are formed by the overlap of AOs. $\Psi^{MO} \approx \Sigma c_i AO_i$
- Electrons are "*delocalized*" within MOs consisting of AOs.
- Electrons fill up the MOs according to the *aufbau* principle.
- Give accurate bond dissociation energies, IP, EA, and spectral data.
- Sometimes not so easy to visualize/imagine a MO model for a molecule!

Electron Delocalization in Benzene

VB description: have to introduce resonance of *localized* VB structures

MO description: inherently describing electron delocalization!

Molecular Orbital (MO) Theory Treatment of Polyatomic Molecules

• LCAO-MO & group Theory (in part B of *Chapter 3*)

Basis set: AOs $\{\phi_i\}$ Mean-field Appr. & LCAO-MO(SALC)

 $\{\boldsymbol{\varepsilon}_{j}, \boldsymbol{\Psi}_{j} = \boldsymbol{\Sigma} \mathbf{c}_{\mathbf{i}}^{(\mathbf{j})} \boldsymbol{\phi}_{\mathbf{i}}\}$

Canonical molecular orbitals of CH_4 (valence electrons only!)

CMO H1s AOs CAOs $\psi(A_1)_{\pm} = c_a(\phi_1 + \phi_2 + \phi_3 + \phi_4)/2 \pm c_bC2s$ $\psi(T_2)_{x\pm} = c_c(\phi_1 - \phi_2 - \phi_3 + \phi_4)/2 \pm c_dC2p_x$ $\psi(T_2)_{y\pm} = c_c(\phi_1 - \phi_2 + \phi_3 - \phi_4)/2 \pm c_dC2p_y$

 $\psi(\mathbf{T}_2)_{z\pm} = \mathbf{c}_{\mathbf{c}}(\phi_1 + \phi_2 - \phi_3 - \phi_4)/2 \pm \mathbf{c}_{\mathbf{d}}\mathbf{C}^2\mathbf{p}_z$

Initial guess

SCF-HF

 $\Psi CMO = \Sigma C_i \phi_i$

How to get the CMOs of a molecule? **Group theory treatment–SALCs:** CH_4 , T_d \bullet

$$a_i = \frac{1}{h} \sum_R g(R) \chi(R) \chi_i(R)$$

 $\theta_a = (\phi_1 + \phi_2 + \phi_3 + \phi_4)/2 \sim A_1$ $\theta_{\rm b} = (\phi_1 - \phi_2 - \phi_3 + \phi_4)/2 \sim x$ -like T₂ $\theta_c = (\phi_1 - \phi_2 + \phi_3 - \phi_4)/2 \sim y$ -like T₂ $\theta_{d} = (\phi_1 + \phi_2 - \phi_3 - \phi_4)/2 \sim z \text{-like } T_2$

 $\psi_{s+} = c_a(\phi_1 + \phi_2 + \phi_3 + \phi_4)/2 \pm c_bC2s$ $\psi_{x\pm} = \mathbf{c_c} (\phi_1 - \phi_2 - \phi_3 + \phi_4) / 2 \pm \mathbf{c_d} C 2 \mathbf{p_r}$ $\overline{\psi_{\nu\pm}} = \mathbf{c_c}(\phi_1 - \phi_2 + \phi_3 - \phi_4)/2 \pm \mathbf{c_d}C2p_{\nu}$ $\psi_{z\pm} = \mathbf{c_c}(\phi_1 + \phi_2 - \phi_3 - \phi_4)/2 \pm \mathbf{c_d}C2p_z$

How can the MO model become *chemically intuitive* as the VB model does ?

http://www.science.oregonstate.edu/~gablek/CH334/Chapter1/methane_MOs.htm

Now consider the linear combinations of the four CMOs, $\Psi_1 = (\Psi_s + \Psi_x + \Psi_v + \Psi_z)/2$ $\Psi_2 = (\Psi_s + \Psi_x - \Psi_v - \Psi_z)/2$ $\Psi_3 = (\Psi_s - \Psi_x - \Psi_v + \Psi_z)/2$ Let $c_b = c_d$ $\Psi_4 = (\psi_s - \psi_x + \psi_v - \psi_z)/2$ $\& c_a = c_c$ $\Psi_1 = [(c_b C2s + c_d (C2p_x + C2p_y + C2p_z) + (c_a + 3c_c)\phi_1 + (c_a - c_c)(\phi_2 + \phi_3 + \phi_4)]/2$ $\Psi_1 = c_b (C_2 s + C_2 p_x + C_2 p_y + C_2 p_z)/2 + c_a' \phi_1$ Localized molecular $\Psi_2 = c_b (C2s - C2p_x - C2p_y + C2p_z)/2 + c_a' \phi_2$ orbitals (LMOs) $\Psi_{3} = c_{b} (C2s - C2p_{x} + C2p_{y} - C2p_{z})/2 + c_{a}' \phi_{3}$ describing C-H bonds $\Psi_4 = c_b (C2s + C2p_x - C2p_y - C2p_z)/2 + c_a' \phi_4$

4 sp3-hybridized orbitals on C

The 4LMOs are in effect similar to those 4 covalent C-H bonds described in VB theory.

Are the four LMOs of CH₄ equal in energy? If so, please prove that after class!

Q1: Note that hybrid orbitals are used in both the VB and LMO descriptions of a covalent bond (e.g., in CH_4). What is the difference in the two models?

Q2: How to construct hybridized atomic orbitals for further construction of LMOs of a molecule ?

作答

Content of this chapter

1. Hybrid Orbital Theory

<u>2. VSEPR Model</u> (after-class)

<u>3. Delocalized \pi-conjugation</u> and Delocalized MO Theory

4. Hückel MO Theory and

Conjugated Systems

5. Symmetry Rules for

Molecular Reactions

orbonds/σ-framework of a molecule (Qualitative, MO&VB theory)

π-bonds of a molecule(VB & MO theories,Qualitative)

(Semi-Quantitative/ Semiempirical MO)

Molecular reactions (Qualitative)

§ 5.1 Hybrid Orbital Theory and Atomic Orbital Hybridization

- 1. Hybrid orbital theory first proposed by Pauling in 1928.
- Hybridization was introduced to explain molecular geometry

when valence bond theory failed to correctly predict them.

VALENCE BOND THEORY

- Valence electrons are localized between two atoms (or as lone pairs).
- Half-filled atomic orbitals overlap to form bonds.
- VB theory demands orbital hybridization if necessary!

MO THEORY

 Sometimes Atomic orbital hybridization is naturally taken into account! Please refer to Webtext: http://www.chem1.com/acad/webtext/chembond/cb06.html http://www.chem1.com/acad/webtext/chembond/cb07.html Linus Pauling (1901-1994) was the most famous American chemist of the 20th century and the author of the classic book *The Nature of the Chemical Bond*. He won the Nobel Prize in Chemistry in 1954 and the Nobel Peace Prize in 1962.

a. Central Themes of Valence Bond Theory

Basic Principle of Valence Bond Theory: a covalent bond forms when the orbitals from two atoms overlap and a pair of electrons occupies the region between the nuclei.

Opposing spins of the electron pair.
 Maximum overlap of bonding orbitals.
 Hybridization of atomic orbitals, if required.

Pauling proposed that *the valence atomic orbitals in a molecule are different from those in the isolated atoms*. We call this *Hybridization*!

b. Why do atomic orbitals need hybridization? e.g., H₂O

- Suppose each σ bond arises
 from the overlap of an H_{1s} AO
 with one of the O_{2p} AO.
- This model suggests that the H-O-H bond angle should be 90°, much smaller than the observed one (104.5 °).

Even worse, such a bonding motif would **pose very strong repulsion** among the occupied 2s (O) AO and the two O-H bonds!

a) No hybridization

b) Hybridization –sp³

 H_2O

Inequivalent sp³ hybridization of O(2sp) AO's!

c. Why do atomic orbitals need hybridization?

- Carbon has four valence
 electrons that are typically
 involved in the formation of 4
 C-H bonds.
- For a carbon atom bonded to
 four other atoms, evidences
 suggested that all of the
 bonds have similar bonding
 orbitals.

Hybrid Orbital Theory is phenomenological!

d. How do atomic orbitals hybridize?

 Hybridization of *n* AO's of an atom gives rise to *n* hybrid orbitals (HO)!

$$\{\phi_i^{AO}\}(i=1,...,n) \rightarrow \{\phi_j^{HO} = \sum_{i=1}^n c_{ji}\phi_i^{AO}\}(j=1,...,n)$$

e.g., a sp³-hybridized orbital can be expressed as:

$$\phi_h = c_1 \phi_{2s} + c_2 \phi_{2px} + c_3 \phi_{2py} + c_4 \phi_{2pz}$$

 For equivalent hybridization, all n hybrid orbitals are equivalent in energy, but differ in directionality. The contribution of s orbital, if involved, to each HO is equal.

2. Construction of hybrid orbitals

- a. sp hybridization
- b. sp² hybridization
- c. sp³ hybridization
- dsp³ (sp³d) hybridization (trigonal bipyramidal or square pyramidal)
- e. dsp² (sp²d) hybridization (square planar)
- f. d²sp³ (sp³d²)hybridization (octahedral)
- g. More ... (e.g., sp^3d^3f , or sp^3d^3)

Bonding ability of AO: $F = \sqrt{2l+1}$ $F_s = 1, F_p = \sqrt{3}, F_d = \sqrt{5}...$

a. sp hybridization (linear species)

• One *s* and one *p* AO's mix to form a set of two hybrid orbitals.

• Accordingly, equivalent sp-hybridization results in two hybrids:

$$\phi_{h1} = \frac{1}{\sqrt{2}} (\phi_{2s} + \phi_{2px}) \qquad \phi_{h2} = \frac{1}{\sqrt{2}} (\phi_{2s} - \phi_{2px}) \qquad s-character$$

- i) Each having 50% contribution from *s* orbital: $\dot{\alpha} = |c_{2s}|^2 = 1/2$.
- ii) Normalization and orthogonality:

$$\int \phi_{\scriptscriptstyle hj} \phi_{\scriptscriptstyle hi} d\, au = \delta_{\scriptscriptstyle ij}$$

iii) Linearly aligned with a bond angle $\theta = 180^{\circ}$.

Equivalent /inequivalent sp-hybridization

Whether an atom adopts equivalent or inequivalent hybridization depends on its chemical environment!

sp-hybridization at Be atom Cl-Be-Cl equivalent

Cl-Be-Br

inequivalent

b. sp² hybridization (trigonal planar)

 One s and two p (p_x and p_y) AOs mix to form a set of three hybrid orbitals.

In general, an sp² hybrid orbital can be expressed as,

$$\phi_{hi} = a_i \phi_s + b_i \phi_{2px} + c_i \phi_{2py}$$

For equivalent hybridization: the weighting of **s** orbital in each hybrid orbital is $\alpha = a_i^2 = 1/3$, and therefore $a_i = 3^{-1/2}$

$$\Rightarrow \phi_{hi} = (1/\sqrt{3})\phi_s + b_i\phi_{2px} + c_i\phi_{2py}$$

Supposing ϕ_{h1} is parallel to the *x*-axis, but perpendicular to the *y*-axis, then we have

$$\phi_{h1} = \sqrt{1/3}\phi_s + b_i\phi_{2px}$$
Normalization
$$\phi_{h1} = \sqrt{1/3}\phi_s + \sqrt{2/3}\phi_{2px}$$

$$\phi_{h1} = \sqrt{1/3}\phi_s + \sqrt{2/3}\phi_{2px}$$

$$\phi_{hi} = \sqrt{1/3}\phi_s + b_i\phi_{2px} + c_i\phi_{2py} \quad (i = 2 \text{ or } 3)$$
Normalization and orthogonality
$$a_1a_2 + b_1b_2 + c_1c_2 = 0 \quad \implies 1/3 + \sqrt{2/3}b_2 + 0 \cdot c_2 = 0$$

$$a_2^2 + b_2^2 + c_2^2 = 1 \quad \implies 1/3 + b_2^2 + c_2^2 = 1$$

$$\Rightarrow b_2 = -\sqrt{1/6} \quad c_2 = \pm\sqrt{1/2} \Rightarrow$$

$$\phi_{h2} = \sqrt{1/3}\phi_s - \sqrt{1/6}\phi_{2px} + \sqrt{1/2}\phi_{2py}$$

$$\phi_{h3} = \sqrt{1/3}\phi_s - \sqrt{1/6}\phi_{2px} - \sqrt{1/2}\phi_{2py}$$

c. sp³ hybridization (tetrahedral)

- One s and 3 p AO's mix to form a set of four hybrid sp³ orbitals.
- For equivalent sp³ hybridization ($\alpha = 1/4$), e.g, CH₄

The bond lengths will not be the same because there is more *d* contribution to the axial hybrid orbitals.

- For dsp³, the axial bonds are shorter.
- For sp³d, the axial bonds are longer, e.g., in PF₅.
 (But mostly exaggerating the contribution of d orbitals!)

- However, in MOT, the 3d orbitals of P is not involved in the P-X bonds in PX₅(X = CI, F).
- An alternative model to describe the axial bonding in such bipyramidal molecules as PX₅:

Key points:

- The equatorial P-F bonds are normal σ -bond.
- The axial F-P-F bond: a 3-center 4-electron bond.

e. dsp² hybridization (square planar)

$$d_{x^2-y^2}$$
, s, p_x , p_y

• Equivalent case ($\alpha = \frac{1}{4}$)

e.g., N

$$\phi_{h1} = \frac{1}{2}\phi_s + \frac{1}{\sqrt{2}}\phi_{px} + \frac{1}{2}d_{x^2 - y^2}$$
$$\phi_{h2} = \frac{1}{2}\phi_s - \frac{1}{\sqrt{2}}\phi_{px} + \frac{1}{2}d_{x^2 - y^2}$$

 $\phi_{h3} = \frac{1}{2}\phi_s + \frac{1}{\sqrt{2}}\phi_{py} - \frac{1}{2}d_{x^2 - y^2}$

 $\phi_{h4} = \frac{1}{2}\phi_s - \frac{1}{\sqrt{2}}\phi_{py} - \frac{1}{2}d_{x^2 - y^2}$

Square planar: D_{4h}

12 3 6

f. d²sp³ (sp³d²) hybridization (Octahedral)

• Equivalent case

$$oc_5 = \frac{1}{\sqrt{6}}s + \sqrt{\frac{1}{2}}p_z + \sqrt{\frac{1}{3}}d_{z^2}$$

$$d_{z^{2}}, d_{x^{2}-y^{2}}, s, p_{x}, p_{y}, p_{z}$$

$$pc_{1} = \frac{1}{\sqrt{6}}s + \frac{1}{\sqrt{2}}p_{x} + \frac{1}{2}d_{x^{2}-y^{2}} - \frac{1}{\sqrt{12}}d_{z^{2}}$$

$$pc_{2} = \frac{1}{\sqrt{6}}s + \frac{1}{\sqrt{2}}p_{y} - \frac{1}{2}d_{x^{2}-y^{2}} - \frac{1}{\sqrt{12}}d_{z^{2}}$$

$$pc_{3} = \frac{1}{\sqrt{6}}s - \sqrt{\frac{1}{2}}p_{x} + \frac{1}{2}d_{x^{2}-y^{2}} - \frac{1}{\sqrt{12}}d_{z^{2}}$$

$$pc_{4} = \frac{1}{\sqrt{6}}s - \sqrt{\frac{1}{2}}p_{y} - \frac{1}{2}d_{x^{2}-y^{2}} - \frac{1}{\sqrt{12}}d_{z^{2}}$$

$$oc_6 = \frac{1}{\sqrt{6}} s - \sqrt{\frac{1}{2}} p_z + \sqrt{\frac{1}{3}} d_{z^2}$$

6

Hybridization schemes

 spⁿd^m gives a "complete" set of hybrid orbitals for "any" geometry.

sp	linear
sp ²	trigonal planar
sp ³	tetrahedral
$sp^{3}d(d_{z}^{2})$	trigonal bipyramidal
$sp^{3}d(d_{x}^{2}-y^{2})$	square pyramidal
sp ² d ²	square pyramidal
sp ³ d ²	octahedral
sp ² d	square planar

3. The angle between two hybrid orbitals

1) spⁿ hybridization

et's define
$$\phi_h = \sqrt{lpha} \phi_s + \sqrt{1-lpha} \phi_p$$

$$\phi_{hi} = \sqrt{\alpha_i}\phi_s + \sqrt{1-\alpha_i}\phi_{p_i}$$

$$\phi_{hj} = \sqrt{\alpha_j}\phi_s + \sqrt{1-\alpha_j}\phi_{pj}$$

where ϕ_{pi} is

$$\phi_{p_i} = x_i \phi_{px} + y_i \phi_{py} + z_i \phi_{pz}$$

Note the angle between the two vectors ϕ_{pi} and ϕ_{pj} is the angle θ_{ij} between the two hybrid orbitals ϕ_{hi} and ϕ_{hj} , i.e.,

$$\cos\theta_{ij} = \int \phi_{pi} \phi_{pj} d\tau$$

Normalization and orthogonality

$$0 = \int \phi_{hi} \phi_{hj} d\tau = \int (\sqrt{\alpha_i} \phi_s + \sqrt{1 - \alpha_i} \phi_{pi}) (\sqrt{\alpha_j} \phi_s + \sqrt{1 - \alpha_j} \phi_{pj}) d\tau$$

$$= \sqrt{\alpha_i \alpha_j} \int \phi_s^2 d\tau + \sqrt{(1 - \alpha_i)(1 - \alpha_j)} \int \phi_{pi} \phi_{pj} d\tau + 0 + 0$$

$$\Rightarrow 0 = \sqrt{\alpha_i \alpha_j} + \sqrt{(1 - \alpha_i)(1 - \alpha_j)} \cos \theta_{ij}$$

$$\Rightarrow \cos \theta_{ij} = -\frac{\sqrt{\alpha_i \alpha_j}}{\sqrt{(1 - \alpha_i)(1 - \alpha_j)}} < 0 \Rightarrow \theta_{ij} > 90^\circ$$

$$\alpha_i = \alpha_j$$
Equivalent hybridization. e.g., CH₄

$$\alpha_i \neq \alpha_j$$
Non-equivalent hybridization. e.g., CHCl₃, CH₃Cl
sp: $\alpha = 0.5 \Rightarrow \cos \theta = -1 \Rightarrow \theta = 180.0^\circ$
sp²: $\alpha = 1/3 \Rightarrow \cos \theta = -0.5 \Rightarrow \theta = 120.0^\circ$

Equivalent hybridization

$$sp^{3} - hybridization \qquad \alpha = \frac{1}{4} \Rightarrow$$

$$sp^{3}$$

$$cos \theta_{ij} = -\frac{\sqrt{\alpha_{i}\alpha_{j}}}{\sqrt{(1 - \alpha_{i})(1 - \alpha_{j})}} = -\frac{1}{3}$$

$$\Rightarrow \theta = 109^{0}28''$$

Non-equivalent hybridization

Other examples PH_3 , PF_3 , NF_3 ,

s-component of the $N \text{ sp}^3 \text{ HO's}$ to form the N-H bonds.

For
$$NH_3$$
: $\theta = \angle HNH = 107.3^\circ$
 $\alpha + (1 - \alpha)\cos 107.3^\circ = 0 \implies \alpha = 0.23$

$$\Rightarrow \psi_{HO(N-H)} = \sqrt{0.23}s + \sqrt{0.77}p = 0.48s + 0.88p$$

$$\Rightarrow L_s = 1 - 3 * 0.23 = 0.31$$
 s-component of the lone pair

 $\Rightarrow L_p = 3 - 3 * 0.77 = 0.69$ *p*-component of the lone pair

$$\psi_{lone-pair} = \sqrt{0.31}s + \sqrt{0.69}p = 0.56s + 0.83p$$

For d-s-p hybridization, the angles between two hybrid orbitals can be calculated by: (where α , β and γ are the component of s, p and d orbitals)

$$\alpha + \beta \cos \theta + \gamma (\frac{3}{2} \cos^2 \theta - \frac{1}{2}) = 0$$

$$d^{2}sp^{3}: \alpha = \frac{1}{6}, \beta = \frac{1}{2}, \gamma = \frac{1}{3}$$

$$\frac{1}{6} + \frac{1}{2}\cos\theta + \frac{1}{3}(\frac{3}{2}\cos^2\theta - \frac{1}{2}) = 0$$

Z

$$\Rightarrow \theta_1 = 90^\circ, \ \theta_2 = 180^\circ$$

 $\Rightarrow \cos \theta_1 = 0, \quad \cos \theta_2 = -1$

4. The bonding ability of hybrid orbitals

Atomic orbital bonding ability : *s*, p, d, f : 1, $\sqrt{3}$, $\sqrt{5}$, $\sqrt{7}$

The bonding ability of a hybrid for the sp^n hybridizat ions, orbital is given by : 1 1

$$f_h = \sqrt{\alpha} + \sqrt{3\beta} + \sqrt{5\gamma} \quad \alpha = \frac{1}{2}, \beta = \frac{1}{2} \qquad f_h = 1.932 \qquad \text{sp}$$
$$\alpha = \frac{1}{2}, \beta = \frac{2}{2} \qquad f_h = 1.992 \qquad \text{sp}^2$$

Hybridization enhances the bonding ability of atomic valence orbitals!!

$$\alpha = \frac{1}{3}, \beta = \frac{2}{3}$$
 $f_h = 1.992$ sp^2
 $\alpha = \frac{1}{4}, \beta = \frac{3}{4}$ $f_h = 2.00$ sp^2
 $\alpha = 0,$ $f_h = \sqrt{3}$ p
 $\alpha = 1,$ $f_h = 1$ s

3

 $F_{AO} = \sqrt{2l+1}$

$$\alpha = \frac{1}{6}, \beta = \frac{1}{2}, \gamma = \frac{1}{3}$$
 $f_h = 2.925$ d^2sp

5. Discussions

sp² e.g., $BF_3(D_{3h})$, $BH_3(D_{3h})$, NO_3^- , CO_3^2 -

Example: BH₃

- The B atom has 3 sp² hybrid orbitals each with one electron.
- This one electron pairs with the hydrogen 1s electron.
- The 2p_z AO of B atom is thus empty.

Example:

The sp²-hybridization and chemical bonding in C₂H₄.

Example: nitrate (NO₃⁻) --hybridization and delocalization

dot-electron structure

Resonance of three equivalent dot-electron structures (or VB structures)–delocalization of π -electrons

VB model:

- i) N~sp² hybridization.
- ii) Three N-O σ -bonds (One N \rightarrow O type!) plus a N-O π -bond. *Thus N is hexavalent*!

iii) Resonance of the three VB structures thus gives a delocalized 4-center 6-electron π -bond (Π_4^{6}).

(Valence) Isoelectronic: **SO**₃

SO₃ D₃ VB model:

i) S~sp² hybridization.

- ii) Three S-O σ -bonds (two of them are S \rightarrow O type!) plus a S-O π -bond. *Thus S is hexavalent*!
- iii) Resonance of the three VB structures thus gives a delocalized 4-center 6-electron π -bond (Π_4^6).

MO model:

- i) VE ~ 24e; S~sp² hybridization;
- ii) Three S-O σ -bonds(6e); 6 lone pairs on the three O atoms(12e);
- iii) The rest 6e (= 24e-6e-12e) should be accommodated in the delocalized 4-center π -bond, i.e., a Π_4^{6} .

Example: Benzene -- hybridization and delocalization

The sp² hybrid orbitals of C atoms and the 1s AO's of H atoms form the σ -framework of benzene.

The unhybridized $p_z AO's$ of C atoms form a continuous cyclic ${\Pi_6}^6$ bond of benzene.

6. "Bent bond" model -- An alternative of hybrids (obsolete!)

"Bent bond" model of ethylene

- No need to assume hybridization in the C atoms at all.
- Directions of the p-orbitals in C atoms should be distorted sufficiently to provide the overlap for bonding. These bent bonds are called "banana bonds".

6. "Bent-bond" Model -- an alternative of hybrids

cyclopropane

Note the C–C bond angles are 60° — quite a departure from the tetrahedral angle of 109.5° associated with sp^3 hybridization!

sp³ hybridization of C

Three "banana bonds" formed!

However, in terms of MO theory, Dewar proposed that this molecule has σ -aromaticity! *Dewar, M. J. J. Am. Chem. Soc. 1984, 106 (3): 669;* Wu, W. *Chem. Eur. J. 2009,* **15** (38): 9730.

You should understand that

- *Hybridization is not a physical phenomenon*; it is merely a *mathematical operation* that combines the atomic orbitals we are familiar with in such a way that the new (hybrid) orbitals possess the geometric and other properties that are reasonably consistent with what we observe in a wide range (but certainly not in all) molecules.
- Hybrid orbitals are abstractions that describe reality fairly well in certain classes of molecules (and fortunately, in much of the very large class of organic substances) and are therefore a useful means of organizing a large body of chemical knowledge... but they are far from infallible.

Concept Map (I)

Concept Map II

After-class Discussion:

Real or Imagination:

- Chemical Bond
- Orbital
- Atomic Orbital
- Molecular Orbital
- Hybridized Orbital

The Nature of the Chemical Bond—1990

There Are No Such Things as Orbitals!

J. F. Ogilvie

J Chem Edu. 1990, 67, 280

The Nature of the Chemical Bond —1992

J Chem Edu. 1992, 69, 519

Linus Pauling

Linus Pauling Institute of Science and Medicine, 440 Page Mill Road, Palo Alto, CA 94306

•

Editor's Note

In this issue we bring to closure the current discussion of the nature of the chemical bond. Readers will recall the paper by Ogilvie [J. Chem. Educ. 1990, 67, 28&289] giving one modern point of view of the chemical bond. In this issue, we publish another modern point of view by Pauling together with three letters (page 600) that the Ogilvie paper engendered. These letters have been selected from a larger number (which we are unable to print) and are representative of the kinds of responses that the paper generated. Since both Pauling and Ogilvie use the photoelectron spectra of methane to provide evidence for their (divergent) views, we also publish in this issue (page 522) a paper by Simons on photoelectric spectroscopy of methane.

An alternative view on the chemical bonding within hypervalent compounds 3-center 4-electron bond [VB (Coulson model) vs. MO (Rundle–Pimentel model)]

- Example 1. XeF₂
 - a) Classic view Pauling's model (involving d-orbital).
 - sp³d hybridization,
 - 3 lone pairs + 2 axial Xe-F bonds
 - b) 3-center 4-electron bond (excluding d-orbital).

sp² hybridization \rightarrow 3 lone pairs (equatorial) Axial 3c4e bond: Xe 5p_z (2e) + 2F 2p_z (2 x 1e) VB: F-Xe⁺ F⁻ $\leftarrow F^-$ Xe⁺-F \therefore Xe-F bond order =1/2 MO: $\psi_3 = A(\phi_{F1} + 2\phi_{Xe} + \phi_{F2})$ (anti-bonding) $\psi_2 = A(\phi_{F1} - \phi_{F2})$ (non-bonding) $\psi_1 = A(\phi_{F1} - 2\phi_{Xe} + \phi_{F2})$ (bonding)

Example 2. SF₄

a) Classic view (involving valence d orbital).

sp³d hybridization, 1 lone pair + 4 S-F bonds

b) 3-center 4-electron bond (excluding d orbital).

- sp² hybridization \rightarrow 1 lone pair + 2 S-F (equatorial)
- Axial 3c4e bond (MO): S 3p_z (2e) + 2F 2p_z (1e)

$$\psi_1 = A \phi_{F1} - B \phi_S + A \phi_{F2}$$
 $\psi_2 = A' (\phi_{F1} - \phi_{F2})$

 $\psi_{LUMO} = A\phi_{F1} + B\phi_S + A\phi_{F2} \quad (A < B)$

- This model accounts well for the fact that the axial S-F bonds are longer than the equatorial ones.
- Such bonding model can be used for similar hypervalent compounds, e.g., XeF₄, BrF₅ etc!

§ 5.2 Valence Shell Electron-Pair Repulsion (VSEPR) Model (After-class reading)

- Quantum mechanical treatments have a number of advantages. However, the VSEPR model allows a simple qualitative prediction of molecular geometry.
- In a molecule, the valence electron pairs:
 - i) Stabilized by electrostatic attraction by the nucleus,
 - ii) Destabilized by Pauli repulsion between their neighbors.
- A lone pair is more diffuse than a bonding pair, exerting larger repulsion to a neighboring pair.

A stable molecule should adopt such a geometry that minimizes the repulsions among its various electron pairs!

VSEPR

Overall spatial distribution pattern of valence electron pairs of central atom.

Atom B in AB_n lies on the surface of a sphere; electron pairs are "localized" on a sphere of smaller radius at maximum distances apart, so as to minimize overlap of different electron pairs.

- 1. Repulsion between two lone pairs (LPs) is the greatest.
- Repulsion between a lone electron pair and a bonding electron pair (BP) is less.
- 3. Repulsion between two bonding pairs is the least.
- 4. π electron pair does not influence stereochemistry.

Repulsion of electron pairs LP-LP > LP-BP > BP-BP → The position of lone pair(s) matters!

VSEPR model is sometimes used in combination with the Lewis dot-electron structures and hybrid orbital theory.

Arrangements of Maximum distance between valence shell electron pairs.

No. of pairs	arrangement
2	Linear
3	Equilateral triangle
4	Tetrahedron
5	Trigonal bipyramid
6	Octahedron

AX₂ BeCl₂, CaCl₂ (linear) (2+2)/2=2

AX₃ BF₃ (trigonal plane)

(3+3)/2=3

AX₂E CCl₂, SnCl₂ (bent)

(4+2)/2=3

 AX_4 $CH_4, AlH_4, CCl_4, NH_4^+$ (tetrahedral) (4+4)/2=4

 $AX_{3}E$ NH_{3}, NF_{3} (pyramidal) (5+3)/2=4

 $AX_{2}E_{2}$ $H_{2}O, H_{2}S$ (bent) (6+2)/2=4

Electron-pair geometries and molecular shapes

Five electron pairs:

No lone pairs One lone pair Two lone pairs Three lone pairs

Triangular bipyramidal

Linear

(8+2)

2=5

(5+5)/2=5

(6+4)/2=5

(7+3)/2=5

Electron-pair geometries and molecular shapes

No lone pairs

Six electron pairs: One lone pair

Two lone pairs

Repulsion of electron pairs LP-LP > LP-BP > BP-BP

- N(VEP) = (7 + 4 + 1)/2 = 6; N(BP) = 4; N(LP) = 2
- Simply considering the pairs with a bond angle ~ 90°!!!!!!!
- The first structure is preferred!

Repulsion of electron pairs BP-BP < BP-LP < LP-LP

- N(VEP) = (7+3)/2 = 5; N(BP) = 3; N(LP) = 2
- The second structure is preferred!

Molecular Stereochemistry

No. of pairs of e	formula	stereochemistry	point group
1	A_2, AB	none	$\mathbf{D}_{\infty \mathbf{h}}$ or $\mathbf{C}_{\infty \mathbf{v}}$
2	AB_2	linear	$\mathbf{D}_{\infty \mathbf{h}}$
3	AB ₂ e ¹	bent	C_{2v}
3	AB ₃	triangular	D _{3h}
4	AB_2e^2	bent	C _{2v}
4	AB ₃ e ¹	pyramidal	C _{3v}
4	AB_4	tetrahedral	T _d

9 3 6

Molecular Stereochemistry

No. of pairs of e ⁻	formula	stereochemistry	point group
5	AB ₂ e ³	linear	$\mathbf{D}_{\infty \mathbf{h}}$
5	AB ₃ e ²	T-shaped	C _{2v}
5	AB ₄ e ¹	distorted tetrahedron	$\mathbf{C}_{2\mathbf{v}}$
5	AB ₅	trigonal bipyramid	D _{3h}
6	AB ₄ e ²	square planar	$\mathbf{D}_{4\mathrm{h}}$
6	AB ₅ e ¹	square pyramid	C_{4v}
6	AB ₆	octahedron	O _h

9

VSEPR Example

- Bond angles decrease with increasing electronegativity of the ligand or decreasing electronegativity of the central atom.
- Why? The BP is more distant from the central atom upon increasing electronegativity of the ligand.

$AB_n e^m$ (n = coordination number; m = number of lone pairs)

1 mm		
AB ₂ e ⁰	linear	$BeCl_{2(g)}$, $MX_{2(g)}$ (M = Zn, Cd, Hg), Hg_2Cl_2 ,
		$M(CN)^{2}$ (M = Ag, Au)
AB ₂ e ¹	bent	NO2, SO2, SnX2, PbX2
AB ₂ e ²	bent	H ₂ O, SX ₂ , SeX ₂ , TeX ₂ , CIO ₂
AB ₃ e ⁰	trigonal planar	BX ₃ , Gal ₃ , InMe ₃ , CR ₃ ⁺
AB ₃ e ¹	pyramidal	NH3, NR3, NX3, PX3, AsX3, SbX3, SO32-
AB ₃ e ²	T-shaped	CIF ₃ , BrF ₃ , PhICl ₂
AB₄e⁰	tetrahedral	BeX4 ²⁻ , BX4 ⁻ , CR4, CX4, NH4 ⁺ , NR4 ⁺ , AsR4 ⁺ ,
		MX4 (M = Si, Ge, Sn, Pb, Ti, Zr, Hf, Th),
		MX_4^{2-} (M = Zn, Cd, Hg)
AB₄e ¹	distorted tetrahedral	SF ₄ , SCI ₄ , SeF ₄ , SeCI ₄ , R ₂ SeCI ₂ , R ₂ TeCI ₂
AB ₄ e ²	planar	ICI ₄ , BrF ₄ , XeF ₄
AB₅e ⁰	trigonal bipyramidal	PF5, PCI5, SbCI5,; MCI5(g), M(OR)5(g) (M = Nb, Ta)
AB ₅ e ¹	square pyramidal	CIF5, BrF5, IF5
AB ₆ e ⁰	octahedral	SF6, SeF6, MoF6, WCI6, WMe6, PF6,
		PCI6 ⁻ , SiF6 ²⁻ , SnCI6 ²⁻ , Mn(OH)6 ²⁺ , Fe(OH ₂)6 ³⁺ , FeF

§ 5.3 Delocalized π-electrons/conjugation and Delocalized Molecular Orbital Theory

From the qualitative viewpoint, we can always consider separately the σ - and π -electrons within a molecule!

5.3.1 Normal π bond

tr₁

i.e., two-center-two-electron π-bond (2c-2e)

Except the σ -framework, the remaining, unhybridized *p* orbital of C atom is perpendicular to the molecular plane, forming a π bond with that of a neighboring C atom.

tr₃

5.3.2 Delocalized π **bond**

Several 2c-2e π -bonds are continuously aligned !

 $\rightarrow \pi$ -conjugation & formation of a delocalized π -bond.

Conditions for the formation of a delocalized π bond:

- The atoms are coplanar, with every atom contributing a *p*-orbital orientated in the same direction. (?exceptions)
- The number of π electrons is less than twice of the number of participating *p*-orbitals.
- Q: Can d-type AO's be involved in a delocalized π -bond?

A. Some Inorganic conjugated molecules

i. Linear type (AB₂ 16 valence electron) C: sp-hybridization + $p_x + p_y$

Isoelectronic analogy: NO₂⁺, N₂O, N₃⁻; COS; BeCl₂, HgCl₂ * NO₂⁺ has two equivalent Π_3^4 bonds; NO₂ has just a Π_3^4 bond!

Isoelectronic analogy: AIF_3 , NO_3^- , CO_3^{2-} , SO_3 , CI_2CO , $(H_2N)_2C=O$, $CI_2C=S$

- For four-atom triangular type molecules, the p_{π} -orbitals form one bonding, two nonbonding and one antibonding orbitals, in general.
- For four-atom linear type molecules, the p_{π} -orbitals form two bonding and two antibonding orbitals!

After-class assignment:

Please construct the π -MOs of BCl₃ by using the p_{π} AOs.

12 3 6
B. Some organic conjugated molecules

5.3.3 The conjugation effects.

i. The electrical conductivity is enhanced by the delocalization of π bond, e.g., graphene.

ii. Color. The formation of delocalized π bonding increases the delocalized extent of the π electrons and causes the energy of the system to decrease.

Phenolphthalein - an indicator of basicity

pH=0-8.2 colorless

pH=8.2-12.0 red pH > 13.0 colorless

Electron delocalization: i) enhanced acidity of phenol and carboxylic acids; ii) weakened basicity of amides and aniline.

Î,

iv. Delocalization/conjugation effects on Chemical reactivity.

e.g. $H_2C=CH-Cl$. The formation of the Π_3^4 -bond causes a contraction of the C-Cl bond, and reduces the lability of Cl.

e.g. Benzene. The π -bond of Benzene exhibits much lower reactivity than that of simple alkenes.

5.3.4 Hyperconjugation.

- First introduced in 1939 by R.S. Mulliken.
- Hyperconjugation is *the stabilizing interaction* of the electrons in a σ -bond (usually C–H or C–C) with an adjacent empty (or partially filled) *non-bonding p-orbital or antibonding \pi orbital*, which gives an extended molecular orbital that increases the stability of the system.

Effects of hyperconjugation on Chemical properties. A. Bond length and bond energy:

 σ -bond: Shortening of bond length and increasing of bond energy.

	Hybridization	C-C bond length (Å)	C-C bond energy(kJ.mol ⁻¹)
	sp ³ -sp ³	1.54	346.3
	sp ³ -sp ²	1.51	357.6
c	sp ³ -sp	1.46	382.5

B. Dipole moment

The dipole moment of 1,1,1-trichloroethane with hyperconjugation is much larger than that of chloroform $(HCCl_3)$.

C. Stabilizing carbocations:

 $\sigma(C-H) \rightarrow p_{\pi}(C^+)$

Hyperconjugative interaction between the electron(s) in a bond that is β to the positively charged C can stabilize a carbocation.

Stability of carbocations:

 $(CH_3)_3C^+ > (CH_3)_2CH^+ > (CH_3)CH_2^+ > CH_3^+$

§ 5.4 Hückel molecular orbital (HMO) theory and π -conjugation

5.4.1 HMO method – A semiempirical treatment!

- Proposed in 1931 by Hückel to treat π -conjugation.
 - i) composition and energy of π -MO's
 - ii) properties, stability, and even electronic spectra
- Modified in 1950s to treat σ -electrons/ σ -MO's -- EHMO

5.4.1 HMO method π -type AO, ϕ_i $1 \ 2 \ i \ i + 1 \ n$ (A *n*-center *m*-electron π -conjugation)

Single-particle approximation: the total π -electron Hamiltonian for a Π_n^m system is approximated by the form,

$$\hat{H}_{\pi} = \sum_{j=1}^m \hat{h}_j^{e\!f\!f}$$

(i.e., sum of one-electron effective Hamiltonians)

The total wavefunction of the Π_n^m system can be expressed as,

$$\Psi_{\pi} = \prod_{j=1}^{m} \Psi_{j} \quad \& \quad \hat{H}_{\pi} \Psi_{\pi} = E_{\pi} \Psi$$

$$\begin{cases} \hat{h}_{j}^{eff} \boldsymbol{\psi}_{j} = \boldsymbol{\varepsilon}_{j} \boldsymbol{\psi}_{j} \\ \boldsymbol{E}_{\pi} = \sum_{j} \boldsymbol{\varepsilon}_{j} \end{cases}$$

$$\pi$$
 - MO: $\psi_j = \sum_{i=1}^n c_i \phi_i$

LCAO-MC

MO wavefunction of the *j*th π -electron

$$\hat{h}_{j}^{eff}\psi_{j} = \varepsilon_{j}\psi_{j} \quad (\psi_{j} = \sum_{i=1}^{n} c_{i}\phi_{i} \quad)$$

Suppose we have the form of *h*^{eff} ! then use the variation theorem!

Variation integral
$$<\varepsilon>=\int\psi^*\hat{h}^{eff}\psi d\tau$$
 let $E=<\varepsilon>$

Then make

$$\frac{\partial E}{\partial c_1} = \frac{\partial E}{\partial c_2} = \dots = \frac{\partial E}{\partial c_n} = 0$$

Thus we have *n* secular equations (in the matrix form),

$$\begin{pmatrix} H_{11} - ES_{11} & H_{12} - ES_{12} \dots & H_{1n} - ES_{1n} \\ H_{21} - ES_{21} & H_{22} - ES_{22} \dots & H_{2n} - ES_{2n} \\ \dots & \dots & \dots & \dots \\ H_{n1} - ES_{n1} & H_{n2} - ES_{n2} \dots & \dots & H_{nn} - ES_{nn} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \dots \\ c_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \dots \\ c_n \end{pmatrix}$$

This demands the secular determinant to be zero, i.e.,

$$\begin{vmatrix} H_{11} - ES_{11} & H_{12} - ES_{12} \dots & H_{1n} - ES_{1n} \\ H_{21} - ES_{21} & H_{22} - ES_{22} \dots & H_{2n} - ES_{2n} \\ \dots & \dots & \dots \\ H_{n1} - ES_{n1} & H_{n2} - ES_{n2} \dots & H_{nn} - ES_{nn} \end{vmatrix} = 0$$

Number of integrals: $H_{ij} \sim n(n+1)/2$ $S_{ij} \sim n(n+1)/2$ Yet h^{eff} is unknown!

To solve it, Hückel further introduced the following approximations,

$$H_{ii} = \int \phi_i^* \hat{h} \phi_i d\tau = \alpha \ (e.g., \text{energy of } \pi - \text{AO})$$

$$H_{ij} = \int \phi_i^* \hat{h} \phi_j d\tau = \beta \ (\text{if } i = j \pm 1, \text{neighborin } g)$$

$$= 0 \ (\text{if } i \neq j \pm 1)$$

$$S_{ij} = \int \phi_i^* \phi_j d\tau = 1 \ (\text{i} = \text{j}, \text{the same atom})$$

$$= 0 \ (\text{i} \neq \text{j}, \text{different atom})$$

$$= 0 \ (\text{i} \neq \text{j}, \text{different atom})$$

$$For \ \text{each } E_j, \ \text{get } \{C_{ji}\}$$
Now only need to know the $\alpha \notin \beta$ integrals, which can be determined semiempirically!

Semiempirical determination of the integrals:

 $H_{ii} = \int \phi_i^* \hat{h} \phi_i d\tau = \alpha$ Coulombic integral \approx energy of π -type AO! (e.g., C 2p AO) $H_{ij} = \int \phi_i^* \hat{h} \phi_j d\tau = \beta \quad (\text{if } i = j \pm 1)$ **Resonance** integral (stabilization energy upon = 0 (if $i \neq j \pm 1$) overlapping of two AO's) C_2H_4 (2c-2e π -MO, $\begin{vmatrix} \alpha - E & \beta \\ \beta & \alpha - E \end{vmatrix} = 0 \begin{vmatrix} x = (\alpha - E)/\beta \\ 1 x \end{vmatrix} \begin{vmatrix} x & 1 \\ x = 0 \end{vmatrix}$ **π-bond** $\implies x^2 - 1 = 0 \Longrightarrow x = \pm 1 \Longrightarrow E = \alpha \pm \beta$ $E_2 = \alpha - \beta$ $\mathbf{I}_{0} = \alpha$ $\beta = E_{\pi-bond}/2$ 2p_A 2p_B $E_1 = \alpha + \beta$ The π -bond energy of ethene can be determined by UV-vis spectroscopy. $\Delta E = E_2 - E_1 = 2\beta = hv$

5.4.2 The HMO treatment for the π-bonding within 1,3-butadiene H₂C=CH-CH=CH₂

$$\psi_{\pi} = c_1 \phi_1 + c_2 \phi_2 + c_3 \phi_3 + c_4 \phi_4$$

Simplified secular equation by using Hückel approximations:

$$\begin{pmatrix} \alpha - E & \beta & 0 & 0 \\ \beta & \alpha - E & \beta & 0 \\ 0 & \beta & \alpha - E & \beta \\ 0 & 0 & \beta & \alpha - E \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Variation theorem

Seqular determinant:

$$\begin{vmatrix} \alpha - E & \beta & 0 & 0 \\ \beta & \alpha - E & \beta & 0 \\ 0 & \beta & \alpha - E & \beta \\ 0 & 0 & \beta & \alpha - E \end{vmatrix} = 0$$

HMO method

$$\begin{aligned}
& et x = \frac{\alpha - E}{\beta}, \quad E = \alpha - \beta x \\
& \alpha - E & \beta & 0 \\
& 0 & \beta & \alpha - E & \beta \\
& 0 & 0 & \beta & \alpha - E
\end{aligned} = 0 \qquad \begin{vmatrix} x & 1 & 0 & 0 \\
1 & x & 1 & 0 \\
0 & 1 & x & 1 \\
0 & 0 & 1 & x
\end{vmatrix} = 0 \\
& (-1)^{1+1} x \begin{vmatrix} x & 1 & 0 \\
1 & x & 1 \\
0 & 1 & x
\end{vmatrix} = 0 \\
& x \left((-1)^{1+1} x \begin{vmatrix} x & 1 \\
1 & x
\end{vmatrix} + (-1)^{1+2} 1 \begin{vmatrix} 1 & 1 \\
0 & x
\end{vmatrix} \\
& - (-1)^{1+1} 1 \begin{vmatrix} x & 1 \\
1 & x
\end{vmatrix} = 0 \\
& x^2 (x^2 - 1) - x^2 - (x^2 - 1) = 0 \\
& x^4 - 3x^2 + 1 = 0
\end{aligned}$$

Now we can solve the secular equations to get the coefficients $\{c_i\}$:

$$\begin{pmatrix} x & 1 & 0 & 0 \\ 1 & x & 1 & 0 \\ 0 & 1 & x & 1 \\ 0 & 0 & 1 & x \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \longrightarrow \begin{pmatrix} c_1 x + c_2 = 0 \\ c_1 + c_2 x + c_3 = 0 \\ c_2 + c_3 x + c_4 = 0 \\ c_3 + c_4 x = 0 \end{pmatrix}$$

normalizat ion condition : $c_1^2 + c_2^2 + c_3^2 + c_4^2 = 1$

1) By substituting $x_1 = -1.618$, we get

$$c_1 = c_4 = 0.372$$
, $c_2 = c_3 = 0.602$

i.e., the π -MO is in the form

$$\psi_1 = 0.372 \phi_1 + 0.602 \phi_2 + 0.602 \phi_3 + 0.372 \phi_4$$

with
$$E_1 = \alpha - x_1 \beta = \alpha + 1.618\beta$$

$$E_{1} = \alpha + 1.618\beta$$
$$E_{2} = \alpha + 0.618\beta$$
$$E_{3} = \alpha - 0.618\beta$$
$$E_{4} = \alpha - 1.618\beta$$

$$\begin{split} \psi_1 &= 0.372\phi_1 + 0.602\phi_2 + 0.602\phi_3 + 0.372\phi_4 \\ \psi_2 &= 0.602\phi_1 + 0.372\phi_2 - 0.372\phi_3 - 0.602\phi_4 \\ \psi_3 &= 0.602\phi_1 - 0.372\phi_2 - 0.372\phi_3 + 0.602\phi_4 \\ \psi_4 &= 0.372\phi_1 - 0.602\phi_2 + 0.602\phi_3 - 0.372\phi_4 \end{split}$$

Antibonding MO (three nodes)

$$E_4 = \alpha - 1.618 \mu$$

Antibonding MO (two nodes)

$$E_3 = \alpha - 0.618 \, \mu$$

Bonding MO (One node)

$$E_2 = \alpha + 0.618\beta$$

Bonding MO (No node) $E_1 = \alpha + 1.618\beta$

1-D potential well!

Delocalized energy

Total π -electron energy in butadiene

$$E_{\pi e}(C_4 H_6) = 2E_1 + 2E_2 = 2(\alpha + 1.618\beta) + 2(\alpha + 0.618\beta)$$
$$= 4\alpha + 4.48\beta$$

Total π -electron energy of two isolated C=C bonds (each akin a π -bond in C₂H₄)

$$E_{\pi e}(2C = C) = 2 \times 2(\alpha + \beta)$$
$$= 4\alpha + 4\beta$$

Thus, the delocalized energy or resonance energy is

$$E_{deloc} = E_{\pi e} (C_4 H_6) - E_{\pi e} (2C = C) = 0.48 \beta < 0$$

Electron delocalization (π -conjugation) enhances the stability!

After-class Problem

For 1,3-butadiene, the two occupied HMO's ($\psi_1 \& \psi_2$) are delocalized in nature and expressed as

$$\psi_1 = 0.372\phi_1 + 0.602\phi_2 + 0.602\phi_3 + 0.372\phi_4 \quad E_1 = \alpha + 1.618\beta$$

$$\psi_2 = 0.602\phi_1 + 0.372\phi_2 - 0.372\phi_3 - 0.602\phi_4 \quad E_2 = \alpha + 0.618\beta$$

Let us consider the linear combinations of these two delocalized HMO's, which can be expressed as

$$\Phi_1 = (\psi_1 + \psi_2) / \sqrt{2} = [0.974(\phi_1 + \phi_2) + 0.23(\phi_3 - \phi_4)] / \sqrt{2}$$

$$\Phi_2 = (\psi_1 - \psi_2) / \sqrt{2} = [0.23(\phi_2 - \phi_1) + 0.974(\phi_3 + \phi_4)] / \sqrt{2}$$

Please prove the two wavefunctions, Φ_1 and Φ_2 , have equal energy. Please figure out what they represent.

• Is the C1=C2 bond stronger than a normal C=C bond?

5.4.3 Population analysis and molecular diagrams of conjugated system

i. Charge density --- the total π -electron density on the *i*th atom

$$\rho_i = \sum_k n_k c_i^2(k)$$

The probability of an electron in the *k*th MO to appear on the *i*th atom

 n_k : number of electrons in the *k*th MO.

$$\because \psi(k) = \sum_{i} c_i(k) \phi_i \longrightarrow 1 = \int \psi^2(k) d\tau = \sum_{i} c_i^2(k)$$

The total
$$\pi$$
-electron density $\rho_i = \sum_k n_k c_i^2(k)$
on the *i*th atom is:

• For 1,3-butadiene, the two doubly occupied MO's are
$$\begin{split} \psi_{\pi 1} &= 0.372 \,\phi_1 + 0.602 \,\phi_2 + 0.602 \,\phi_3 + 0.372 \,\phi_4 \\ \psi_{\pi 2} &= 0.602 \,\phi_1 + 0.372 \,\phi_2 - 0.372 \,\phi_3 - 0.602 \,\phi_4 \\ \rho_1 &= 2 \times 0.372^2 + 2 \times 0.602^2 = 1.000 \\ \rho_2 &= 2 \times 0.602^2 + 2 \times 0.372^2 = 1.000 \\ \rho_3 &= \rho_4 = 1.000 \end{split}$$

- 5.4.3 Population analysis and molecular diagrams of conjugated system
 - ii. Bond order --- the strength of the π -bond between atoms *i* and *j*

$$p_{ij} = \sum_{k} n_k c_i(k) c_j(k)$$

Sum over all occupied MO's.

 n_k : number of electrons in the *k*th occupied MO.

For 1,3-butadiene, the two occupied MO's are

$$\psi_{\pi 1} = 0.372 \phi_1 + 0.602 \phi_2 + 0.602 \phi_3 + 0.372 \phi_4$$

$$\psi_{\pi 2} = 0.602 \phi_1 + 0.372 \phi_2 - 0.372 \phi_3 - 0.602 \phi_4$$

 $p_{12} = 2 \times 0.372 \times 0.602 + 2 \times 0.602 \times 0.372 = 0.896 = p_{34}$

$$p_{23} = 2 \times 0.602^2 - 2 \times 0.372^2 = 0.448$$

$$\therefore p_{12} = p_{34} = 2p_{23}$$

 The π-bond order of C1=C2 or C3=C4 is twice of the C2-C3 πbond order.

iii. Free valence index --- the relative magnitude of the residue bonding ability of the ith atom

$$F_{i} = P_{max} - \sum_{j=i\pm 1} P_{ij}; \qquad P_{max} = \sqrt{3}$$

$$F_{1} = \sqrt{3} - P_{12} = \sqrt{3} - 0.896 = 0.836 = F_{4}$$

$$F_{2} = \sqrt{3} - P_{12} - P_{23} = \sqrt{3} - 0.448 - 0.896 = 0.388 = F_{3}$$

In butadiene, the 1,4-sites are more reactive than the 2,3-sites!

Example: 1,4 addition reaction of butadiene H₂C=CH-CH=CH₂ + Br₂ → BrH₂C-CH=CH-CH₂Br

Another example:

Please derive the secular determinant of trimethylenemethane.

$$\begin{pmatrix} \alpha - E & \beta & \beta & \beta \\ \beta & \alpha - E & 0 & 0 \\ \beta & 0 & \alpha - E & 0 \\ \beta & 0 & 0 & \alpha - E \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} = 0$$

$$\psi = \sum_{i}^{2} c_{i} \phi_{i}$$

Then the secular determinant is

$$\begin{vmatrix} \alpha - E & \beta & \beta \\ \beta & \alpha - E & 0 & 0 \\ \beta & 0 & \alpha - E & 0 \\ \beta & 0 & 0 & \alpha - E \end{vmatrix} = 0$$

$$x = \frac{(\alpha - E)}{\beta} \begin{vmatrix} x & 1 & 1 & 1 \\ 1 & x & 0 & 0 \\ 1 & 0 & x & 0 \\ 1 & 0 & 0 & x \end{vmatrix} = 0$$

$$x^{2}(x^{2} - 3) = 0 \Rightarrow x_{1,4} = \pm\sqrt{3}, x_{2,3} = 0$$

After-class assignment

• Please construct the π -MOs of trimethylenemethane by using symmetry and then quickly obtain the eigenvalue of each π -MO as well as the C-C π -bond order by using the HMO approximation !

<i>C1</i> :	ϕ_1	<i>A</i> ;		<i>C2-4:</i> $\{\phi_2,$	ϕ_{3}, ϕ_{4}
C_3	1. (1. (1. (1. (1. (1. (1. (1. (1. (1. (Ε	C_3	C_{3}^{2}	$\epsilon = e^{2\epsilon}$

C_3	E	C_3	C_{3}^{2}		$\epsilon = e^{2\pi i/3}$
A	1	1	1	z, R_z	$x^2 + y^2, z^2$
E	$\left\{ \begin{array}{c} 1\\1 \end{array} \right.$	е е*	€*} €`}	$(x, y), (R_x, R_y)$	$(x^2 - y^2, xy), (yz, xz)$

$$2 \circ CH_2$$

 $H_2C \circ CH_2$
 $H_2C \circ CH_2$
 $3 \circ 4$

5.4.4 HMO treatments of cyclic conjugated polyenes (C_nH_n) e.g., π -conjugation in Benzene

General HMO solutions for cyclic conjugated polyenes (C_nH_n)

- When *n=4m+1* or *4m+3*, the system has a singly occupied HOMO, being radicaloid.
- When *n=4m*, the system has two degenerate singly-occupied HOMOs (non-bonding), thus being diradicaloid.
- Only when n = 4m+2 can a cyclically conjugated system has fully occupied HOMOs and be chemically stable. (fulfilling the Hückel rule of aromaticity!)

§ 5.5 Graphical method to predefine the coefficients of HMOs for conjugated systems

Background

- The AO coefficients of HMO's for π -conjugated organic systems correlate with their geometries, displaying "quasiperiodicity". e.g., 1,3-butadiene $\psi_2 = 0.602\phi_1 + 0.372\phi_2 - 0.372\phi_3 - 0.602\phi_4$
 - g., 1,3-butadiene $\psi_2 = 0.002\phi_1 + 0.372\phi_2 0.372\phi_3 0.002\phi_4$ $\psi_3 = 0.602\phi_1 - 0.372\phi_2 - 0.372\phi_3 + 0.602\phi_4$ $\psi_4 = 0.372\phi_1 - 0.602\phi_2 + 0.602\phi_3 - 0.372\phi_4$
 - Accordingly, a graphical method was developed by *Q.E. Zhang* et al. to predefine the AO coefficients of HMOs for such type of systems.

5.5.1 Principle for linear conjugated [n]polyenes.

For a linear [n]polyene, we have *n* secular equations:
$$\begin{split}
\psi_{\pi} &= \sum_{i=1}^{n} C_{i} \phi_{i} \\
\psi_{\pi} &= \sum_{i=1}^{n} C_{i} \phi_{i} \\
C_{1}(\alpha - E) + C_{2}\beta = 0; \\
C_{1}\beta + C_{2}(\alpha - E) + C_{3}\beta = 0 \\
C_{2}\beta + C_{3}(\alpha - E) + C_{4}\beta = 0; \\
C_{k-1}\beta + C_{k}(\alpha - E) + C_{k+1}\beta = 0; \\
C_{n-1}\beta + C_{n}(\alpha - E) = 0
\end{split}$$

Or in the matrix form,

$$\begin{pmatrix} \alpha - E & \beta & \dots & 0 & 0 \\ \beta & \alpha - E & \dots & 0 & 0 \\ 0 & \beta & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \beta & \alpha - E \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \\ C_3 \\ \vdots \\ C_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Define
$$\mathbf{x} = (\alpha - E)/\beta$$

 $\sin \alpha_1 + \sin \alpha_2 = 2\sin \frac{\alpha_1 + \alpha_2}{2}\cos \frac{\alpha_1 - \alpha_2}{2}$
 $\mathbf{C}_2 = -\mathbf{x}\mathbf{C}_1 + \mathbf{0}$
 $\mathbf{C}_3 = -\mathbf{x}\mathbf{C}_2 - \mathbf{C}_1$
 $\mathbf{C}_4 = -\mathbf{x}\mathbf{C}_3 - \mathbf{C}_2$
 \dots
 $\mathbf{C}_{k+1} = -\mathbf{x}\mathbf{C}_k - \mathbf{C}_{k-1}$
 \dots
 $\mathbf{C}_{k+1} = \sin(k-1)\theta$
 $\mathbf{C}_{k+1} = \sin(k-1)\theta$
 $\mathbf{C}_{k+1} = \sin(k+1)\theta$
 $\mathbf{Now we get } \theta$, and then $E = \alpha + 2\beta\cos\theta$ and $\{\mathbf{C}_k\}$ simultaneously!
 $\mathbf{C}_i \sin\theta \sin 2\theta \sin 3\theta$
 $\sin(n-1)\theta \sin n\theta$

- For linear [*n*]polyenes with *n=even*, there are *n*/2 bonding π-MO's and *n*/2 antibonding π-MO's.
- For linear [*n*]polyenes with *n=odd*, there are (*n-1*)/2 bonding π-MO's, (*n-1*)/2 antibonding π-MO's and a non-bonding π-MO.

Frontier MO's of [n]polyene: C_nH_{n+2} $E_m = \alpha + 2\beta \cos\frac{m\pi}{n+1}, \quad \psi_m = \sqrt{\frac{2}{n+1}} \sum_{k=1}^n \phi_k \sin(\frac{km\pi}{n+1}) \quad (m = 1, 2, 3, ..., n)$

a) When n = odd, SOMO, m = (n+1)/2, $\theta_{SOMO} = \pi/2$, $E_{SOMO} = \alpha$ $\Psi_{SOMO} = A(\phi_1 - \phi_3 + \phi_5 - ...)$ Non-bonding!

b) When n = even, HOMO, m = n/2; LUMO, m = (n+2)/2.

$$\theta_{HOMO} = \frac{n\pi}{2(n+1)} = \frac{\pi}{2} - \frac{\pi}{2(n+1)} \quad \theta_{LUMO} = \frac{(n+2)\pi}{2(n+1)} = \frac{\pi}{2} + \frac{\pi}{2(n+1)}$$

Coefficients of AO's: **HOMO**

LUMO

n = 4*l*+2:
$$C_n = C_1, \quad C_{n-1} = C_2, \dots$$

n = 4*l*: $C_n = -C_1, \quad C_{n-1} = -C_2, \dots$

$$C_n = -C_1, C_{n-1} = -C_2, \dots$$

 $C_n = C_1, C_{n-1} = C_2, \dots, \uparrow^2$

Example: butadiene (n=4)

$$\pi - MOs: \qquad \psi = A \sum_{i=1}^{4} c_i \phi_i$$

 $\therefore \sin 5\theta = 0 \& \sin \theta \neq 0, \quad \therefore \theta = m\pi/5 \quad (m = 1, 2, 3, 4)$

т	1	2	3	4
heta	$\pi/5$	$2\pi/5$	3π/5	4 <i>π</i> /5
$2\cos$	s θ 1.618	0.618	- 0.618	-1.618
E	α +1.618 β	$\alpha + 0.618\beta$	lpha - 0.618 eta	lpha - 1.618 eta
$\psi_m =$	$\sqrt{\frac{2}{5}}(\sin\frac{m\pi}{5}\phi_1)$	$+\sin\frac{2m\pi}{5}\phi_2 + \sin\frac{2m\pi}{5}$	$\sin\frac{3m\pi}{5}\phi_3 + \sin^2\theta_3 + 3\pi^2 + 3\pi^2$	$\ln\frac{4m\pi}{5}\phi_4)$
$\psi_1 =$	$= 0.372\phi_1 + 0.602$	$2\phi_2 + 0.602\phi_3 + 0$.372 <i>ø</i> 4	
$\psi_2 =$	$= 0.602\phi_1 + 0.372$	$2\phi_2 - 0.372\phi_3 - 0$	$.602\phi_4$ HOMO)
$\psi_3 =$	$= 0.602\phi_1 - 0.372$	$2\phi_2 - 0.372\phi_3 + 0$	$.602\phi_4$ LUMC)
$\psi_4 =$	$= 0.372\phi_1 - 0.602$	$2\phi_2 + 0.602\phi_3 - 0$	$.372\phi_{4}$	

$$E_{1} = \alpha + 1.618\beta, \ \psi_{1} = 0.372\phi_{1} + 0.602\phi_{2} + 0.602\phi_{3} + 0.372\phi_{4} \text{ symmetric}$$

$$E_{2} = \alpha + 0.618\beta, \ \psi_{2} = 0.602\phi_{1} + 0.372\phi_{2} - 0.372\phi_{3} - 0.602\phi_{4} \text{ asymmetric}$$

$$E_{3} = \alpha - 0.618\beta, \ \psi_{3} = 0.602\phi_{1} - 0.372\phi_{2} - 0.372\phi_{3} + 0.602\phi_{4} \text{ symmetric}$$

$$E_{4} = \alpha - 1.618\beta, \ \psi_{4} = 0.372\phi_{1} - 0.602\phi_{2} + 0.602\phi_{3} - 0.372\phi_{4} \text{ asymmetric}$$

The MOs of a [n]polyene can be classified into two categories, symmetric and asymmetric ones, in terms of their AO coefficients.

Symmetric MOs:

$$\frac{n-1}{2}\theta \cos \frac{n-3}{2}\theta \cos \frac{1}{2}\theta, \quad \cos \frac{1}{2}\theta \cos \frac{1}{2}\theta \cos \frac{n-3}{2}\theta \cos \frac{n-1}{2}\theta$$

$$(n/2) \quad 1 \quad 1' \quad (n/2)'$$

Boundary condition: $\cos \frac{n+1}{2}\theta = 0$

$$\Rightarrow \frac{n+1}{2}\theta = \frac{2m+1}{2}\pi \Rightarrow \theta = \frac{2m+1}{n+1}\pi \quad (m = 0, 1, \dots, < n/2)$$

:
$$E_{m}^{sym} = \alpha + 2\beta \cos \frac{2m+1}{n+1}\pi$$
 (*m*=0,1,2,...,< $\frac{n}{2}$)

A total of n/2 values
Asymmetric MOs:

$$\& C_{k-1} + C_{k+1} = 2C_k \cos \theta$$

$$:: C_1 = -C_{1'}, C_2 = -C_{2'}, ...,$$

Let coefficients for central atoms be $-sin(\theta/2)$, $sin(\theta/2)$

$$\frac{n-1}{2}\theta$$
, $-\sin\frac{n-3}{2}\theta$

Then coefficients for terminal atoms are

$$\sin \frac{n-3}{2}\theta, \sin \frac{n-1}{2}\theta$$
$$-\sin \frac{n-1}{2}\theta \text{ and } \sin \frac{n-1}{2}\theta$$

The boundary condition:

$$\sin \frac{n+1}{2}\theta = 0 \implies \frac{n+1}{2}\theta = m\pi$$
$$\therefore \theta = \frac{2m\pi}{n+1} \quad (m = 1, 2, ..., \frac{n}{2})$$
$$\therefore E = \alpha + 2\beta \cos \frac{2m\pi}{n+1} \quad (m = 1, 2, ..., \frac{n}{2})$$

A total of n/2 values.

Symmetric MO's
$$E_{sym} = \alpha + 2\beta \cos \frac{2m+1}{n+1}\pi$$
 $(m = 0, 1, 2, ..., < \frac{n}{2})$
Asymmetric MO's $E_{asym} = \alpha + 2\beta \cos \frac{2m}{n+1}\pi$ $(m = 1, 2, ..., \frac{n}{2})$

Thus, the lowest n/2 MO's ($\theta < \pi/2$) are bonding and doubly occupied!

Symmetric MO's
$$E_{sym} = \alpha + 2\beta \cos \frac{2m+1}{n+1}\pi$$
 $(m = 0, 1, 2, ..., < \frac{n}{2})$
Asymmetric MO's $E_{asym} = \alpha + 2\beta \cos \frac{2m}{n+1}\pi$ $(m = 1, 2, ..., \frac{n}{2})$
Thus, the lowest $n/2$ MO's $(\theta < \pi/2)$ are bonding and doubly occupied!
 $n = 4k$ FMO symmetry θ E
HOMO Asymm. $m = \frac{n}{4} \frac{n}{2(n+1)}\pi$ $E_{asym} = \alpha + 2\beta \cos \frac{n}{2(n+1)}\pi$
LUMO Symm. $m = \frac{n}{4} \frac{n+2}{2(n+1)}\pi$ $E_{sym} = \alpha + 2\beta \cos \frac{n+2}{2(n+1)}\pi$
 $n = 4k+2$
HOMO Symm. $m = \frac{n-2}{4} \frac{n}{2(n+1)}\pi$ $E_{sym} = \alpha + 2\beta \cos \frac{n}{2(n+1)}\pi$
LUMO Asymm. $m = \frac{n-2}{4} \frac{n+2}{2(n+1)}\pi$ $E_{asym} = \alpha + 2\beta \cos \frac{n+2}{2(n+1)}\pi$

b. [n]polyenes with odd-number carbon atoms: (n=odd) Symmetric MO's:

$$[(n-1)/2] \qquad 1 \qquad 0 \qquad 1' \qquad [(n-1)/2]'$$

$$\cos \frac{n-1}{2}\theta \cos \frac{n-3}{2}\theta \cos \theta, 1, \cos \theta \cos \frac{n-3}{2}\theta \cos \frac{n-1}{2}\theta$$

:
$$C_{k-1} + C_{k+1} = 2C_k \cos \theta$$
 & $C_0 = 1, C_1 = C_{1'}, \dots, C_{\lfloor (n-1)/2 \rfloor} = C_{\lfloor (n-1)/2 \rfloor'}$

$$\Rightarrow C_1 = C_{1'} = \cos\theta \Rightarrow C_2 = 2C_1\cos\theta - 1 = \cos 2\theta$$

$$\Rightarrow \dots, C_{(n-3)/2} = \cos \frac{n-3}{2} \theta \Rightarrow C_{(n-1)/2} = \cos \frac{n-1}{2} \theta$$

Boundary conditions:

$$\cos \frac{n+1}{2}\theta = 0 \Rightarrow \frac{n+1}{2}\theta = \frac{2m+1}{2}\pi \Rightarrow \theta = \frac{2m+1}{n+1}\pi \quad (m = 0, 1, 2, ..., \frac{n-1}{2})$$

$$\therefore E_{\text{sym}} = \alpha + 2\beta \cos \theta = \alpha + 2\beta \cos \frac{2m+1}{n+1}\pi \quad (m = 0, 1, 2, ..., \frac{n-1}{2})$$

n +

Asymmetric MO's:

$$\begin{bmatrix} (n-1)/2 \\ \vdots & n \\ \frac{n-1}{2}\theta \\ \sin \frac{n-3}{2}\theta \\ \sin \theta, 0 - \sin \theta \\ -\sin \frac{n-3}{2}\theta \\ -\sin \frac{n-1}{2}\theta \\ \vdots & \frac{n-1}{2}\theta \\ \vdots \\ \cos \theta \\ \cos \theta \\ \cos \theta \\ \cos \theta \\ \sin \theta, 0 - \sin \theta \\ -\sin \frac{n-3}{2}\theta \\ -\sin \frac{n-1}{2}\theta \\ \sin \frac{n-1}{2}\theta$$

MOs of [n]polyenes with odd-number carbon atoms

Asymmetric MO's:
$$E_{asym} = \alpha + 2\beta \cos \frac{2m}{n+1}\pi \quad (m = 1, 2, ..., \frac{n-1}{2})$$
Symmetric MO's:
$$E_{sym} = \alpha + 2\beta \cos \frac{2m+1}{n+1}\pi \quad (m = 0, 1, 2, ..., \frac{n-1}{2})$$
ne _{π} \rightarrow (n-1)/2 MOs doubly occupied, and one non-bonding SOMO!
E
E
E
(n+3)/2
E
(n+1)/2

FMOs of [n]polyenes with odd-number carbon atoms

Symmetric:
$$\cos \frac{n-1}{2}\theta$$
, $\cos \frac{n-3}{2}\theta$ $\cos \theta$, 1, $\cos \theta$ $\cos \frac{n-3}{2}\theta$, $\cos \frac{n-1}{2}\theta$
Asymmetric: $-\sin \frac{n-1}{2}\theta$, $-\sin \frac{n-3}{2}\theta$ $-\sin \theta$, 0, $\sin \theta$ $-\sin \frac{n-3}{2}\theta$, $-\sin \frac{n-1}{2}\theta$

n = 4k+1n = 4k+3 SOMO symmetric asymmetric

$$E = \alpha + 2\beta \cos \theta$$
$$\theta = \pi / 2, \quad E = \alpha$$

$$\psi_{SOMO} = A \sum_{k=1}^{n} (\varphi_1 - \varphi_3 + \varphi_5 - ...)$$

Simplified diagram of SOMO:

$$n=4k+1$$

Example: (2) (1) (0) (1) (2) symmetric
n=5 (2) (1) (0) (1) (2) symmetric
Symmetric MO's:
$$\cos 3\theta = 0 \Rightarrow \theta = \frac{2m+1}{6}\pi$$
 ($m = 0,1,2$)
 $E = \alpha + 2\beta \cos \frac{2m+1}{6}\pi$ $m = 0, \ \theta = \pi/6, \ E_{s1} = \alpha + 1.732\beta$
 $m = 1, \ \theta = 3\pi/6, \ E_{s2} = \alpha$
 $m = 2, \ \theta = 5\pi/6, \ E_{s3} = \alpha - 1.732\beta$
 $\Psi_{s1} = \sqrt{\frac{1}{3}}(\frac{1}{2}\varphi_1 + \frac{\sqrt{3}}{2}\varphi_2 + \varphi_3 + \frac{\sqrt{3}}{2}\varphi_4 + \frac{1}{2}\varphi_5)$ Bonding
 $\Psi_{s2} = \sqrt{\frac{1}{3}}(\varphi_1 - \varphi_3 + \varphi_5)$ Non-bonding
 $\Psi_{s3} = \sqrt{\frac{1}{3}}(\frac{1}{2}\varphi_1 - \frac{\sqrt{3}}{2}\varphi_2 + \varphi_3 - \frac{\sqrt{3}}{2}\varphi_4 + \frac{1}{2}\varphi_5)$ anti-bonding

Asymmetric MO's:

[2]

(2)

Example:

n=5

$$\sin 3\theta = 0 \& \sin \theta \neq 0 \Rightarrow \theta = \frac{m\pi}{3} (m = 1, 2)$$
$$E = \alpha + 2\beta \cos \frac{m}{3} \pi \quad (m = 1, 2)$$

(1)

[-1]

(2)

[-2]

symmetric

asymmetric

$$m = 1, \theta = \pi / 3, \quad E_{as1} = \alpha + \beta$$
 bonding
 $m = 2, \theta = 2\pi / 3, \quad E_{as2} = \alpha - \beta$ anti - bonding

$$\Psi_{as1} = \frac{1}{2}(\varphi_1 + \varphi_2 - \varphi_4 - \varphi_5)$$
 Bonding
$$\Psi_{as2} = \frac{1}{2}(\varphi_1 - \varphi_2 + \varphi_4 - \varphi_5)$$
 Anti-bon

(0)

[0]

(1)

[1]

ti-bonding

c. Cyclic conjugated molecules Example 1: benzene ---solution I (n=6 !)

i) Symmetric MO's

$$C_k = C_k' = \cos \frac{2k-1}{2} \theta \quad (k = 1, 2, ..., \frac{n}{2})$$

 $(\frac{1}{2}) \qquad (\frac{1}{2}) \\ (\frac{3}{2}) \qquad (\frac{3}{2}) \qquad (\frac{3}{2}) \\ (\frac{5}{2}) \qquad (\frac{5}{2}) \qquad (\frac{5}{2}) \qquad (\frac{5}{2}) \\ (\frac{5}{2}) \qquad (\frac{5$

 σ_{v}

Boundary condition:

$$2\cos\theta C_k = C_{k+1} + C_{k-1}$$

$$2\cos\theta C_{6} = C_{5} + C_{1}$$

$$2\cos\theta\cos\frac{5}{2}\theta = \cos\frac{5}{2}\theta + \cos\frac{3}{2}\theta \implies$$

$$\cos\frac{7}{2}\theta - \cos\frac{5}{2}\theta = 0 \implies -2\sin3\theta\sin\frac{\theta}{2} = 0$$

$$\Rightarrow \sin3\theta = 0 \implies \theta = m\pi/3 \quad (m = 0, 1, 2)$$

$$\therefore 2\cos\theta = 2, \ 1, \ -1$$

$$\begin{array}{c} \theta & 0^{\circ}, \quad 60^{\circ}, \quad 120^{\circ} \\ \cos\theta & 1 & 1/2 & -1/2 \\ 2\cos\theta & 2 & 1 & -1 \\ E & \alpha + 2\beta & \alpha + \beta & \alpha - \beta \end{array} \begin{pmatrix} \frac{1}{2} \\ \frac{3}{2} \\ \frac{3}{2} \\ 1 \\ \frac{3}{2} \\ \frac{3}{2} \\ 1 \\ \frac{3}{2} \\ \frac{3}{2} \\ 1 \\ \frac{3}{2} \\ \frac$$

i) Asymmetric MO's
Boundary condition:
$$2\cos\theta C_k = C_{k+1} + C_{k-1}$$

 $2\cos\theta \sin\frac{5}{2}\theta = \sin\frac{3}{2}\theta - \sin\frac{5}{2}\theta$
 $\sin\frac{7}{2}\theta + \sin\frac{3}{2}\theta = \sin\frac{3}{2}\theta - \sin\frac{5}{2}\theta$
 $\sin\frac{7}{2}\theta + \sin\frac{5}{2}\theta = 0 \Rightarrow \sin3\theta\cos\frac{\theta}{2} = 0$
 $\Rightarrow \sin3\theta = 0 \Rightarrow \theta = \frac{m}{3}\pi \quad (m = 1, 2, 3)$
 $\theta = 60^\circ, 120^\circ, 180^\circ$
 $\cos\theta = 1/2 - 1/2 - 1$
 $2\cos\theta = 1 - 1 - 2$
 $E = \alpha + \beta \quad \alpha - \beta \quad \alpha - 2\beta$
 $\psi_4 = \psi_5 \quad \psi_6$

Exam i) Syn	ple 2: b nmetric N	enzene /IO's	solution	II (n = 7!)	(0) σ_{v}	
Bound	dary conc	lition:	$2\cos\theta C_k$	$=C_{k+1}+C$	$_{k-1}$ (1) 6 2 (1)	
$\Rightarrow 2co$ $cos 4\theta$ $\Rightarrow -sin$ $\Rightarrow \theta =$	$\Rightarrow 2\cos\theta\cos 3\theta = \cos 2\theta + \cos 2\theta$ $\Rightarrow \cos 4\theta + \cos 2\theta = 2\cos 2\theta \Rightarrow \cos 4\theta - \cos 2\theta = 0$ $\Rightarrow -\sin 3\theta\sin\theta = 0 \Rightarrow \sin 3\theta = 0$ $\Rightarrow \theta = \frac{m}{2}\pi (m = 0, 1, 2, 3 < \frac{7}{2})$ (2) (3) (3) (3)					
θ	3 0°	60°	2 120°	180°	Similar to the linear polyene $(n=7)$ case	
$\cos\theta$ $2\cos\theta$	0, 1 2	1/2 1	- 1/2 - 1	-1 -2	by supposing the two terminal atoms	
E	$\alpha + 2\beta$	$\alpha + \beta$	α - β	$\alpha - 2\beta$	overlapping!	
	ψ_1 bondin	ψ_2	$\psi_3 \qquad \psi_4$ anti - bonding		9 12 9	

ii) Asymmetric MO's

 $\therefore \sin 3\theta = -\sin 3\theta$ and $\sin \theta \neq 0$ $\therefore \sin 3\theta = 0 \quad \Rightarrow \quad \theta = \frac{m}{3}\pi \quad (m = 1, 2 < 7/2)$ θ 60° , 120° $\cos\theta = 1/2 - 1/2$ $2\cos\theta 1$ -1 [-1] $\alpha + \beta = \alpha - \beta$ E $\psi_1 \qquad \psi_2$ [-2]bonding anti - bonding Please derive the MO's after class!

Question: Why do we exclude the case of m = 3?

Complicated π -conjugation: e.g., benzyl radical

How to get the coefficient of atom 7? 1) Symmetric MOs:

The secular equation centred at atom 6:

$$C_{6}(\alpha - E) + C_{4}\beta + C_{5}\beta + C_{7}\beta = 0$$

let
$$-2\cos\theta = (\alpha - E)/\beta$$

$$\therefore C_7 = 2\cos\theta C_6 - C_4 - C_5$$

$$= 2\cos\theta\cos 3\theta - 2\cos 2\theta$$

$$=\cos 4\theta - \cos 2\theta$$

Boundary condition: $2\cos\theta C_7 = C_6 \Rightarrow$

$$2\cos\theta(\cos 4\theta - \cos 2\theta) = \cos 3\theta \implies 2\cos\theta = 0, \ \pm (3\mp\sqrt{2})^{1/2}$$

2) Asymmetric MOs:

The coefficients of atoms 1,6 and 7 that are located in the reflection

plane should be 0. Then $sin 3\theta = 0 \Rightarrow \theta = m\pi/3$ (m = 1,2)

1

(0)

 $(1)_{2}$

[-1]

$$\Rightarrow 2\cos\theta = \pm 1 \Rightarrow E = \alpha \mp \beta$$

(?)

(2)

[-2]

Remarks on HMO treatment of system with complicated π -conjugation,

1) The use of symmetry can simplify the process. e.g., naphthalene

 Secular equations pertaining to the multiply connected atoms should be carefully considered!

Example: Please derive the HMO's of trimethylenemethane (Π_4^4) without directly solving its secular determinant.

Question:

1. Can HMO theory be used to deal with other multicentermultielectron bonds (e.g., 3c2e bond in H_3^+ , 3c4e bond in PF5 etc) than the aforementioned Π_n^{m} bonds?

2. Please try to perform HMO treatment on H_3^+ and figure out whether this cation is triangular or linear!

§ 5.6 Symmetry of molecular orbital and symmetry rules for molecular reactions

Brief introduction:

- Frontier Molecular orbital (FMO) Theory proposed by K. Fukui in early 1950s. (*J. Chem. Phys.* 1952, 20, 722.)
- The Principle of Orbital Symmetry Conservation proposed by R.B. Woodward and R. Hoffmann in 1965. (*JACS*, 1965, 87, 395.)
- Owing to their aforementioned contributions, Fukui and Hoffmann were awarded Nobel Prize in Chemistry in 1981.

5.6.1 Frontier molecular orbitals Theory (1951)

- A deeper understanding of chemical reactivity can be gained by focusing on the *frontier orbitals* of the reactants.
- We need to consider only two frontier molecular orbitals (FMO's), the HOMO and LUMO, to predict the structure of the product.

Highest occupied molecular orbital (HOMO) Lowest unoccupied molecular orbital (LUMO)

•The FMO theory can be regarded as a natural extension of MO theory that facilitates us to obtain qualitative understanding of chemical reactivity.

Reaction condition

- 1. During the course of a chemical reaction, the orbitals that are most readily accessible for interaction are the frontier orbitals.
- 2. When two molecules approach each other, the symmetry of the HOMO of one molecule must be compatible with that of the LUMO of the other molecule, i.e. orbitals with the same sign will overlap. This forms a transition state which is relatively stable and is a symmetry-allowed state.
- **3.** The energy levels of the interacting HOMO and LUMO must be comparable (< 6 eV).
- 4. When the HOMO and LUMO of two molecules overlap, electrons are transferred from the HOMO of one molecule to the LUMO of the other molecule. The direction of the transfer should be in line with the electronegativities and be consistent with the weakening of the original bond.

example A:
$$H_2 + I_2 \Leftrightarrow 2HI$$

 $H_{-H} \longrightarrow H_{-H} \longrightarrow 2HI$
 $H_2 : (\sigma_{1s})^2 (\sigma_{1s}^*)^0$
 $I_2 : (\sigma_{5p})^2 (\pi_{5p})^4 (\pi_{5p}^{**})^4 (\sigma_{5p}^{**})^0$
 $I_2 : (\sigma_{5p})^2 (\pi_{5p})^4 (\pi_{5p}^{**})^4 (\sigma_{5p}^{**})^0$
 $I_2 \longrightarrow 2I$
 $I_2 : (\sigma_{1s})^2 (\sigma_{1s}^*)^0$
 $H_2 : (\sigma_{1s})^2 (\sigma_{1s}^*)^0$
 $H_2 : (\sigma_{1s})^2 (\sigma_{1s}^*)^0$
 $H_2 : (\sigma_{5p})^2 (\pi_{5p})^4 (\pi_{5p}^*)^4 (\sigma_{5p}^*)^0$
 $I_2 : (\sigma_{5p})^2 (\pi_{5p})^4 (\pi_{5p}^*)^4 (\sigma_{5p}^*)^0$
 $I_2 : (\sigma_{5p})^2 (\pi_{5p})^4 (\pi_{5p}^*)^4 (\sigma_{5p}^*)^0$

Example C, $N_2 + O_2 \rightarrow 2NO$

 $N_2: KK(1\sigma_g)^2(1\sigma_u^*)^2(1\pi_u)^4(2\sigma_g)^2(1\pi_g^*)^0$ $O_2: KK(\sigma_{2s})^2(\sigma_{2s}^*)^2(\sigma_{2yz})^2(\pi_{2px})^2(\pi_{2py})^2(\pi_{2py}^*)^1(\pi_{2py}^*)^1$

 $SOMO(O_2)$ Incompatible symmetry!

 $LUMO(N_2)$

SOMO (O_2)

Though both N_2 and O_2 are abundant in the atmosphere of the Earth, no such reaction can occur without catalyst!

Unreasonable electron transfer!

A Nobel-prize-wining Rxn!

Diels-Alder Reaction $[4+2]-\pi$ -electrons

Transition state

- We can illustrate the HOMO-LUMO interactions by way of the Diels-Alder reaction between ethylene and 1,3-butadiene.
- We need consider only the π electrons of ethylene and 1,3butadiene, and ignore the framework of σ bonds in each reactants.

FMO's of two reactants can overlap effectively!

• Symmetry-allowed and thermally activated.

Example E: A thermally "forbidden" reaction

- The dimerization of ethylene to give cyclobutane does not occur under conditions of typical Diels-Alder reactions(heating). i.e., it's thermally forbidden.
- Why?

A thermally "forbidden" reaction

- The addition reaction is thermally forbidden, but allowed between two photo-excited ethenes.
- A catalyst-free photochemical reaction involves the LUMO orbitals of reactants, i.e., excited state of reactants.

Can the [2+2]-cycloaddition occur catalytically?

Example F: 2,4,6-Octatriene Thermal Electrocyclic Reactions

 CH_3

CH₁

This reaction is thermally allowed with the stereochemistry of its product governed by the symmetry-allowed disrotary.

This photochemical cyclic reaction occurs with the stereochemistry of its product being governed by the symmetry-allowed conrotary.

Example H: Electrocyclic reaction of 1,3-diene

Stereochemical Rules for the Electrocyclic Reactions of [n]polyenes (n =even)

Number of

Electron pairs (double bonds)

Even (i.e., n = 4k)

Odd (i.e., n = 4k + 2)

Thermal Reaction

conrotatory

disrotatory

Photochemical Reaction disrotatory

conrotatory

Why?

[n]Polyenes with even-number p_{π} -orbitals.

Symm.
$$\cos \frac{n-1}{2} \theta$$
, $\cos \frac{n-3}{2} \theta$ $\cos \frac{\theta}{2}$, $\cos \frac{\theta}{2}$ $\cos \frac{n-3}{2} \theta$, $\cos \frac{n-1}{2} \theta$ Upon σ_v $\cos \frac{n-3}{2} \theta$, $\sin \frac{n-1}{2} \theta$ $\sin \frac{n-3}{2} \theta$, $\sin \frac{n-1}{2} \theta$ Asym. $-\sin \frac{n-1}{2} \theta$, $-\sin \frac{n-3}{2} \theta$ $-\sin \frac{\theta}{2}$, $\sin \frac{\theta}{2}$ Nature of FMO'sHOMOLUMO σ_v C_2 $n=4k$ (k=1,2,...):Asym X Nature of FMO'sLUMO σ_v C_2 $n=4k+2$ (k=1,...):Sym X Asym X Asym X Asym X $n=4k$ Conrotary (C2)Disrotary (σ_v) $n=4k+2$ Disrotary (σ_v)Conrotary (C2)

Stereochemical rules for electrocyclic reactions
[1,n] sigmatropic shift : stereochemical rules

Strategy: Suppose the transition state is a combination of a H atom and a [n]polyene with odd-number p_{π} orbitals.

•

[n]Polyenes: *n=odd*

Note that the H-shift demands both ends of SOMO of [n]polyene (*n=odd*) to overlap effectively with the H 1s orbital.

The sigmatropic H-transfer demands both ends of SOMO of such [n]polyene (*n=odd*) can overlap with the H 1s orbital. i.e.,

Suprafacial mode

n=4k+1

n=4k+3

antarafacial mode

TS requires C_S-symmetry!

QM-predicted transition states of [1,n]-sigmatropic shift

[1,5]-sigmatropic shift

[1,7]-sigmatropic shift

 Woodward-Hoffmann rules --- principle of orbital symmetry conservation (分子轨道对称性守恒原理)

Proposed originally to predict the stereochemistry of pericyclic reactions based on orbital symmetry.

- i. There is a one to one correspondence between the MO's of the reactant and the product.
- ii. The symmetry of the correlated orbitals is the same.
- iii. The correlated orbitals should have comparable energies.
- iv. The correlation lines for orbitals with the same symmetry do not intersect.

Orbital Symmetry Conservation

Example A: Electrocyclic Reactions of butadiene

Orbital Symmetry Conservation

Orbital Symmetry Conservation

Energy/orbital correlation diagram

- 1. During the disrotatory cyclic reaction, the systems have a common σ_v symmetry.
- 2. Thus the symmetries of all involved molecular orbitals subject to this operation should be maintained before/after the reaction.
- 3. In this regard, the HOMO and LUMO of the reactant are correlated with the LUMO and HOMO of the product by conservation of orbital symmetry.
- 4. Thus the reaction should be photo-promoted.

Energy correlation diagram

- 1. During the conrotatory cyclic reaction, the C_2 symmetry is conserved.
- 2. The symmetries of all involved molecular orbitals subject to this operator should be maintained before/after the reaction.
- 3. The HOMO and HOMO-1 of the reactant are correlated with the HOMO-1 and HOMO of the product. So do the unoccupied MO's.
- 4. Thus the reaction occurs for the reactant at its ground state.

Thermal reaction

Photochemical reaction

The MO correlation diagrams of (a) conrotary and (b) disrotary cyclic reactions of butadiene to cyclobutene

Example B: Cycloaddition of ethylene:

a photochemical reaction

$$2H_2C = CH_2$$

In photochemical reaction mode

• Conserved symm. Operators: σ_{xz} and σ_{yz} . • The HOMO and LUMO of reactants are correlated with the LUMO and HOMO of

the product, respectively.

• Thus excited states of the reactants should be involved for the reaction to occur.

vs. Orbital symmetry conservation principle

Viability of reactions

Stereochemical rules of reactions.

• FMO's of reactants

Symmetry of MO's

• Symmetry of the FMO's determines everything.

FMO theory

• Simple, and widely applicable

- All correlated valence MO's of reactants and products
- Need to figure out the symmetry operators conserved in the reactions.
- Useful, yet a bit complicated

The reaction of $[Et_4N]I$ and tetracyanoethylene (TCNE) forms $[Et_4N]_2[TCNE]_2$, which possesses $[TCNE]_2^{2-}$ with an intradimer C-C bond distance of 2.827(3) Å (CrystEngComm, 2001, 47,1). Please analyze the unusual intradimer bonding.

The LUMO of neutral TCNE is the π*
 MO of the C=C moiety.
 The SOMO of [TCNE]⁻:

So the SOMOs of two [TCNE]⁻ are symmetry-compatible and can effectively interact with each other!

Spin conservation

• A chemical reaction occurs with conservation of spin.

$$2H_2({}^1\Sigma_g^+) + O_2({}^3\Sigma_g^-) \longrightarrow 2H_2O({}^1A_1)$$

$$C_2 H_4(s=0) + C_4 H_6(s=0) \xrightarrow{\Delta} C_6 H_{10}(s=0)$$

• Please make use of the FMO theory to assess whether the ene reaction can occur thermally?

Hint: In the transition state of this reaction, the propene can be regarded as an allylic anion and a proton.

Symmetry allowed!

Summary of Chapter 5 Key points/concepts

1. Hybrid orbital theory and VSEPR

(Mostly Qualitative Theory/model!)

- 2. HMO, HMO treatment of π -conjugated systems
- 3. Graphical method to predefine coefficients of HMO of π conjugated systems. (Semi-quantitative Theory)
- 4. Symmetry rules for molecular reactions.

(Qualitative Theory)

[n]Polyacene: laterally fused benzene rings

Benzene, naphthalene, anthracene,..., pentacene, hexacene,...

- 1) HOMO-LUMO gap of oligoacene decreases with increasing of n.
- 2) Pristine oligoacene becomes instable with n > 5.
- 3) When n > 6, pristine oligoacene adopts an open-shell singlet ground state, i.e., biradical. (*J. Am. Chem. Soc., 2004, 126, 7416*)

Two degenerate disjoint non-bonding orbitals of [n]polyacene. (n>6)

Spatial Arrangements of Electron Pairs in Terminal Atoms in AB_n

12 | 3

$$\cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta$$
$$\sin(\alpha \pm \beta) = \sin\alpha \cos\beta \pm \cos\alpha \sin\beta$$
$$\cos\alpha + \cos\beta = 2\cos\frac{\alpha + \beta}{2}\cos\frac{\alpha - \beta}{2}$$
$$\cos\alpha - \cos\beta = -2\sin\frac{\alpha + \beta}{2}\sin\frac{\alpha - \beta}{2}$$
$$\sin\alpha + \sin\beta = 2\sin\frac{\alpha + \beta}{2}\cos\frac{\alpha - \beta}{2}$$
$$\sin\alpha - \sin\beta = 2\cos\frac{\alpha + \beta}{2}\sin\frac{\alpha - \beta}{2}$$

[n]Polyenes: Nature of their FMOs

$$\mathbf{C}_{i} \qquad \sin \theta, \sin 2\theta \dots, \qquad \sin(n-1)\theta, \sin n\theta$$

$$\theta = m\pi/(n+1); \quad \mathbf{E} = \alpha + 2\beta\cos\theta \quad (\mathbf{m} = 1, 2, \dots, \mathbf{n})$$

$$\mathbf{ne}_{\pi}, \text{ bonding MOs, } \theta \leq \pi/2; If \ n \ being \ an \ even \ number,$$

$$\mathbf{HOMO: } \mathbf{m} = \mathbf{n}/2 \theta = n\pi/2(n+1) \qquad \mathbf{LUMO: } \mathbf{m} = (\mathbf{n}/2) + 1 \quad \theta = (n+2)\pi/2(n+1)$$

$$\mathbf{Nature of HOMO} \quad c_{1} = \sin\theta = \sin[n\pi/2(n+1)] = \cos[\pi/2(n+1)]$$

$$c_{n} = \sin n\theta = \sin\frac{n^{2}}{2(n+1)}\pi = \sin\left\{\frac{n}{2}\pi - [\frac{\pi}{2} - \frac{\pi}{2(n+1)}]\right\}$$

$$\mathbf{If n= 4k} \quad c_{n} = \sin\left\{\frac{n}{2}\pi - [\frac{\pi}{2} - \frac{\pi}{2(n+1)}]\right\} = -\cos\frac{\pi}{2(n+1)} = -c_{1} \quad \text{Asymmetric}$$

$$\mathbf{If n= 4k+2} \quad c_{n} = \sin\left\{\frac{n}{2}\pi - [\frac{\pi}{2} - \frac{\pi}{2(n+1)}]\right\} = \cos\frac{\pi}{2(n+1)} = c_{1} \quad \text{symmetric}$$

[n]Polyenes: Nature of their FMOs

$$\mathbf{c}_{i} \qquad \sin \theta, \sin 2\theta \dots \qquad \sin(n-1)\theta, \sin n\theta$$

$$\theta = m\pi/(n+1); \quad \mathbf{E} = \alpha + 2\beta\cos\theta \quad (\mathbf{m} = 1, 2, \dots, n)$$

$$\mathbf{LUMO} \quad \mathbf{m} = (n/2) + 1 \quad \theta = (n+2)\pi/2(n+1)$$
Nature of LUMO

$$\mathbf{c}_{1} = \sin\theta = \sin[(n+2)\pi/2(n+1)] = \cos[\pi/2(n+1)]$$

$$\mathbf{c}_{n} = \sin n\theta = \sin \frac{n(n+2)}{2(n+1)}\pi = \sin\left\{\frac{n}{2}\pi + [\frac{\pi}{2} - \frac{\pi}{2(n+1)}]\right\}$$
If $\mathbf{n} = 4\mathbf{k}$

$$\mathbf{c}_{n} = \sin\left\{\frac{n\pi}{2} + [\frac{\pi}{2} - \frac{\pi}{2(n+1)}]\right\} = \cos\frac{\pi}{2(n+1)} = c_{1}$$
symmetric

$$\mathbf{m} = \mathbf{k} + 2 \quad \mathbf{c}_{n} = \sin\left\{\frac{n}{2}\pi + [\frac{\pi}{2} - \frac{\pi}{2(n+1)}]\right\} = -\cos\frac{\pi}{2(n+1)} = -c_{1}$$
asymmetric

$$\mathbf{m} = \mathbf{k} + 2 \quad \mathbf{k} = \frac{1}{2}\pi + \left[\frac{\pi}{2} - \frac{\pi}{2(n+1)}\right] = -\cos\frac{\pi}{2(n+1)} = -c_{1}$$

$$\mathbf{k} = \frac{1}{2}\pi + \left[\frac{\pi}{2} - \frac{\pi}{2(n+1)}\right] = -\cos\frac{\pi}{2(n+1)} = -c_{1}$$

$$\mathbf{k} = \frac{1}{2}\pi + \left[\frac{\pi}{2} - \frac{\pi}{2(n+1)}\right] = -\cos\frac{\pi}{2(n+1)} = -c_{1}$$

$$\mathbf{k} = \frac{1}{2}\pi + \left[\frac{\pi}{2} - \frac{\pi}{2(n+1)}\right] = -\cos\frac{\pi}{2(n+1)} = -c_{1}$$

$$\mathbf{k} = \frac{1}{2}\pi + \left[\frac{\pi}{2} - \frac{\pi}{2(n+1)}\right] = -\cos\frac{\pi}{2(n+1)} = -c_{1}$$

$$\mathbf{k} = \frac{1}{2}\pi + \left[\frac{\pi}{2} - \frac{\pi}{2(n+1)}\right] = -\cos\frac{\pi}{2(n+1)} = -c_{1}$$

$$\mathbf{k} = \frac{1}{2}\pi + \left[\frac{\pi}{2} - \frac{\pi}{2(n+1)}\right] = -\cos\frac{\pi}{2(n+1)} = -c_{1}$$

$$\mathbf{k} = \frac{1}{2}\pi + \left[\frac{\pi}{2} - \frac{\pi}{2(n+1)}\right] = -\cos\frac{\pi}{2(n+1)} = -c_{1}$$

$$\mathbf{k} = \frac{1}{2}\pi + \left[\frac{\pi}{2} - \frac{\pi}{2(n+1)}\right] = -\cos\frac{\pi}{2(n+1)} = -c_{1}$$

$$\mathbf{k} = \frac{1}{2}\pi + \left[\frac{\pi}{2} - \frac{\pi}{2(n+1)}\right] = -\cos\frac{\pi}{2(n+1)} = -c_{1}$$

| ______3

[n]Polyenes: Nature of their FMOs

$$c_{i} \qquad \sin \theta, \sin 2\theta \dots \qquad \sin(n-1)\theta, \sin n\theta$$

$$\theta = m\pi/(n+1); \quad E = \alpha + 2\beta \cos \theta \quad (m = 1,2,...n)$$

$$ne_{\pi}, \text{ bonding MOs, } \theta \le \pi/2; \text{ If } n \text{ being an odd number,}$$
SOMO $\mathbf{m} = (n+1)/2 \quad \theta = \pi/2$
Nature of SOMO $c_{1} = \sin \theta = \sin(\pi/2) = 1; c_{2} = 0; c_{3} = -1;$

$$\dots, c_{n} = \sin n\theta = \sin \frac{n}{2}\pi$$
If $\mathbf{n} = 4\mathbf{k} + \mathbf{1}$

$$c_{n} = \sin \frac{n\pi}{2} = \sin(2k\pi + \pi/2) = 1 = c_{1} \text{ symmetric}$$
If $\mathbf{n} = 4\mathbf{k} + \mathbf{3}$

$$c_{n} = \sin \frac{n\pi}{2} = \sin(2k\pi + 3\pi/2) = -1 = -c_{1} \text{ asymmetric}$$

$$i = \sin \frac{n\pi}{2} = \sin(2k\pi + 3\pi/2) = -1 = -c_{1} \text{ asymmetric}$$

$$i = \sin \frac{n\pi}{2} = \sin(2k\pi + 3\pi/2) = -1 = -c_{1} \text{ asymmetric}$$

$$i = \sin \frac{n\pi}{2} = \sin(2k\pi + 3\pi/2) = -1 = -c_{1} \text{ asymmetric}$$

| _____3

HMO Treatment: Linear [n]polyenes (C_nH_{n+2})

$$\psi = \sum_{i=1}^{n} c_i \phi_i$$
Variation
Trial π -MO
Variation
Theorem
$$\begin{pmatrix} \alpha - E \quad \beta \quad \dots \quad 0 \\ \beta \quad \alpha - E \quad \dots \quad 0 \\ \dots \quad \dots \quad \dots \quad \dots \\ 0 \quad \dots \quad \beta \quad \alpha - E \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \dots \\ c_n \end{pmatrix} = 0$$

- The *n* MO's differ from each other in energy (non-degenerate MO's!).
- The lowest n/2 (n = even) or (n+1)/2 (n = odd) MO's are occupied.

{
$$E_j$$
}, { $c_i(j)$ }
(j =1, 2, ..., n)

'n

$$\psi(j) = \sum_{i=1}^{n} c_i(j)\phi_i$$

- For linear polyenes having *even* orbitals, there are *n*/2 bonding orbitals and *n*/2 antibonding orbitals.
- For linear polyenes having *odd* orbitals, there are (*n*-1)/2 bonding orbitals, (*n*-1)/2 antibonding orbitals and a non-bonding orbital.

e.g., Hexatriene - Π_6^6

 $|\psi_m = \sqrt{\frac{2}{7}} \sum_{K=1}^{\infty} (\sin \frac{Km\pi}{7}) \phi_K$

$$\psi = A \sum_{i=1}^{4} c_i \phi_i$$

$$\sin \theta \sin 2\theta \sin 3\theta \sin 4\theta \sin 5\theta \sin 6\theta$$

$$\therefore \sin 7\theta = 0 \& \sin \theta \neq 0; \quad \therefore \theta = \frac{m\pi}{7} (m = 1, 2, ..., 6)$$

$$E_{m} = \alpha + 2\beta \cos \frac{m\pi}{7} \quad (m = 1, 2, ..., 6) \quad m = 3, \text{ HOMO, bonding!}$$

$$\boxed{2 \int_{-\infty}^{6} Km\pi} Km\pi \qquad m = 4, \text{ LUMO, antibonding!}$$

In light of the superposition principle, each LMO of CH_4 can be expressed by a linear combination of its CMOs, or verse visa.

LMO	O CMOs	HO of C,	H1s
Φ_a =	$= \Psi_s + \Psi_x + \Psi_y -$	$+\Psi_z = (s + p_x + p_y + p_z)/$	$2 + 1s_a$
Φ_b =	$= \Psi_s + \Psi_x - \Psi_y -$	$-\Psi_z = (s + p_x - p_y - p_z)/$	$2 + 1s_{b}$
Φ_c =	$= \Psi_s - \Psi_x - \Psi_y +$	$-\Psi_z = (s - p_x - p_y + p_z)/$	$2 + 1s_{c}$
Φ_d =	$= \Psi_s - \Psi_x + \Psi_y -$	$-\Psi_z = (s - p_x + p_y - p_z)/$	$2 + 1s_d$

Yet to be normalized!

• It is provable that the four LMOs have the same energy!

As CMOs are eigenfunctions of one-particle eigenequations, we have

$$\hat{h} \Psi_i^{CMO} = \varepsilon_i \Psi_i^{CMO} \& \int (\Psi_j^{CMO}) * \Psi_i^{CMO} d\tau = \delta_{ij}$$

$$\therefore \phi_{j}^{LMO} = \sum_{i=1}^{4} c_{i}^{\ j} \Psi_{i}^{CMO} \& c_{i}^{\ j} = +/-1 \Rightarrow E_{j}^{LMO} = \int (\phi_{j}^{LMO}) * \hat{h} \phi_{j}^{LMO} d\tau / \int (\phi_{j}^{LMO}) * \phi_{j}^{LMO} d\tau$$
$$= \sum_{i=1}^{4} (c_{i}^{\ j})^{2} \varepsilon_{i} / \sum_{i=1}^{4} (c_{i}^{\ j})^{2} = (\sum_{i=1}^{4} \varepsilon_{i}) / 4 = (\varepsilon_{1} + 3\varepsilon_{2}) / 4 \qquad \text{(for } j = 1, ..., 4)$$

Formation of four localized MO's of CH₄:

$$\frac{LMO}{\Phi_{a}} = \frac{HO}{(s + p_{x} + p_{y} + p_{z})} + \frac{H1s}{2s}$$

$$\frac{\Phi_{b}}{\Phi_{b}} = \frac{(s + p_{x} - p_{y} - p_{z})}{2s} + \frac{H1s}{2s}$$

$$\frac{\Phi_{c}}{\Phi_{c}} = \frac{(s - p_{x} - p_{y} + p_{z})}{2s} + \frac{H1s}{2s}$$

$$\frac{\Phi_{d}}{\Phi_{d}} = \frac{(s - p_{x} + p_{y} - p_{z})}{2s} + \frac{H1s}{2s}$$

$$\varepsilon_{i}^{CMO} CMO AO_{C} AO's of H atoms$$

$$\varepsilon_{1} a_{1}: \Psi_{s} = s + (1s_{a} + 1s_{b} + 1s_{c} + 1s_{d})/2$$

$$\varepsilon_{2} t_{2} \begin{cases} \Psi_{x} = p_{x} + (1s_{a} + 1s_{b} - 1s_{c} - 1s_{d})/2 \\ \Psi_{y} = p_{y} + (1s_{a} - 1s_{b} - 1s_{c} + 1s_{d})/2 \\ \Psi_{z} = p_{z} + (1s_{a} - 1s_{b} + 1s_{c} - 1s_{d})/2 \end{cases}$$

SALC's of CH₄
$$\Psi_i^{CMO} = \sum_m c_{im} \varphi_m^{AO}$$

In light of the superposition principle, each LMO of CH_4 can be expressed by a linear combination of its CMOs, or verse visa.

LMO	CMOs	HO of C,	H1s
$\Phi_a = \Psi$	$\Psi_s + \Psi_x + \Psi_y +$	$\Psi_z = (s + p_x + p_y + p_z)/$	$2 + 1s_a$
$\Phi_b = \Psi$	$\Psi_s + \Psi_x - \Psi_y - \Psi_y$	$\Psi_z = (s + p_x - p_y - p_z)/$	$2 + 1s_{b}$
$\Phi_c = \Psi$	$\Psi_s - \Psi_x - \Psi_y +$	$\Psi_z = (s - p_x - p_y + p_z)/$	$2 + 1s_{c}$
$\Phi_d = \Psi$	$\Psi_s - \Psi_x + \Psi_y -$	$\Psi_z = (s - p_x + p_y - p_z)/$	$2 + 1s_d$

Yet to be normalized!

• It is provable that the four LMOs have the same energy!

As CMOs are eigenfunctions of one-particle eigenequations, we have

$$\hat{h} \Psi_i^{CMO} = \varepsilon_i \Psi_i^{CMO} \& \int (\Psi_j^{CMO}) * \Psi_i^{CMO} d\tau = \delta_{ij}$$

$$\therefore \phi_{j}^{LMO} = \sum_{i=1}^{4} c_{i}^{\ j} \Psi_{i}^{CMO} \& c_{i}^{\ j} = +/-1 \Longrightarrow E_{j}^{LMO} = \int (\phi_{j}^{LMO}) * \hat{h} \phi_{j}^{LMO} d\tau / \int (\phi_{j}^{LMO}) * \phi_{j}^{LMO} d\tau$$
$$= \sum_{i=1}^{4} (c_{i}^{\ j})^{2} \varepsilon_{i} / \sum_{i=1}^{4} (c_{i}^{\ j})^{2} = (\sum_{i=1}^{4} \varepsilon_{i}) / 4 = (\varepsilon_{1} + 3\varepsilon_{2}) / 4 \qquad \text{(for } j = 1, ..., 4)$$

$$\frac{C_{3}}{A} = \frac{E}{\left\{ \begin{array}{c} C_{3} \\ A \\ E \end{array} \right\}} = \frac{C_{3}}{\left\{ \begin{array}{c} 1 \\ 1 \\ e^{*} \\ e^{*} \end{array} \right\}} = \frac{C_{3}}{\left\{ \begin{array}{c} C_{3} \\ C_{3}^{2} \end{array} \right\}} = \frac{e^{2\pi i/3}}{\left\{ \begin{array}{c} x \\ z \\ y^{2} \\ y^{2} \\ z^{2} \\ y^{2} \\ z^{2} \\ z^$$