Structures of polyatomic molecules (II)

Introduction:

- In chapter 5, we focused on the (localized and delocalized) σ and π -bonds within polyatomic molecules in terms of hybrid orbital theory (VB) and MO theory as well as the symmetry rules for chemical reactions of polyatomic molecules.
- In this chapter, we will discuss multi-center bonds in electrondeficient molecules (e.g., boranes and carboranes) and the chemical bonds in coordination compounds.

§ 6 Structures of polyatomic molecules (II)

- 6.1 Multi-center bonds in electron-deficient systems
- 6.2 Chemical bonds in coordination compounds
- 6.3 Ligand Field Theory (LFT)
- 6.4 Transition-metal cluster compounds
- 6.5 Carbon clusters and nanotubes

Qualitative description of Chemical bonding within a molecule: VB vs. MO

- *VB*: Valence AOs or hybridized orbitals of each atom(s)
- \rightarrow Forming 2c-2e σ -/ π -bonds with AOs of surrounding atoms.
- \rightarrow If necessary, resonance of VB structures are used to account for electron delocalization (e.g., the Π_6^6 bond in benzene)!

MO: LCAO-MO

- → Formation of bonding & nonbonding MOs.
- * Both hybridization & electron delocalization (e.g., Π_a^b bond) are inherently taken into account.

A molecule/an aggregate of atoms can have several isomers. How to quickly predict its structure/bonding pattern?

Qualitative description of Chemical bonding within a molecule: VB vs. MO

A molecule/an aggregate of atoms can have several isomers. How can one quickly predict its structure/bonding pattern?

- 1. Chemical bondings occur between the valence atomic orbitals (VAOs) (and valence electrons (VEs)) of the constituent atoms within a molecule.
- The more VEs and VAOs involved in chemical bondings, the more stable is a molecule.
- → A molecule prefers the bonding pattern/structure that involves as many bonding VEs & VAOs as possible!

A brief summary on the electronic structures of molecules we have learnt

(MO & VB)

A polyatomic molecule with a closed-shell electronic configuration has m(=even) VEs and n VAOs.

1) If
$$m = n$$
,

VB: n/2 2c-2e (σ -/ π -) bonds (σ first!);

MO: n/2 bonding MOs (occupied!) & n/2 antibonding MOs.

Then if necessary can electron delocalization be considered.

$$C_2H_2$$
: 10 VAOs/VEs = 2x4 (C) + 2x1(H)

 \rightarrow VB: 3 σ -bonds & 2 π -bond.

 \rightarrow MO: 3 σ - & 2 π -bonding MOs.

A brief summary on the electronic structures of molecules we have learnt

(MO & VB)

2) If
$$m > n$$
,

VB: (m-n) lone pairs & (2n-m)/2 2c-2e bonds;

MO: (m-n) nonbonding MOs & (2n-m)/2 bonding MOs.

Then if necessary can electron delocalization be considered.

 $H_2O: 4 VAOs(O) + 2 1s(H) + 8VE \rightarrow VB: 2 LPs & 2 σ-bonds.$

 \rightarrow MO: 2 nonbonding, 2 σ -bonding MOs (occupied)

& 2 antibonding MOs (unoccupied!)

3) If m < n, ? (to be learnt in this chapter).

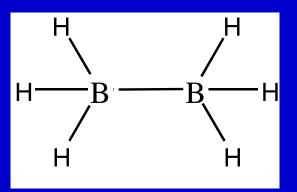
6.1 Multi-center bonds in electrondeficient systems

6.1.1 Boranes and their relatives

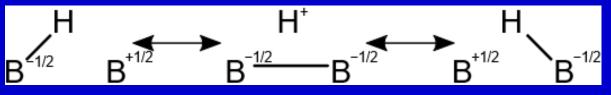
i.
$$B_2H_6$$

$$VAO = 4 (B) x2 + 1(H) x6 = 14$$

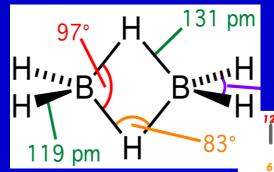
$$VE = 3 (B) x2 + 1(H) x6 = 12$$



- An ethane-like structure having 7 2c-2e bonds needs 14 VEs.
 Lack of two VEs!
- To make full use of all VAOs, two three-center two-electron (3c-2e) B-H-B bonds are formed.

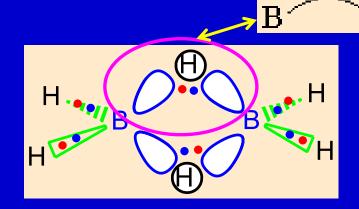


Resonance structures of 3c-2e bond in diborane (*VB description*)



i. B_2H_6

Localized MO description



For a B atom: sp³-hybridization

- 2 VEs used by 2 terminal B- $E_3 = E_B c'\beta$ H bonds
- One VE&HO is used to form a B-H-B bond with a H 1s and a HO of another B atom!

three-center two-electron B-H-B bond:

 $B: sp^3$ hybridization, H: 1s orbital

$$\psi = C_a \psi_{B1} + C_b \psi_H + C_a \psi_{B2}$$

its HMO secular equation is:

$$\begin{vmatrix} \mathbf{E}_{\mathrm{B}} - \mathbf{E} & \boldsymbol{\beta} & 0 \\ \boldsymbol{\beta} & \mathbf{E}_{\mathrm{H}} - \mathbf{E} & \boldsymbol{\beta} \\ 0 & \boldsymbol{\beta} & \mathbf{E}_{\mathrm{B}} - \mathbf{E} \end{vmatrix} = 0$$

$$E_1 = E_H + c\beta \qquad \text{(bonding)}$$

$$E_2 = E_B \quad (E_2 > E_H) \quad \text{(non - bonding)}$$

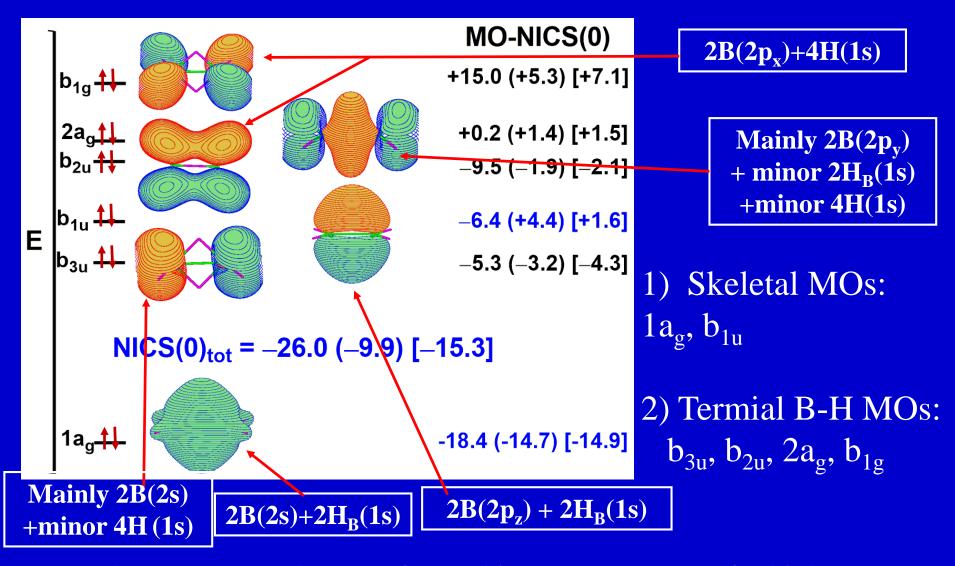
$$E_3 = E_B - c'\beta$$
 (anti - bonding)

$$\psi_1 = \frac{1}{2} (\psi_{B1} + \sqrt{2} \psi_H + \psi_{B2})$$

$$\psi_2 = \frac{1}{\sqrt{2}} (\psi_{B1} - \psi_{B2})$$

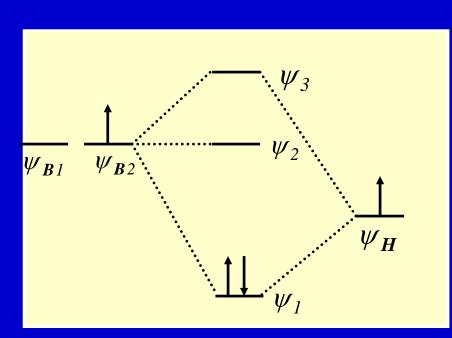
$$\psi_3 = \frac{1}{2} (\psi_{B1} - \sqrt{2} \psi_H + \psi_{B2})$$

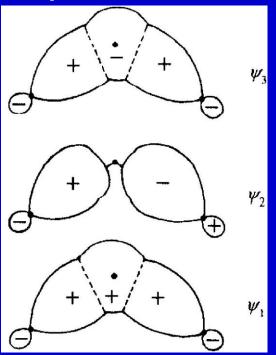
B₂**H**₆: canonical valence molecular orbitals

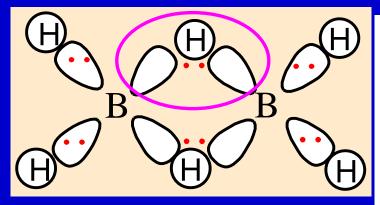


Note: The CMOs can be transformed into LMOs, two of which are the 3c2e LMOs!

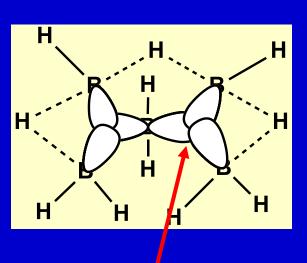
Three-center two-electron (3c-2e) B-H-B bond:

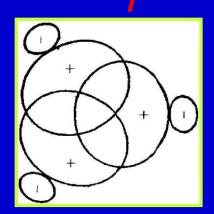






B₂H₆, actually having 14 VAOs
 and 12 VEs, has to form two 3c-2e
 BHB bonds to involve all VAOs
 into bonding MOs.





Triangular BBB 3c-2e bond

- VAO = 5x4(B) + 11(H) = 31 (needs 31VE)
- VE = 15(B) + 11(H) = 26
- Actually having 8 BH σ-bonds, 3 BHB 3c-2e bonds, and 2 BBB 3c-2e bonds!

$$\begin{vmatrix} E_{B} - E & \beta & \beta \\ \beta & E_{B} - E & \beta \\ \beta & \beta & E_{B} - E \end{vmatrix} = 0$$

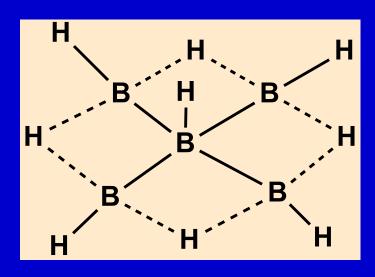
$$solve \text{ seqular equation}$$

$$E_{1} = E_{B} + 2\beta$$

$$E_{2} = E_{3} = E_{B} - \beta$$

$$\psi_{1} = \frac{1}{\sqrt{3}} (\psi_{a} + \psi_{b} + \psi_{a})$$
BBB 3c-2e bond

iii. B₅H₉ Nido structure

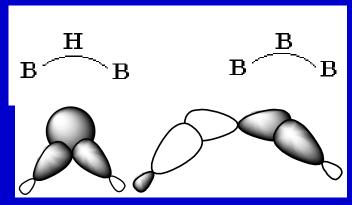


Electron-deficient multi-center bonds

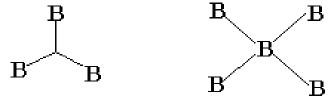
- VAO=5x4(B) + 9(H) = 29
- VE=5x3(B) + 9x1(H) = 24e
- 1) 5 B-H σ-bonds; (10e)
- 2) 4 BHB 3c-2e bonds; (8e)
- 3) a **B**₅ **5c-6e bond**. (6e)
- Each peripheral B atom contributes one sp³-HO and one electron.
- The central B atom contributes three sp³-HOs and 2e.

Types of Chemical bonds in Boranes

- (a) Single σ -bond (2c-2e): B-H and B-B
- (b) 3c-2e bond:



(c) Other polycenter-polyelectron bond



Question arisen:

How to determine the geometric and electronic structures of more complicated boranes?

6.1.2 B_nH_{n+m} with an open-framework structure (including nido- and arachno-type) and Lipscomb's *styx* method.

In mid 1950s, Lipscomb proposed the *styx method* to predict the topological structures of boranes B_nH_{n+m} with open-framework structures.

Linus Pauling (1954&1962 Nobel Prize winner)

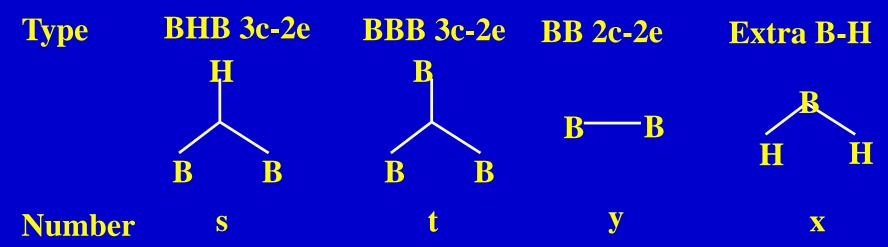
William Lipscomb (1976 Nobel Prize winner)

Roald Hoffmann (1981 Nobel prize winner)

Boranes and their chemical bonding: William Lipscomb Won Nobel prize,1976; Passed away on Apr. 14, 2011.

B_nH_{n+m} with an open-framework structure

n: the number of B atoms, thus the minimal number of B-H bondsm: the number of extra H atoms.



The condition for a stable borane:

$$x = m$$
-s or $m = x$ +s
 $t = n$ -s or $n = s$ +t \implies p sets of $styx \implies p$ isomers
 $y = (2s-m)/2$

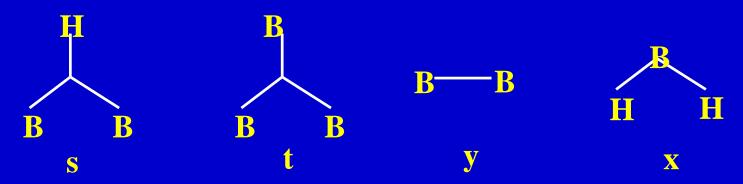
 To differentiate the isomers, each isomer can be labeled by a set of (styx).

Why do the three equations define a stable structure?

a) A B_nH_{n+m} molecule has (5n+m) valence AOs and (4n+m) valence electrons, yet being short of n electrons in order to form a normal $(2c-2e)\sigma$ -bonded molecule.

(5n+m) AOs \rightarrow (5n+m)/2 2c-2e bonding σ -bonds.

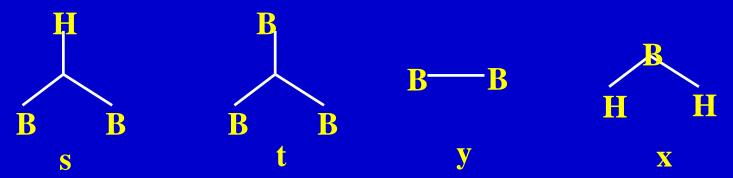
b) Thus requiring the formation of n 3c-2e bonds to make the whole molecule stable, meaning n = s + t or t = n - s.



$$t = n-s$$
 or $n = s+t$

Why do the three equations define a stable structure?

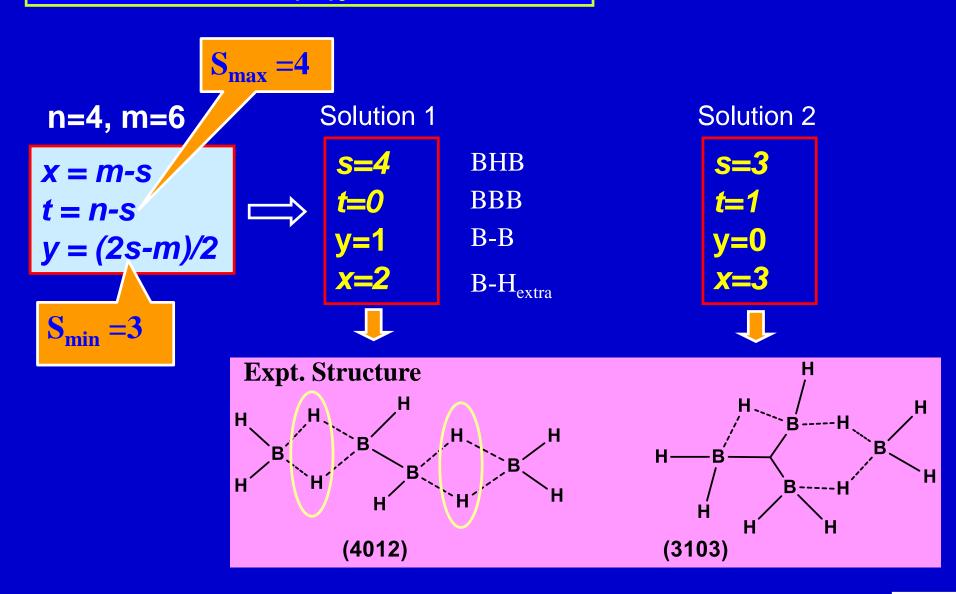
- c) Except the minimal n terminal B-H σ -bonds, the extra m H atoms are used to form s 3c-2e B-H-B bonds and x extra B-H σ -bonds, meaning m = s + x or x = m s.
- d) The total electrons are all used to form various types of bonds, meaning $4n + m = 2n + 2(s + t + y + x) \rightarrow y = (2s-m)/2$.



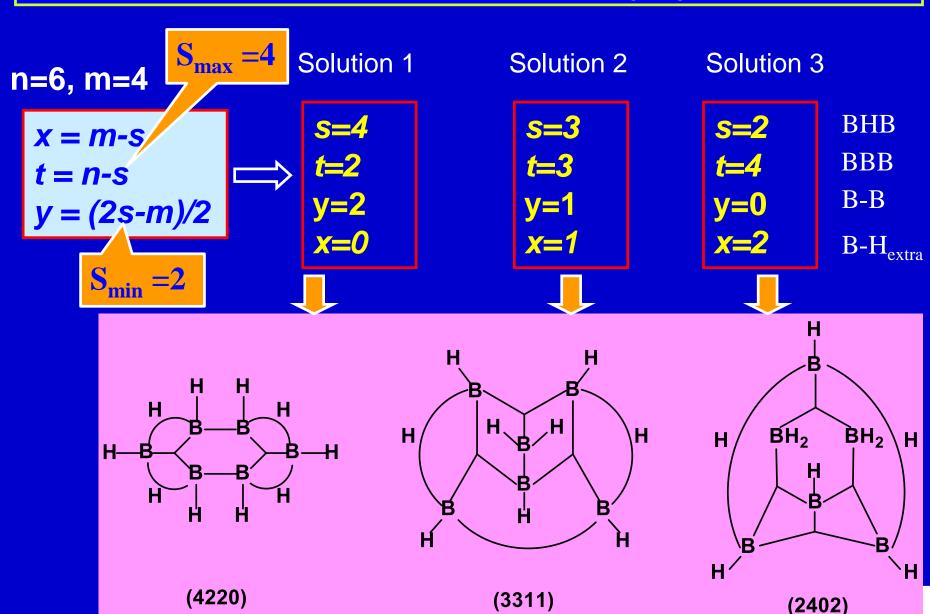
$$x = m-s$$
 or $m = x+s$
 $t = n-s$ or $n = s+t$ $\implies p$ sets of $styx$ $\implies p$ isomers
 $y = (2s-m)/2$

To differentiate the isomers, each isomer can be labeled by a set of (*styx*).

Example 1: B_4H_{10} (2 isomers)



Example 2: The topological structure of B₆H₁₀ (3 isomers)



Example 3: B_5H_9 (3 isomers)

n=5, m=4
$$S_{max} = 4$$
 Solution 1

 $x = m-s$
 $t = n-s$
 $y = (2s-m)/2$
 $y = (2s-m)/2$

Solution 1

 $y = 4$
 $t = 1$
 $y = 2$
 $x = 0$

Expt. Structure

Solution 2

Solution 3

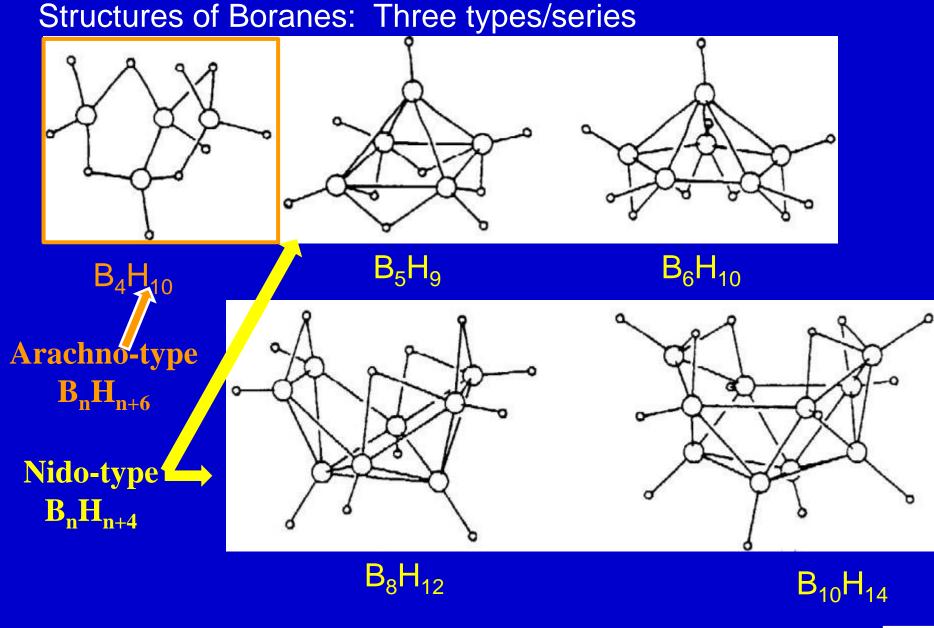
Example 4: (3 isomers) B₅H₁₁

n=5, m=6
$$S_{max} = 5$$
 Solution $x = m-s$ $t = n-s$ $y = (2s-m)/2$ $y = (2s-m)/2$

Solution 2

Solution 3

Expt. Structure



Closo-type (Cage): $B_nH_n^{2-}$

9 12

6.1.3 Borohydride anions $B_n H_n^{2-}$ and carboranes $C_{n'}B_n H_{(n+n'+m)}$ with closo-structures and the Wade's rule

B_nH_n²-(closo):

• $B_6H_6^{2-}$

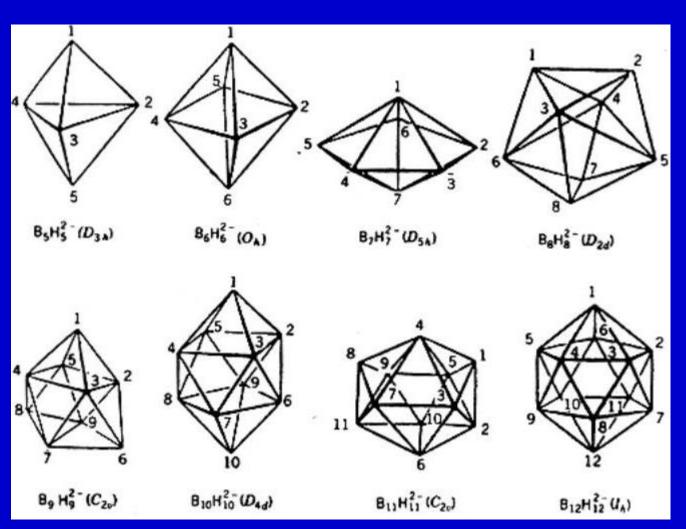
(octahedral)

• B₈H₈²⁻

(dodecahedral)

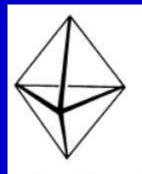
• $B_{12}H_{12}^{2-}$

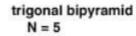
(icosahedral)



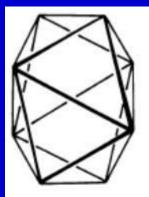
◆ There is little tendency to add H⁺ and form neutral species.

polyhedra with n vertices





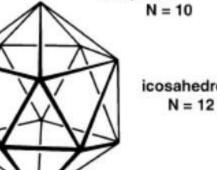
octahedron N = 6



dodecahedron N = 8

tricapped trigonal prism N = 9

bicapped square antiprism



octadecahedron N = 11

icosahedron

"Closo" series - formula B_nH_n²-

Total valence electrons:

$$N_{VE}(Total) = 3n (B) + n (H) + 2 (charge) = 4n+2$$

•Total valence atomic orbitals:

$$N_{VO}(Total) = 4n (B) + n (H) = 5n$$

Each B-H bond uses 2 electrons. (2c-2e σ-bond)

$$\rightarrow$$
 N_{VE}(B-H) = 2n & N_{VO}(B-H) = 2n

The skeletal VEs (for the polyhedral framework):

$$N_{VE}$$
 (skeletal) = $(4n + 2) - 2n = 2(n+1) = N_{FE}$

$$N_{VO}$$
(skeletal) = $5n - 2n = 3n$

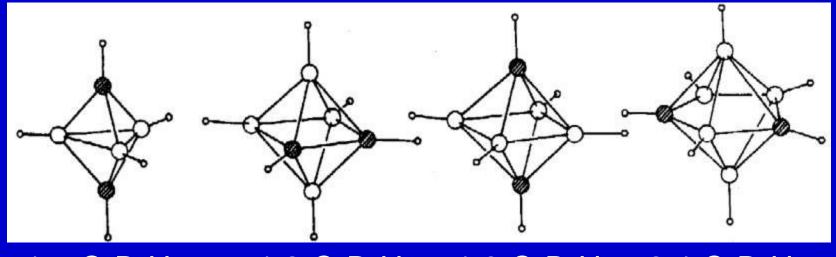
MOs in "closo"-series B_nH_n²-

- Each B atom is sp-hybridized, forming an exocentric B-H bond.
- Each B atom contributes a radial hybrid orbital to form a total of n radial skeletal MOs with the only one bonding MO being occupied.
- Each B atom has two tangential AOs. These AOs form 2n tangential skeletal MOs, half of which are bonding orbitals and doubly occupied.
- A n-vertice closo-borane anion or carborane has in total of (n+1) bonding skeletal MOs.

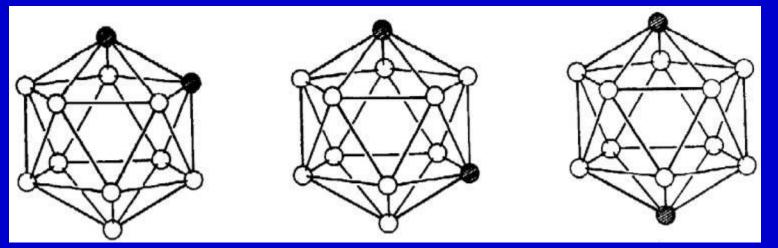
Wade's (n+1) rules

- 3n skeletal AOs/MOs
- n+1 bonding skeletal MOs
- 2n-1 antibonding skeletal MOs
- $N_{FF} = 2n + 2$

Structure of Carboranes



 $1,5-C_2B_3H_5$ $1,2-C_2B_4H_6$ $1,6-C_2B_4H_6$ $2,4-C_2B_5H_7$



3 isomers of C₂B₁₀H₁₂ (with hydrogen omitted)

Note: Herein the topological atom-atom linkage does not mean the presence of a 2c-2e σ -bond! (3D aromaticity!)

Tang's rule

- For a *closo*-borane/carborane with a *n*-vertice triangular polyhedral structure, its total bonding MOs amount to *BMO* = 4n F, with F = f + 3(s+1).
 - (f is the number of faces in the polyhedron, s is the number of defected vertices. For a closo-structure, s=0).
 - e.g., for octahedral $B_6H_6^{2-}$, F=8+3=11, BMO = 4x6-11=13. (6 B-H bonds, 7 skeletal bonding MOs.)
- This rule also works for *nido* and arachno-boranes by supposing the number of defected vertices being 1 and 2, respectively.
 - e.g. nido- C_5H_9 , f = 8, s = -1, F = 8, BMO = 4x5-8 = 12
- 5 B-H bonds, 7 skeletal BMOs (i.e., 4 BHB 3c2e bonds, 3 BBB 3c2e bonds).

- "Nido" series formula B_nH_(n+4)
- Total valence electrons(VEC) = 3n (B) + n(H) + 4 (extra H) = 4n + 4
- •Framework electrons (NFE) = 2n + 4 (i.e., n+2 pairs).
- •The structure of the "nido" compound is based on the "closo" polyhedron with one more vertex than the "nido" compound.

"Arachno" series – formula B_nH_(n+6)

- •Total valence electrons(VEC) = 4n + 6
- •Framework electrons (NFE) = 2n + 6 (i.e., n+3 pairs).
- •The structure of the "nido" compound is based on the "closo" polyhedron with two more vertices than the "nido" compound.

Number of skeletal electrons

to make the structure stable:

2n+2 where n = the number of surface atoms <u>present</u> in the cluster, i.e. n = N

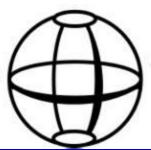
Closo

2n+4 Now N = n+1 (so the number of electrons = 2n'+2 where n' = n+1)

missing surface atom on cluster

Nido

2n+6 Now N = n+2 (so the number of electrons is still 2n"+2 whwere n" = n+2)

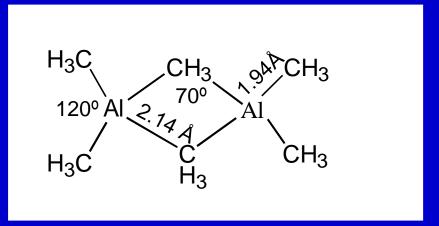


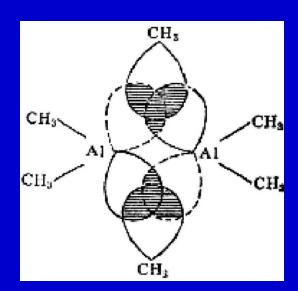
Arachno

16.0

6.1.4 other electron-deficient compounds

Boron group B, Al, Ga, In, TI

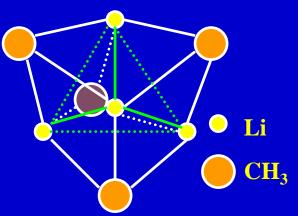


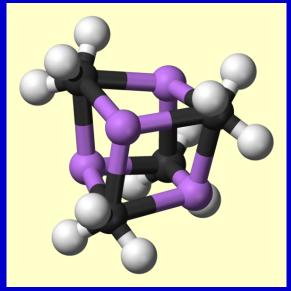


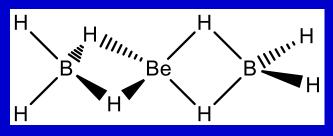
Gas-phase: monomer

Solid state: dimer or polymer

Alkali metal and alkali earth metal alkylides





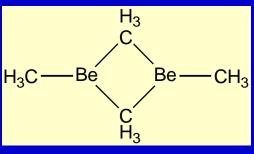


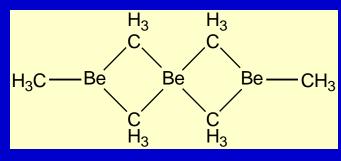
BeB₂H₈

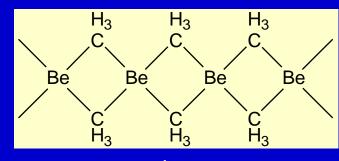
$$R(Li-Li) = 2.68 \text{ Å}$$

 $R(Li-CH_3) = 2.31 \text{ Å}$

Be(CH₃)₂

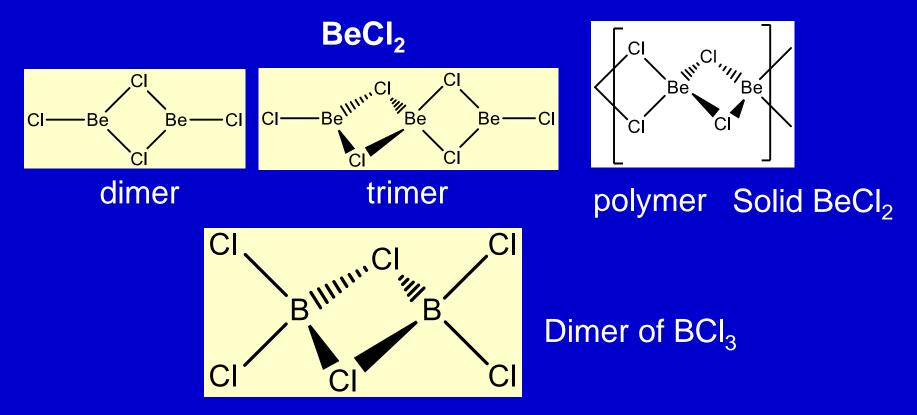






dimer trimer polymer

Is there any 3c-2e bond in the following compounds?



There is no 3c-2e bond in these compounds!

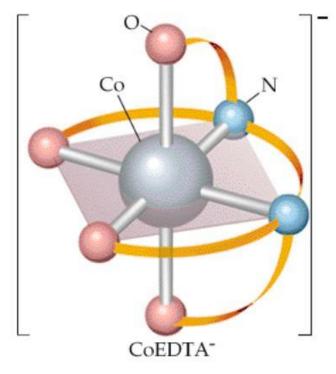
They just have normal & dative 2c-2e bonds!

6.2 Chemical bonds in coordination compounds

Definition of Coordination compound:

Composed of a metal atom or ion and one or more ligands.

- Ligands usually donate electrons to the metal
- Includes organometallic compounds



ethylenediaminetetraacetate (EDTA⁴⁻) (hexadentate ligand)

Theories to describe the bonding within coordination compounds.

- 1) Valence bond theory: developed by Pauling in early 1930s to explain the coordination number, geometry and magneticity of coordination compounds. (Hybrid Orbital + Dative Bond!)
- 2) Crystal field theory: developed by *Bethe* and *van Vleck* in early 1930 to explain the spectra of coordination compounds, but not their chemical bonding!
- 3) Molecular orbital Theory: qualitative description, also can be computationally approached by *ab initio* calculations.
- 4) Ligand field theory: a combination of CFT and MOT.

6.2.1 Coordination polyhedron: (VB description)

molecule	C.N.	hybridization Of metal	Symmetry	Geometry
Ag(NH ₃) ²⁺	2	sp		linear
CuCl ₃ -	3	sp ²	D _{3h}	triangular
Ni(CO) ₄	4	sp ³	T_d	tetrahedral
PtCl ₄ ²⁻	4	dsp ²	D _{4h}	square planar
Fe(CO) ₅	5	dsp ³	D _{3h}	Trigonal
				bipyramidal
	5	d ² sp ²	C _{4v}	square
				pyramid
FeF ₆ ⁴⁻	6	d ² sp ³	O_h	octahedral
others	8		D _{4h}	tetragonal
	8		D _{4d}	Antisquare pyramidal
	10			Bicapped square antiprism
	12		I _h	icosahedral

Coordinate covalent bond & Coordinate ionic bond

Coordinate covalent bond:

To form dative covalent bonds, the central transition metal ion has to rearrange its *n*d-AO electrons to empty some of its d-AOs for hybridization!

→ Central transition metal ion adopts a low-spin state.

Coordinate ionic bond: M-L bond is ionic (electrostatic)!

→ Central transition metal ion adopts a high-spin state.

6.2.2 Crystal Field Model

Mainly focuses on the energy splitting of *d* (or f) orbitals (belonging to the central TM atom).

Assumptions:

- Ligands are regarded as negative point charges or point dipoles.
- 2. Metal-ligand bonding is supposed to be entirely ionic.
 - The otherwise degenerate (n-1)d-orbitals of the central metal atom are split into two or more groups of different energies and symmetries in the electrostatic field exerted by the surrounding ligands.
- Strong-field: large splitting of *d* orbitals → low-spin
- Weak-field: small splitting of d orbitals → high-spin

Perturbation Theory

$$\hat{H} = \hat{H}_0 + \hat{H}'$$
 (Crystal Field)

Hamiltonian of metal atom (central force field)

Potential energy operator arising from the crystal field.

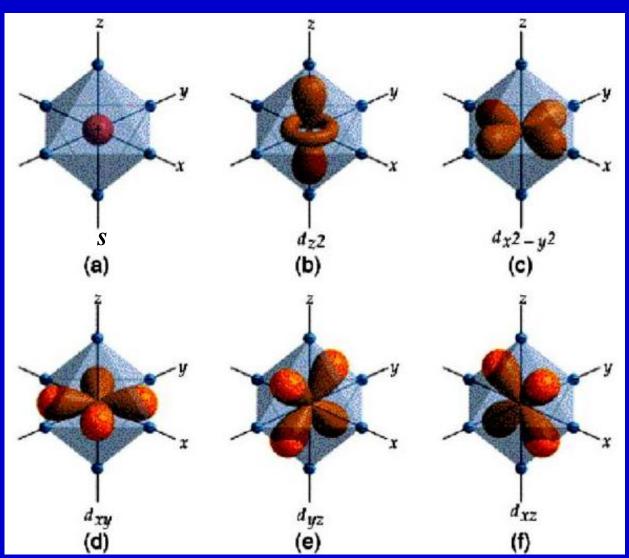
Spherical symmetry

Non-spherical symmetry

- The AOs' symmetries of the central atom now depend on the symmetry of the crystal field.
- The energy gap between the otherwise degenerate atomic orbitals (e.g., *dAOs*) is dependent on the strength of the crystal field.

CFT A. Crystal-field splitting of d orbitals

Example 1: octahedral field

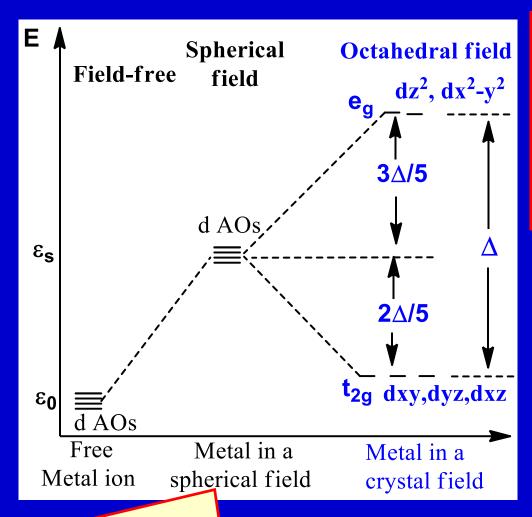


- CF: octahedrally distributed negative charges.
- A qualitative picture:

The dz² and d(x²-y²) orbitals of the central atom suffer from stronger repulsion from the ligands than do the other three dorbitals.

s and d-orbitals of a transition-metal atom.

Octahedral field: Semi-quantitative picture



A hypothetic field by supposing the negative charges of ligands are evenly distributed over the shell.

Stronger CF results in:

- i) Larger $\varepsilon_s \varepsilon_0$ gap.
- ii) Larger crystal-field splitting energy △.

$$:: 6E_{t_{2g}} + 4E_{e_g} = 10\varepsilon_s$$

Suppose $\varepsilon_s = 0$, and

$$\Delta = E_{e_g} - E_{t_{2g}} = 10D_q$$

$$\Rightarrow 6E_{t_{2g}} + 4E_{e_g} = 10\varepsilon_s = 0$$

$$\Rightarrow E_{e_g} = \frac{3}{5}\Delta = 6D_q$$

$$E_{t_{2g}} = -\frac{2}{5}\Delta = -4D$$

Crystal-field stabilization energy (CFSE):

For a d^n ion in a crystal field (e.g., an octahedral field), the

CFSE is defined as,

$$CFSE = E(d^n)_{CF} - E(d^n)_{MSF}$$

Sum of electronic energy in CF with d-splitting.

Sum of electronic energy in a mean spherical field without d-splitting.

$$E(d^n)_{MSF} = n \varepsilon_s = 0 \text{ (Let } \varepsilon_s = 0)$$

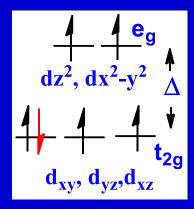
e.g., Fe (d⁶) in a weak field,

$$(t_{2g})^4 (e_g)^2$$

e.g., Fe (d⁶) in a weak field,
$$(t_{2g})^4 (e_g)^2$$

CFSE = $4E_{t_{2g}} + 2E_{e_g} = 4(-\frac{2\Delta}{5}) + 2(\frac{3\Delta}{5}) = -\frac{2\Delta}{5}$

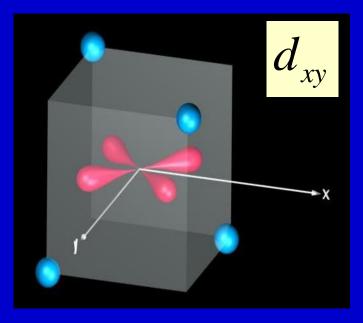
Consisting Places of a resistance of all calculations.

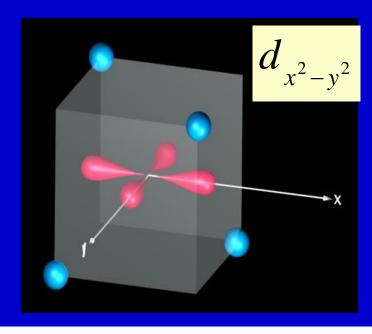


Question: Please derive the pattern of d-orbital splitting in a cubic field (also being O_h-symmetric)?

A. Crystal-field splitting of d orbitals

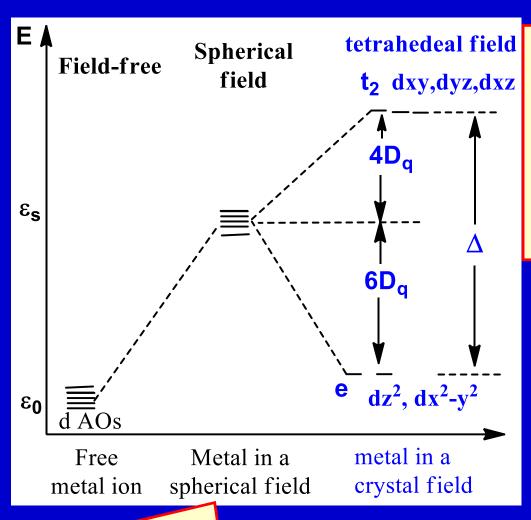
Example 2: tetrahedral field - qualitative analysis





- The distance between dxy (also dyz, dxz) and ligands is shorter than that between d(x²-y²) (also dz²) and ligands.
- Accordingly, the d_{xy} , d_{yz} , and d_{xz} suffer stronger repulsion of the ligands than do the $d(x^2-y^2)$ & dz^2 orbitals.

Example 2: tetrahedral field – A semiquatitative picture



A hypothetic field by supposing the negative charges of ligands are evenly distributed over the shell.

Stronger CF results in:

- i) Larger $\varepsilon_s \varepsilon_0$ gap.
- ii) Larger crystal-field splitting energy △.

$$:: 6E_{t_2} + 4E_e = 10\varepsilon_s$$

Suppose $\varepsilon_S = 0$, and

$$\Delta = E_{t_2} - E_e = 10D_q$$

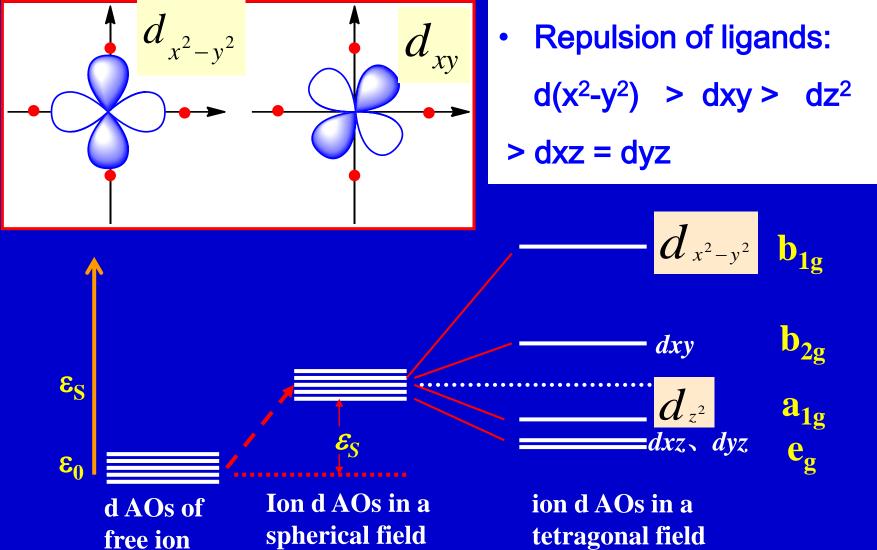
$$\Rightarrow$$
 6 E_{t_2} + 4 E_e = 10 ε_s = 0

$$\Rightarrow E_e = -6D_q = -\frac{3}{5}\Delta$$

$$E_{t_2} = 4D_q = \frac{2}{5}\Delta$$

A. Crystal-field splitting of d orbitals

Example 3: Planar tetragonal (D_{4h}) field



Different types of crystal field induce different patterns of d-orbital splitting.

l	AOs	O _h (octahedral)	T_d	$\mathbf{D_{4h}}$
0	S	$\mathbf{a_{1g}}$	\mathbf{a}_1	a _{1g}
1	p	t _{1u}	t_2	$a_{2u} < e_u$
2	d	$t_{2g} < e_g$ $(t_{2g} > e_g \text{ in a cube})$	e < t ₂	e _g < a _{1g} < b _{2g} < b _{1g}
3	f	$a_{2u} + t_{1u} + t_{2u}$		

Question: Why are the three p orbitals degenerate in a crystal field of O_h - or T_d -symmetry, but non-degenerate in a crystal-field of D_{4h} -symmetry?

B. Effects of Crystal-field splitting

B1. spectrochemical series

$$CN^- > NO_2^- > en > NH_3 > H_2O > C_2O_4^{2-} > OH^- > F^- > Cl^- > Br^- > I^-$$

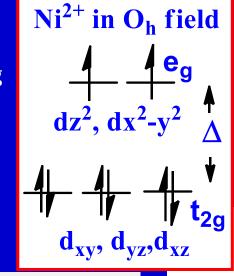
strongest CF largest ∆

 Ni^{2+} : $t_{2g} \rightarrow e_g$

d-d excitation:

en=ethylenediamine

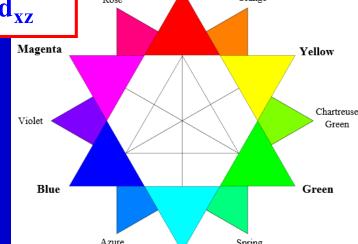
 $\Delta E = hv$ ~visible region (UV-vis)



weakest CF smallest Δ

ROYGBV lower higher E E

Color Wheel

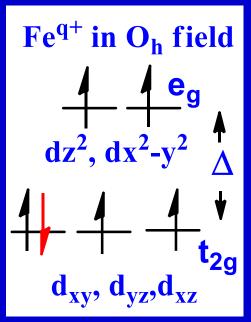


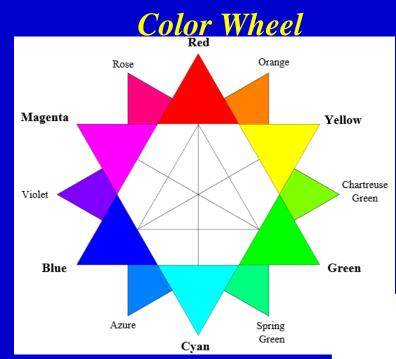
B. Effects of Crystal field splitting charge on metal

greater charge ⇒ larger ∆
 (ligands held more closely, thus interacting more strongly with d orbitals, and exerted a stronger crystal field.)

$$\frac{\text{absorbs}}{\text{Fe(H}_2\text{O})_6^{2+}}$$
 Red Green
 $\frac{\text{Fe(H}_2\text{O})_6^{2+}}{\text{Fe(H}_2\text{O})_6^{3+}}$ Violet Red-Orange

hv
Fe^{q+}:
$$t_{2g} \rightarrow e_g$$
(q=2, 3d⁶)
(q=3, 3d⁵)





No unpaired electrons, S = 0, diamagnetic unpaired electrons, $S \neq 0$, paramagnetic, ESR active!

Magnetic momentum
$$\mu_m = 2\sqrt{S(S+1)}\mu_B = \sqrt{n(n+2)}\mu_B$$
 n: number of spin-unpaired electrons

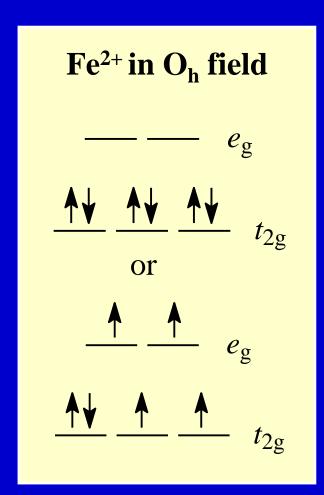
n: number of spin-

e.g.,
$$Fe(H_2O)_6^{2+}$$
 (Fe²⁺ = d^6)
weak-field ligands!

Case I: low-spin (maximum pairing) diamagnetic

found Case II: high-spin experimentally (minimum pairing) paramagnetic S=2, $\mu \approx 4.9 \mu_B$

e.g.,
$$Fe(NH_3)_6^{2+}$$
 ($Fe^{2+} = d^6$) Strong-field ligands



Case I: low-spin ← found (maximum pairing) experimentally! diamagnetic S=0

Case II: high-spin
(minimum pairing)
paramagnetic

Competition between: crystal-field splitting (Δ) vs electron pairing energy (P>0)

enhanced e-e repulsion!

when $\Delta < P \implies \text{high-spin complex}$

when $\Delta > P \implies$ low-spin complex

In General,

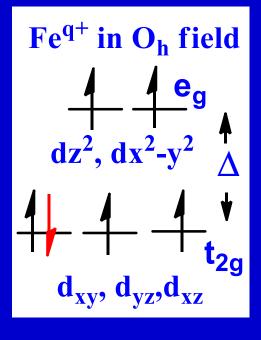
 d^1 , d^2 , d^3 : always high-spin

 d^4 , d^6 : high-spin with ligands $\leq H_2O$

low-spin with ligands $> H_2O$

d⁵: high-spin with all ligands except CN⁻

 d^7 - d^{10} always low-spin



e.g.,
$$[Cr(H_2O)_6]^{2+}$$
 3d⁴

$$3d^4$$

weak CF

$$\rightarrow$$
 S=2

e.g.,
$$[Ni(NH_3)_6]^{2+}$$
 3d⁸

$$\rightarrow$$
 S=1

$$e.g., [Fe(H_2O)_6]^{3+}$$
 vs

$$[Fe(CN)_6]^{3-}$$
 3d⁵

weak field

Very strong field

S=5/2,
$$\mu \approx 5.9 \mu_{\rm R}$$

S=1/2,
$$\mu \approx 1.7 \mu_B$$

Question: Is it possible to design such a coordination compound that has comparable energy in its high- and low-spin states?

Entropy-driven! Spin crossover (SCO)/Spin transition (ST)

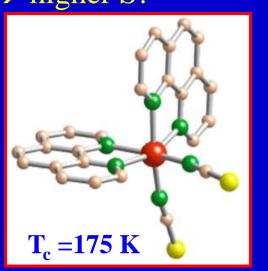
1) M^{q+} : d^4 - d^7 ; 2) $\Delta E(HS-LS) \approx k_BT$; 3) Mostly six-coordinated.

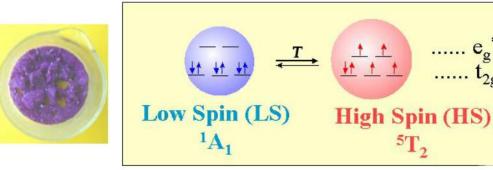
 $\Delta S(HS-LS) > 0 \& \Delta H(HS-LS) \approx \Delta E(HS-LS) > 0$

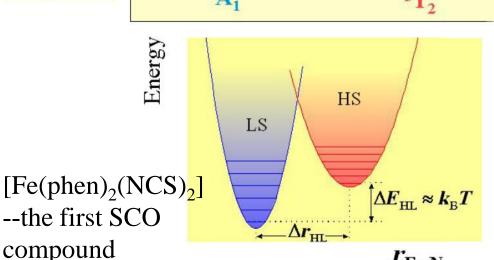
 $\Delta G(HS-LS) = \Delta H-T\Delta S \approx \Delta E-T\Delta S;$

When $T > T_c$, $\Delta G \le 0$; $\rightarrow T_c = \Delta E/\Delta S$ & $\Delta E(HS-LS) \approx k_B T$

HS state: weaker CFT! \rightarrow Longer M-L distance! \rightarrow higher S!







 $r_{
m Fe-N}$

External stimuli for spin crossover:

- 1) Variation of Temperature
- 2) Variation of pressure
- 3) Light irradiation
- 4) Influence of a magnetic field

Methods of Study:

SQUID(Magnetic susceptibility), Mössbauer Spectroscopy, X-ray crystallography, UV-vis, Raman etc.

6.2.3 σ ligands and σ bond: A Molecular orbital (MO)

theory description

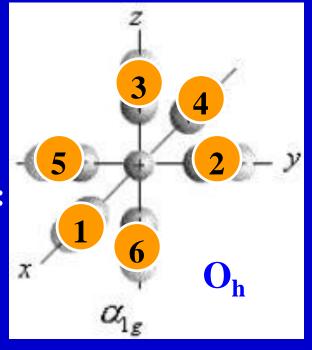
Example:

Octahedral coordination complex

Categories of central metal valence orbitals:

σ type:
$$s(A_{1g}); p_x, p_y, p_z(T_{1u}); d_{x^2-y^2}, d_{z^2}(E_g)$$

 π type: \mathbf{d}_{xy} , \mathbf{d}_{xz} , \mathbf{d}_{yz} (\mathbf{T}_{2g})



6 ligands contribute 6 lone pairs:

$$\{\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5, \sigma_6\}$$

$$\Gamma_{\sigma l-6} = A_{1g} \oplus T_{1u} \oplus E_{g}$$

(Projection operator!) 6 SALCs formed by the 6 lone pairs)

 \rightarrow A total of 12 σ -type AOs give rise to 12 σ -type MOs,

i.e., 6 bonding (occupied) + 6 antibonding (empty)!

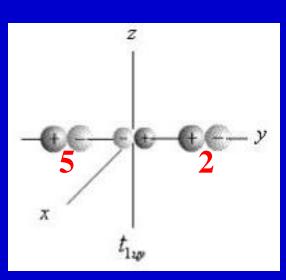
6.2.3 σ ligands and σ -bonding MO's **Symmetry-adapted linear combination** (SALC) of MOs:

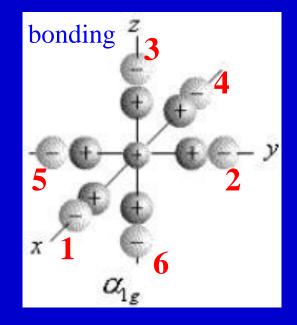
$$\psi_1 = \varphi_{4s} \pm \frac{1}{\sqrt{6}} (\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4 + \sigma_5 + \sigma_6)$$

a_{1g}

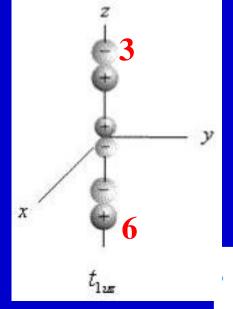
$$\psi_{2} = \varphi_{4px} \pm \frac{1}{\sqrt{2}} (\sigma_{1} - \sigma_{4}) \qquad \psi_{3} = \varphi_{4py} \pm \frac{1}{\sqrt{2}} (\sigma_{2} - \sigma_{5}) \qquad \psi_{4} = \varphi_{4pz} \pm \frac{1}{\sqrt{2}} (\sigma_{3} - \sigma_{6})$$

$$\psi_3 = \varphi_{4py} \pm \frac{1}{\sqrt{2}} (\sigma_2 - \sigma_5)$$

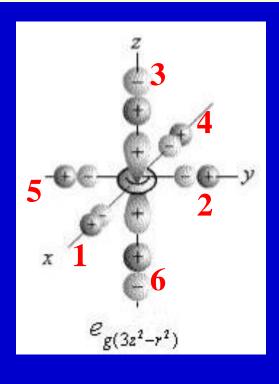




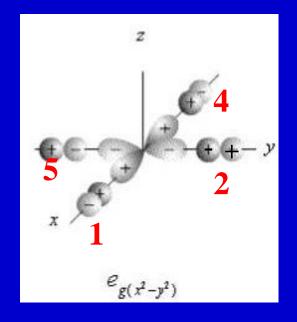
$$\psi_4 = \varphi_{4pz} \pm \frac{1}{\sqrt{2}} (\sigma_3 - \sigma_6)$$

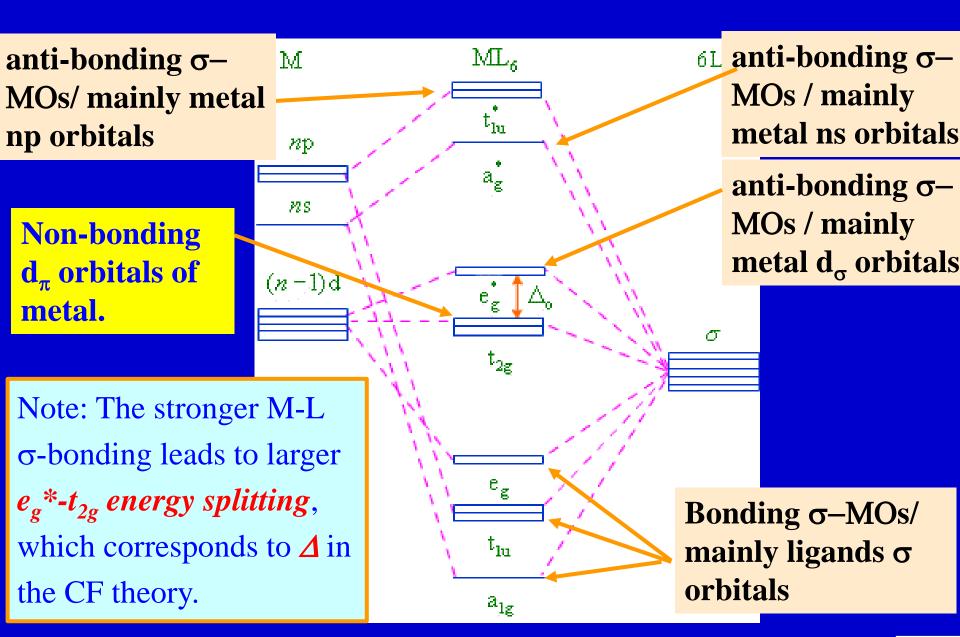


$$\psi_5 = \varphi_{3dz^2} \pm \frac{1}{2\sqrt{3}} (2\sigma_3 + 2\sigma_6 - \sigma_1 - \sigma_2 - \sigma_4 - \sigma_5)$$



$$\psi_6 = \varphi_{3dx^2-y^2} \pm \frac{1}{2} (\sigma_1 - \sigma_2 + \sigma_4 - \sigma_5)$$



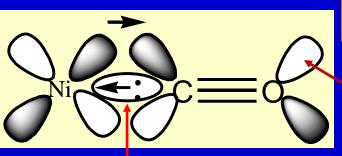


6.2.4 Metal-ligand π – Bonding

In addition to the aforementioned σ -bonding interactions, metalligand π -bonding may present in some metal complexes.

- A π -donor ligand donates electrons to the metal center in an interaction that involves a filled ligand orbital and an empty metal orbital.
 - Cl⁻, Br⁻, and I⁻ donates p_{π} electrons to the metal center
- A π -acceptor ligand <u>accepts</u> electrons from the metal center in an interaction that involves a filled metal orbital and an empty ligand orbital.
 - CO, N_2 , NO, and alkenes accept d_{π} -electrons into their vacant anti-bonding π^* -MOs.
 - $-\pi$ -acceptor ligands can stabilize low oxidation state metal complexes.

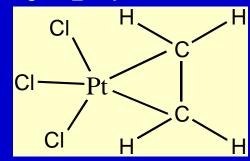
Ni(CO)₄ Ni(3d¹⁰: sp³ hybridization)



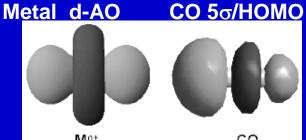
CO $(1\sigma)^2(2\sigma)^2(3\sigma)^2(4\sigma)^2(1\pi)^2(5\sigma)^2(2\pi^*)^0$

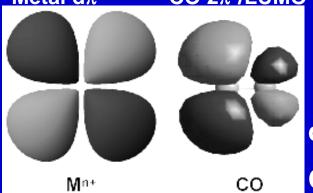
2π*-MO of ligand

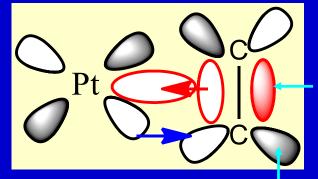
 $[PtCl_3(C_2H_4)]^- Pt^{2+(3d^8)}: dsp^2$



 (d_{xy}, d_{xz}, d_{yz}) σ bond/ σ -donation







 π bonding orbital

 π^* anti-bonding orbital

 d_{π} - π^* bonding/back-donation

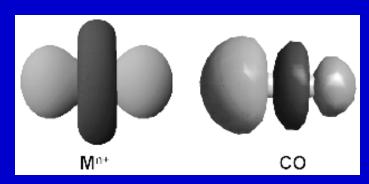
CO bond weakened

Dewar-Chatt-Duncanson complexation model

Bonding and charge transfer between transition metal and Ligands:

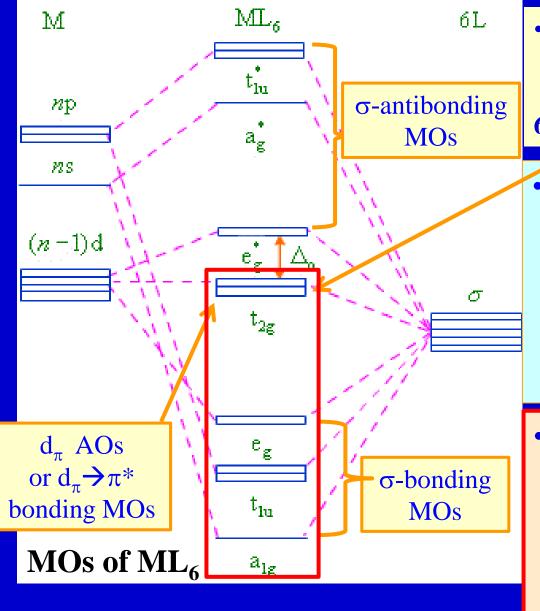
- 1. σ -bonding results in σ -donation from ligand to empty AO/HO of TM.
- 2. π -bonding, if available, gives rise to π -backdonation from $d\pi$ of TM to the empty π^* of ligands.

d^mspⁿ hybridized orbital ← 5σ (CO HOMO)



 $d_{\pi} \rightarrow 2\pi^*$ (CO LUMO)

 σ -donation and π -backdonation in metal carbonyl complexes



- To maintain metal-ligand d_π→π*
 bonding, the metal-ligand σbonding should be covalent!
 6 bonding + 6 anti-bonding σ-MOs
- The t_{2g} d_{π} -orbitals are substantially stabilized upon $d_{\pi} \rightarrow \pi^*$ interactions, which in turn enlarges the energy gap Δ_0 and ensures a lowspin state of the metal ion!
- The as-formed metal-ligand σ-bonding and non-bonding (mostly π-bonding) MOs amount to *nine*, *acquiring a total of 18 VEs*!

→ 18-electron rule of transition metal complexes!

6.2.5 18-electron rule

- First proposed by Irving Langmuir in 1921.
- For a *low-oxidation-state* organometallic complex (mostly containing π -acceptor ligands), the metal center tends to acquire 18 electrons in its valence shell, i.e., *(n-1)dnsnp*.
- Combination of the 9 atomic orbitals, (n-1)dnsnp, of a TM atom with ligand orbitals creates 9 occupied molecular orbitals that are either metal-ligand bonding or non-bonding.
- metal is electron rich (low oxidation number)
- ligands are good π -acceptors (CO, NO) → strong d π - π * bonding enhances M-L σ -bonding → larger Δ .
- mostly 6-coordinated complexes with large splitting energy, i.e., the *M* atom adopts d^2sp^3 hybridization. (More convenient VB description).

How to use the 18e rule:

- Treat the ligand as neutral entity.
- The number of valence electrons for a zero-valent metal center is equal to the group number. e.g., Cr(6e) in Cr(CO)₆. Cr(CO)₆-- d²sp³ + 3d⁶ vs. 3d⁵4s¹ (free Cr)
- Rearrangement of valence-shell electrons, if necessary, occurs on the central TM atom.

```
Fe(CO)<sub>5</sub>: square pyramidal, Fe(3d<sup>8</sup> + dsp<sup>3</sup> hybridization) (free Fe atom--3d<sup>6</sup>4s<sup>2</sup>)
```

```
Ni(CO)<sub>4</sub>: tetrahedral, Ni (3d<sup>10</sup> + sp<sup>3</sup> hybridization).

(free Ni atom--3d<sup>8</sup>4s<sup>2</sup>)
```

18-electron rule

Many ligands donate more than 1 electron. How to count the electrons donated by ligands?

a) 1-electron donor:

H'(in any bonding mode), and terminal Cl', Br', l', R' (e.g. R=alkyl or Ph), and RO';

b) 2-electron donor:

 π -MO as ligand orbital.

CO, PR₃, P(OR)₃, R₂C=CR₂ (η²-alkene), R₂C: (carbene)

c) 3-electron donor:

 η^3 – C_3H_5 (allyl radical), RC(carbyne), μ_2 -Cl, μ_2 -Br, μ_2 -I, μ_2 -R₂P;

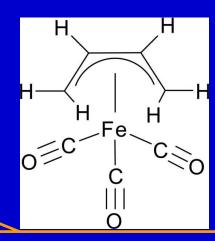
 π -MOs as ligand orbitals.

+Lone pair as ligand orbital.

18-electron rule

d) 4-electron donor:

η⁴-diene, η⁴-C₄R₄ (cyclo-butadienes);



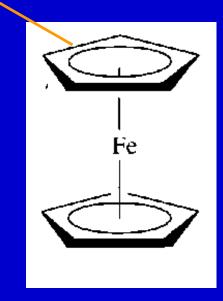
e) 5-electron donor:

 μ_3 -Cl', μ_3 -Br', μ_3 -l', μ_3 - R₂P', η^5 -C₅H₅';

f) 6-electron donor:

$$\eta^6 - C_6 H_6$$
, $\eta^6 - C_6 H_5 Me$;

g) 1- or 3-electron donor: NO

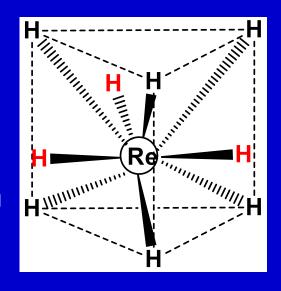


 π -MOs as ligand orbitals.

Example: Ferrocene

Some examples:

• [ReH₉] ²⁻: 7e (Re) + 9e (9H) + 2e = 18e Nine-coordinated! Tricapped trigonal prism! All (n-1)dnsnp AOs of metal are used to form M-L bonds!



- All lanthanides can form nine-coordinated aquo-ions.
 [Ln(H₂O)₉]³⁺; Ln 4f AOs are not involved in the dative bonding.
- In situation where covalency is important, nine would be the limiting coordination number of TM metals!
- However, many of the complexes involving small,
 nonpolarizable main-group ligand atoms have high-degree ionic
 characters and coordination numbers greater than 9.



• $[Ce(NO_3)_6]^{2-}$ 12-coordinate

Some exceptions:

- If there is no possibility to stabilize the t_{2g} level via π -bonding
- → complexes with less than 18 electrons

```
Examples: WCl_6^{2-} (14 e), OsCl_6^{2-} (16 e), TcF_6^{2-} (15 e)
```

• Or if Δ is small, e_g^* orbitals may be occupied,

```
Examples: Co(H_2O)_6^{2+} (19 e), Ni(en)_3^{2+} (20e), Cu(NH_3)_6^{2+} (21e)
```

[It is not essential for weaker CFT complexes to fulfill the 18e rule!]

- "Left side" metals: 18 electron valence shell would require too many ligands (steric repulsion)
 - → complexes with less than 18 electrons are very common

```
Examples: TiF_6^{2-} (12 e), Cr(NCS)_6^{3-} (15 e), VCl_6^{2-} (13 e)
```

• Square planar complexes: "16 electron rule" (all bonding orbitals are occupied, 18 e complex would have 2 e in antibonding orbitals)

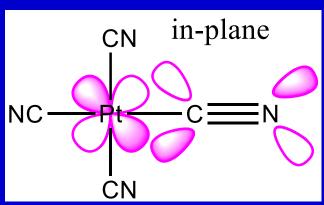
Some exceptions:

• $[PtCl_3(C_2H_4)]^-$: $10e(Pt) + 3e(3Cl) + 2e(C_2H_4) + e = 16e$

(Pt is dsp^2 -hybridized with one $6p_z$ orbital being unoccupied. However, this unhybridized $6p_z$ orbital can interact with the p_π orbitals of such π -donor ligands as Cl, Br, I etc.)

- $[Au(Cl)_4]^-$: 11e (Au) + 4e (4Cl) + e = 16e
- $[M (CN)_4]^{2-}$ (M=Pt, Ni): 10e(M) + 4e(4CN) + 2e = 16e

(involving in-plane and out-of-plane $d\pi$ - π * bondings!)



A more general rule accounts for such exceptions!

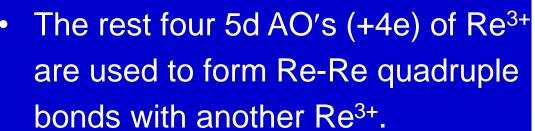
6.3 Ligand Field Theory (LFT)

- A combination of the crystal field theory, MO theory, and group theory, but focusing on the energy splitting, spectral terms of metal ion in coordination compounds.
- Two factors influence the d-orbital splitting of a metal atom in a ligand field,
- 1) The interaction between d-orbital electrons;
- 2) The bonding between the metal and ligands.
- A strong ligand field is formed in case type 2 interaction is stronger than type 1. Otherwise, the ligand field is a weak field.
- This rule also helps us to understand the strong and weak crystal fields defined in the crystal field theory.

6.4 Transition-metal cluster compounds 6.4.1 Metal-metal multiple bonds

Re₂Cl₈² Re-Re 2.24Å(2.76 Å in Re crystal)

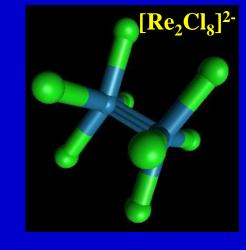
 $ReCl_4$: Re³⁺-5d⁴, dsp², {5dx²-y², 6s, 6p_x,6p_y};

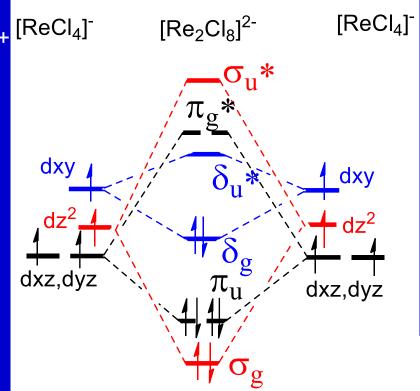


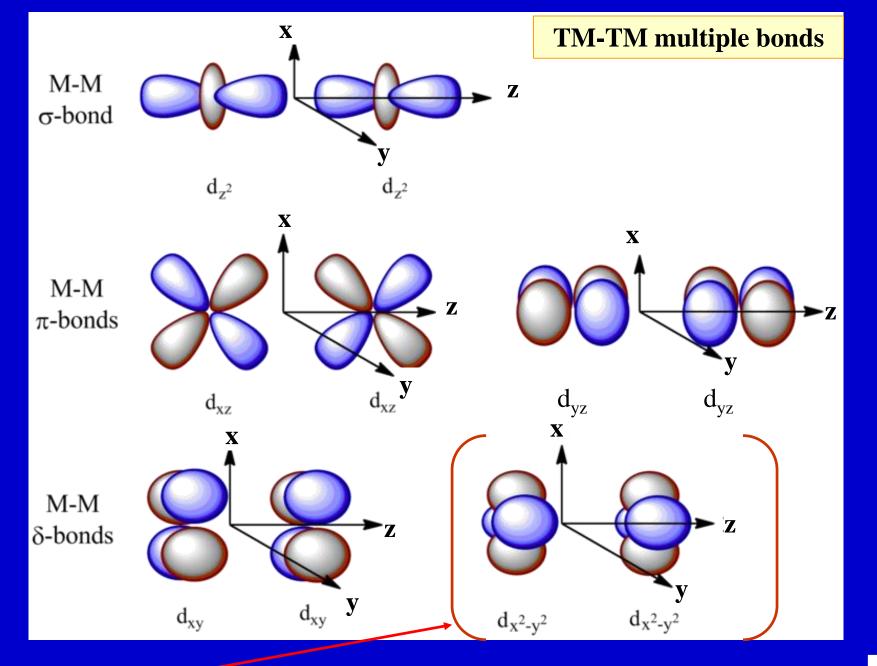
Quadruple Bond

$$\sigma_g^2 \pi_u^4 \delta_g^2$$

Analog: Mo₂(O₂CR)₄ and Cr₂(O₂CR)₄

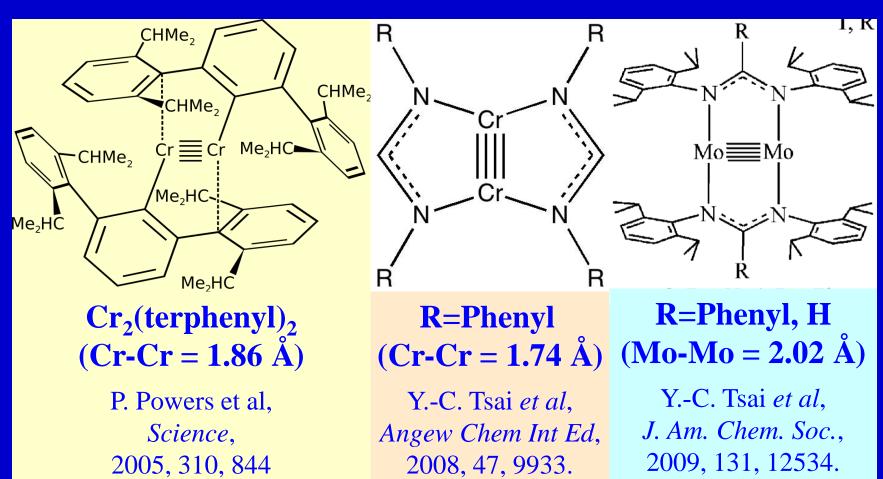




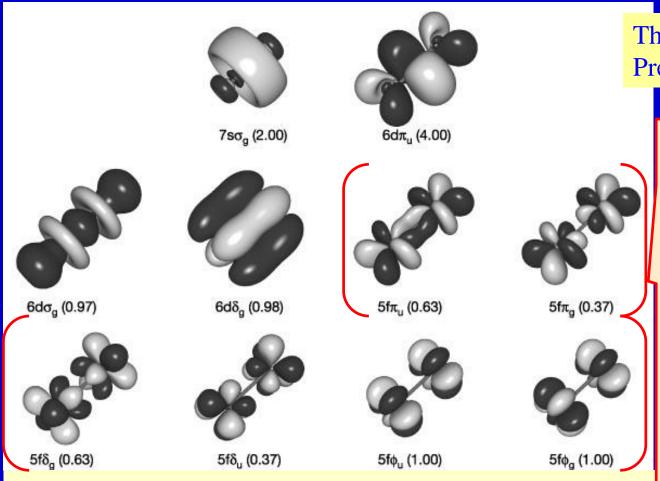


Note: This is not involved in the Re-Re quadruple bond.

 Extremely, a TM-TM bond can be a quintuple bond by making use of all (n-1)d orbitals, e.g., in Cr(I)-Cr(I) and Mo(I)-Mo(I) complexes.



 Similarly, two f-series metals (Ln-series or Am-series metal) can form f-orbital-based multiple M-M bond, i.e., U₂

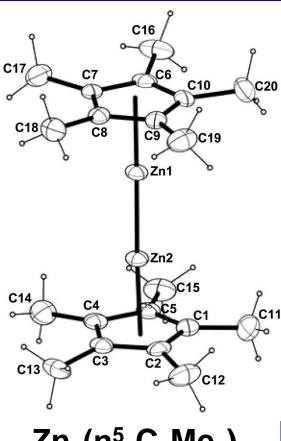


s-, d- and f-based bonding orbitals of U₂ that has a quintuple U-U bond.

Theoretical Prediction!

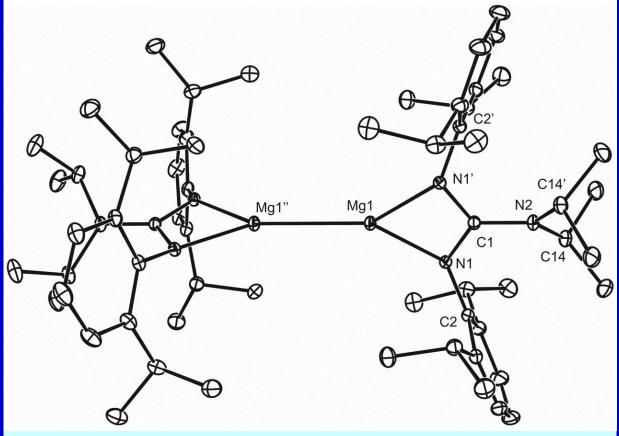
However, owing to the quite strong exchange-correlation effects, the 5f-derived π -, δ - and ϕ -type MOs are weakly bonding or even non-bonding!

 A M-M bond also can be formed between ns AOs of two metal atoms, e.g., in Zn(I)-Zn(I) and Mg(I)-Mg(I) complexes.



 $Zn_2(\eta^5-C_5Me_5)_2$

Resa et al. *Science* 2004, 305, 1136

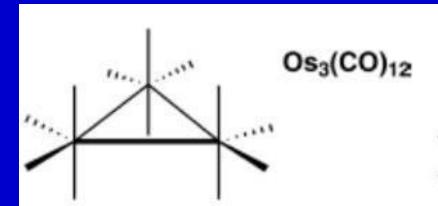


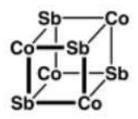
 $Mg_2(N_2CR)_2$

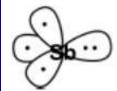
S P Green et al. Science 2007;318:1754-1757

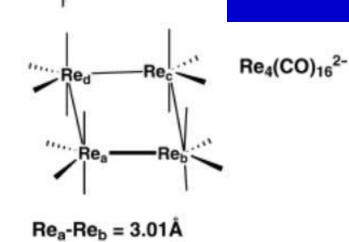
6.4.2 Cluster geometry

i. Structural polyhedron







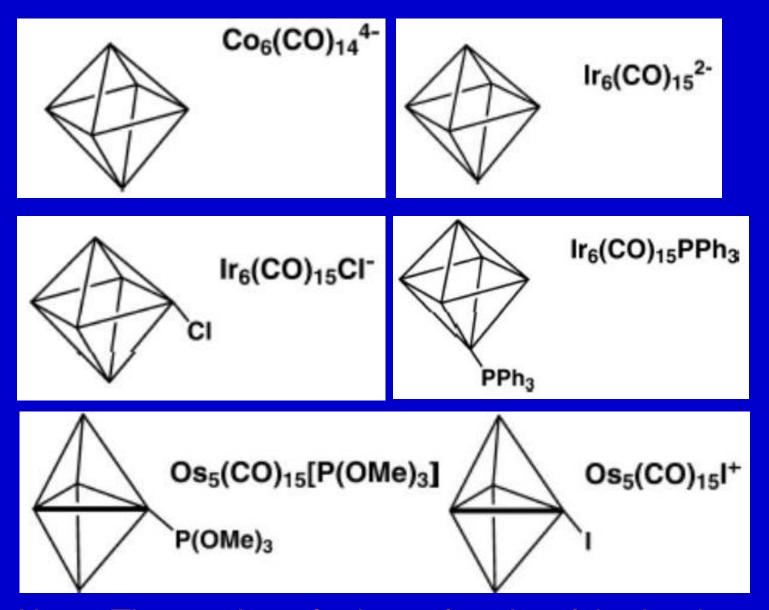


Ir₄(CO)₁₂

$$Re_{a}-Re_{b} = 3.01A$$

 $Re_{b}-Re_{d} = 2.96Å$

$$Re_a$$
- $Re_c = 5.23$ Å



Note: The number of edges of such polyhedra do not necessarily correspond to the number of M-M bonds!

ii. Electron counting and metal-metal bonds

$$b = \frac{1}{2}(18n - g)$$
* Derived from the 18e rule for *low-oxidation-state transition metal complexes*!

* Valid for low-oxidation-state metal clusters

* Valid for low-oxidation-state metal clusters.

- b: bond valence (i.e., total number of metal-metal bonds)
- n: number of transition-metal atoms
- g: total valence-shell electrons, including electrons from all

In a metal cluster, a MLx fragment forms a suitable number of metal-metal covalent bond(s) with its neighboring ML_v fragments to attain 18 valence-shell electrons!

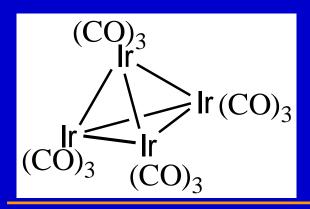
If a cluster involves main-group atoms,

 $b = \frac{1}{2}(18n_1 + 8n_2 - g)$

n₁: number of transition-metal atoms

 n_2 : number of main-group atoms in the cluster polyhedron.

Examples:



$$VE = g = 4x9 (Ir: 5d76s2) + 12x2 (CO) = 60$$

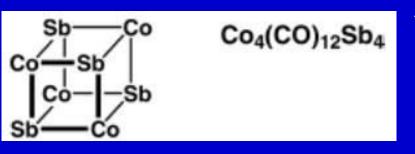
$$\therefore$$
 b = (18n - g)/2
= (18x4 - 60)/2 = 6

$$Ir(CO)_3$$
 VAO (Ir) = 9 i.e., (n-1)d (5) + ns (1) + np (3)
(Ir: $5d^76s^2$) VE = 9 + 3x2 = 15

- → Being lack of 3 VEs to fulfill the 18e rule!
- → The Ir atom in Ir(CO)₃ forms three covalent M-M bonds with other M centers to get three more electrons.

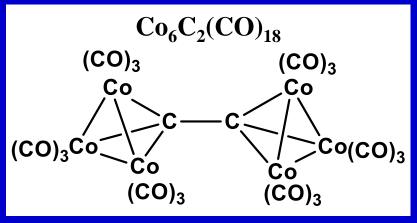
Full picture: In $Ir_4(CO)_{12}$, each Ir adopts d^2sp^3 hybridization with three VEs/HOs being used to form three M-M bonds, as well as three unhybridized 5d AOs doubly occupied.

Examples:



 $n_1 = 4, n_2 = 4$

$$VE = g = 4x9 (Co: 3d74s2) + 4x5 + 12x2 (CO) = 80$$



$$VE = g = 6x9 (Co: 5d76s2) + 2x4 (C) + 18x2 (CO) = 98$$

$$n_1 = 6, n_2 = 2$$

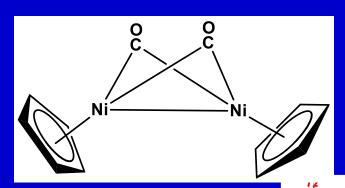
Problem: The metallocene Cp_2Ni reacts with $Ni(CO)_4$ to afford a binuclear complex: $Cp_2Ni + Ni(CO)_4 \rightarrow [CpNiCO]_2 + 2CO$ Please derive the Ni-Ni bond order and structure of this complex! (Cp = cyclopentadienyl)

1)
$$VE = g = 2x10$$
 (Ni: $3d^84s^2$) + $2x5$ (Cp) +2x2 (CO) = 34
b = $(2x18-34)/2 = 1$ (Ni-Ni bond order)

2)Key question: Are the CO ligands bridging or terminal? Key point: Each Ni atom should follow the 18e rule.

Each Ni atom adopts d^2sp^3 hybridization, thus forming 6 σ -bonds with its surrounding atom/ligands:

- 3 of them are used by a Cp ligand.
- 1 of them is used by the Ni-Ni bond.
- 2 of them should be used by the CO ligands.
- Only two CO ligands are available.
- \rightarrow two μ_2 -CO ligands!

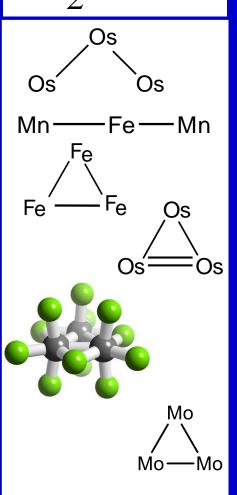


iii. Bond valence and cluster geometry

A. Tri-nuclear compounds

Metal cluster compounds	g	b	M-M/pm
Os ₃ (CO) ₉ (μ ₃ -5) ₂	50	2	Os-Os, 281.3
Mn ₂ Fe(CO) ₁₄	50	2	Mn-Fe, 281.5
Fe ₃ (CO) ₁₂	48	3	Fe-Fe, 281.5
Os ₃ H ₂ (CO) ₁₀	46	4	Os-Os, 281.5 Os=Os,268.0
$[Re_3(\mu_2-CI)_3CI_9]^{3-}$ Re(III) ~ 5d ⁴	42	6	Re=Re, 247
[Mo ₃ (μ_3 -O)(μ_2 -O) ₃ F ₉)] ⁵⁻ Mo(IV) ~4d ²	42	6(expected) 3 (actually)	Mo-Mo,250.2

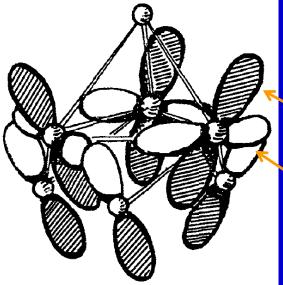
$$b = \frac{1}{2}(18n - g)$$

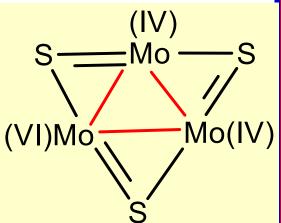


The last compound has such high-valent metal cations that are too electron-deficient to afford the hypothetic M-M bonds.

Special case: $[Mo_3(\mu_3-X)(\mu_2-X)_3]^{4+}$ (X= S, O) core with d-p π -conjugation & quasiaromaticity

 $[Mo_3(\mu_3-O)(\mu_2-O)_3F_9)]^{5-}$

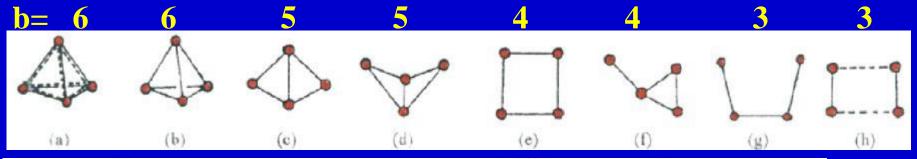


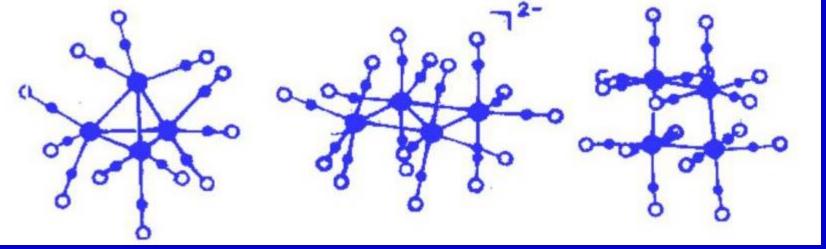


- Each 6-coordinate Mo(IV) is d²sp³-hybridized.
- Each Mo(IV) contributes two d-AO's and two VE's to afford three bonding skeletal MO's.
- Each Mo (IV) has 16VE with an empty d-AO!
- The 6c-6e d(Mo)-p(S) π -conjugation within the puckered [Mo₃S₃]⁶⁺ ring, i.e., the so-called quasi-aromaticity.
- Only upon inclusion of such p(S)→d(Mo) π-bonding can each Mo center approximately fulfill the 18e Rule.

B. Tetranuclear compounds

$$b = \frac{1}{2}(18n - g)$$



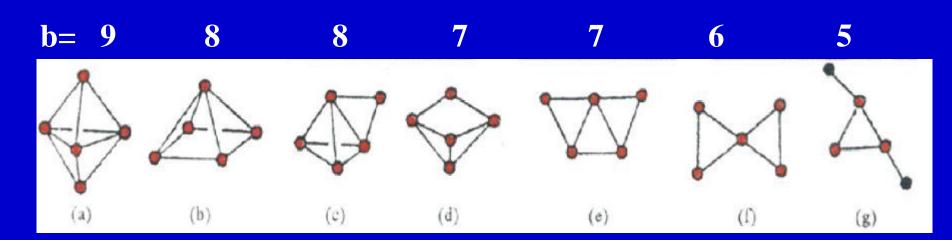


g=4*9+12*2=60

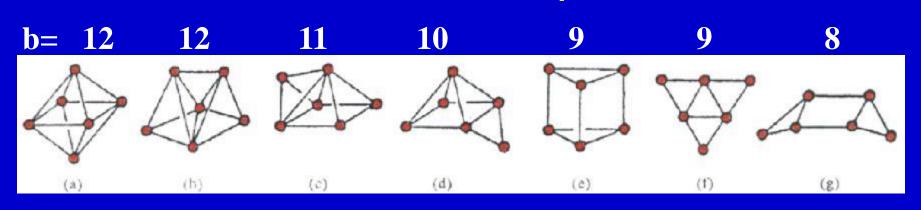
b= (18*4-60)/2=6

g=4*7+16*2+2=62

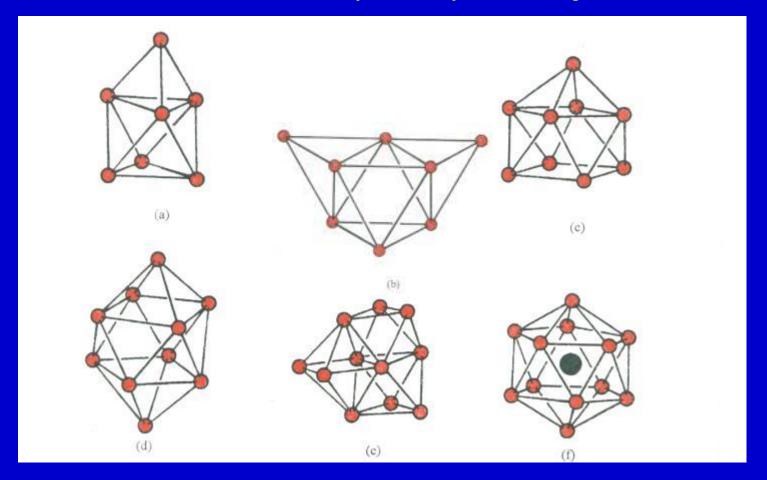
Pentanuclear compounds



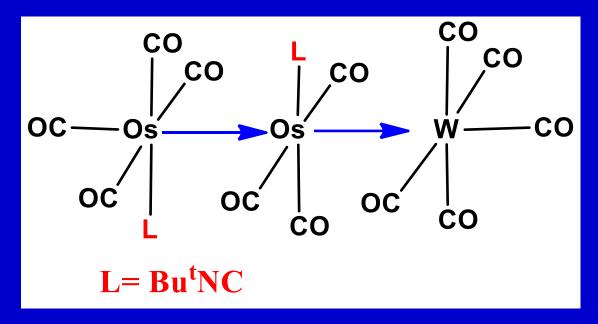
Hexanuclear compounds



Multi-nuclear (N>6) compounds



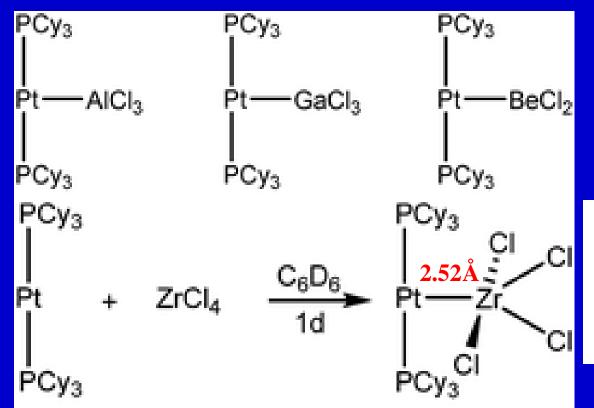
iii. Metal-metal dative bond

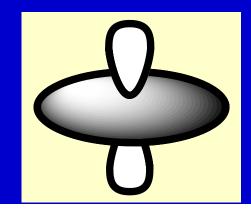


- VE or g = (2x8+6+14x2)=50, b = (18xn-g)/2 = 2
- For the Os(CO)₅L, its Os1 atom fulfills the 18e rule. So this fragment works as a ligand of Os2.
- $W(CO)_5$ requires 2 extra electrons to fulfill the 18e rule.
- Both metal-metal bonds could be regarded as dative bonds for the metal atoms to achieve an 18e configuration.

see Pomeroy et al, *Inorg. Chem.*, 1992, 31, 3155.

Metal-metal dative bond: more examples





- Non-bonding sd_o hybridized orbital of Pt.
- It is electron-donative!

- Pt sp-hybridization. Pt achieves a 14e configuration in Pt(PCy₃)₂. Or more exactly, Pt --sd_{σ}-hybridization, 3c4e σ -bond in Pt(PCy₃)₂.
- Thus in Pt(PCy₃)₂, the occupied Pt sd_σ hybridized orbital has a high-degree of 6s contribution, and is diffusive and electron-donative! see Braunschweig et al, *Chem. Comm.*, 2010, 46, 913.

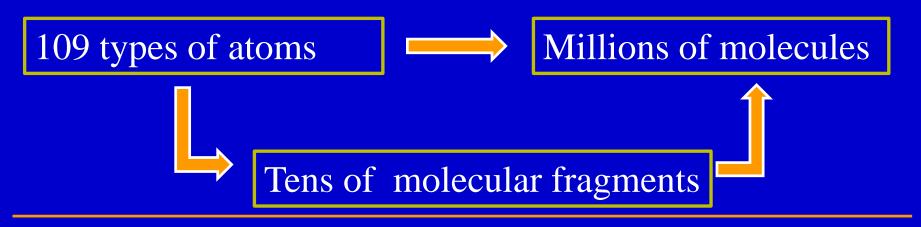
6.4.3 Molecular fragment, Generalized octet rule, and Isolobal analogy



- Molecular fragment -- the constitutive groups of atoms in a molecule, e.g., functional groups in organic chemistry, monomer of a polymer, $Ir(CO)_3$ in $Ir_4(CO)_{12}$.
- A molecule can be regarded as a combination of molecular fragments chemically bonded with each other. (Proposed by R. Hoffmann!)

e.g.,
$$CH_3CH_2OH = (CH_3)(CH_2)(OH)$$
; $Ir_4(CO)_{12} = [Ir(CO)_3]_{4}$; $H_2O_2 = (HO)_2$;

• This concept facilitates us to understand the construction of complicated molecules and to design new molecules.



• In practice, a molecular fragment can be regarded as an atom with certain valence electrons (VEs) and unsaturated valence V_i .

```
V_i = 2O_i - i (V_i: unsaturated valence or covalency;
O_i: number of VO's; i: number of VE's)
```

For a given molecular fragment, we focus on the total VEs (i) & VOs of its central atom with unsaturated valence (V_i), e.g., both CH₃ and OH have 7 VEs/4VOs and 1 free valence, CH₂ has 6 VEs and free valence of 2, $Ir(CO)_3$ has 15VEs/9VOs and free valence of 3, $Fe(CO)_4$ has 16 VEs and free valence of 2.

Examples:

Carbene
$$CR_2$$
: $O = 4$, $i(VE) = 6$, $V = 2$

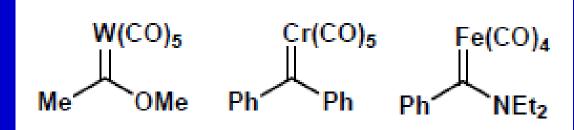
$$M(CO)_x$$
: Fe(CO)₄, Cr(CO)₅, W(CO)₅

$$O = 9$$
, $i = 16$, $V = 2$

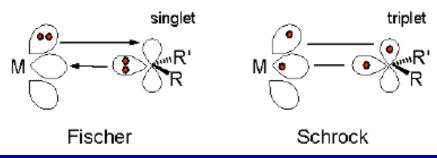
The fragments can form M=C double bond as in the following Fischer

carbene complexes,

Representative Fischer Carbenes:



Comparision of Fisher Carbene and Schrock carbene:



Dative bond

Covalent bond

How to understand the bond valence of a TM cluster compound in terms of molecular fragment theory? $b = \frac{1}{2}(18n - g)$

- For the *i*th fragment of a cluster compound, the unsaturated valence is $V_i = 2O_i i$ (V_i : unsaturated valence or covalency; O_i : number of VO's; i: number of VE's)
- \rightarrow The total free valence (V) of all fragments in a cluster compound can be saturated upon formation of M-M bonds (b), i.e., V = 2b.

$$V = \sum_{i} V_{i} = \sum_{i} 2O_{i} - \sum_{i} i = \sum_{i} 2O_{i} - g, \quad b = V/2 = (\sum_{i} 2O_{i} - g)/2$$

• For a TM cluster compound with n TM atoms, each TM center has O_i = 9. Then

$$\sum_{i=1}^{n} 2O_{i} = 18n \implies b = (18n - g)/2$$

Generalized octet rule: proposed by Pearson

- If the total VEs (i) of a molecular fragment is 2 times of its total valence orbitals (O_i), this molecule fragment has a closed-shell electronic configuration and can itself be an stable molecule. $i.e., i = 2O_i \Rightarrow V_i = 2O_i i = 0$
- central atom = main-group element $(O_i=4)$, i.e., octet rule central atom = transition metal $(O_i=9)$, i.e., 18e rule

• • • • •

 $(CO)_3$ |r| |r| |r| $(CO)_3$ $(CO)_3$ $(CO)_3$

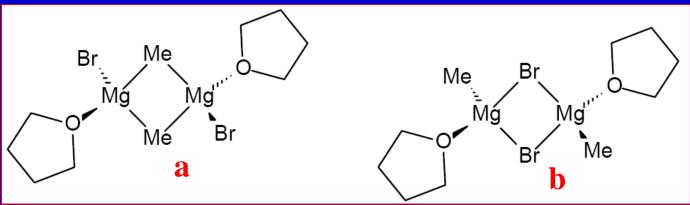
• This rule also governs the chemical bondings between molecular fragments, e.g., $Ir(CO)_3$ has 15 VEs and 9 VOs, being short of 3VEs. To fulfill the rule, it forms three 2c-2e M-M bonds with other $Ir(CO)_3$ fragments in $Ir_4(CO)_{12}$.

Generalized octet rule

Rules	O _i	i	VO's	Examples
2e	1	2	S	LiH, LiR, Li2
4e	2	4	sp	BeR ₂ , R-Mg-Cl
6e	3	6	sp²	BEt ₃ , La(Ph) ₃
8e	4	8	sp³	CH ₄ , NF ₃ , H ₂ O
10e	5	10	sp³d	PF ₅ , SF ₄ , XeF ₂
12e	6	12	sp ³ d ²	SF ₆ , MoF ₆ , PF ₆ ⁻ , SiF ₆ ²⁻
14e	7	14	sp ³ d ³ /d ⁵ sp	IF ₇ / Agl ₂ -, Au(CN) ₂ -
16e	8	16	d ⁵ sp ²	Cp ₂ Cr, Au(CN) ₄
18e	9	18	d ⁵ sp ³	Ni(CO) ₄ , Fe(CO) ₅ , Cr(CO) ₆

Generalized octet rule (GOR): examples

Complexes fulfilling the octet rule:



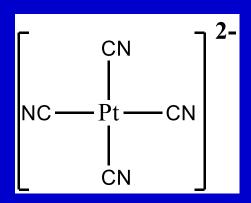
Why is isomer **b** more stable than isomer **a**?

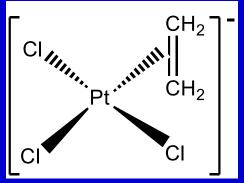
Note: isomer a, has two Mg-Me-Mg 3c-2e bonds.

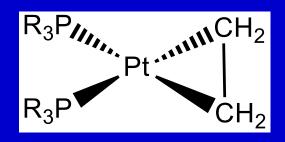
- 1) No metal-metal bond. $V = 8n-g=0 \Rightarrow g=8n=16!$
- 2) However, total skeletal bonding MO's: 8 (b) > 6 (a).
- 3) Total skeletal bonding electrons: g=16 (b) > 12 (a) (needs extra 4e)
- 4) Isomer a conflicts with GOR. Isomer b having four more bonding skeletal electrons and fulfilling GOR is more stable!

Generalized octet rule: examples

16e complexes:







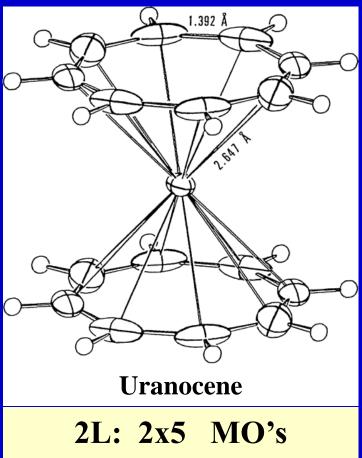
- 1) The Pt²⁺ (5d⁸) adopts dsp² hybridization in order to form the 4-coordinated planar complexes. Meanwhile, each ligand contributes a lone-pair orbital.
- 2) A total of 8 AOs are involved in the M-L bondings, forming 8 σ-MOs (4 bonding and 4 antibonding).
- 3) The total valence electrons around Pt: 8 (nonbonding $5d^8$) + 8 (4 bonding σ -MOs/dative bonds) = 16.

Generalized octet rule: examples

Beyond 18e:Thorocene and Uranocene

$$[M(C_8H_8)_2], M=Th, U$$

- 1) Th $(5f^06d^27s^2)$ and $2C_8H_8$ (8 πe) \rightarrow Th⁴⁺ and $2C_8H_8^{2-}(10\pi e)$.
- 2) D_{8h} -symmetry, VE = 20.
- (3) $(\sigma_g)^2 (\sigma_u^*)^2 (\pi_u)^4 (\pi_g^*)^4 (\delta_g)^4 (\delta_u^*)^4$
- 4) A 5f AO of Th (U) is involved in the metal-ligand bonding!



M: 10 AO's

 $(n-2)f(n-1)d^5sp^3$

Prediction: Uranocene -- Fischer, R.D. Theor. Chim. Acta, 1963, 1, 418.

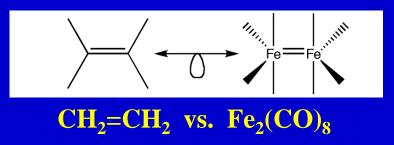
Synthesis: Uranocene -- Streitweiser A. Jr., J. Am. Chem. Soc. 1968, 90, 7364.

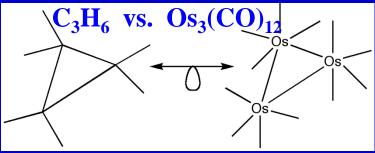
Thorocene-- Streitweiser A. Jr., J. Am. Chem. Soc. 1969, 91, 7528.

Isolobal Analogy: proposed by R. Hoffmann

• Molecular fragments having same number of VEs (or $VE_a = VE_b$ 10) and similar frontier orbitals are isolobal.

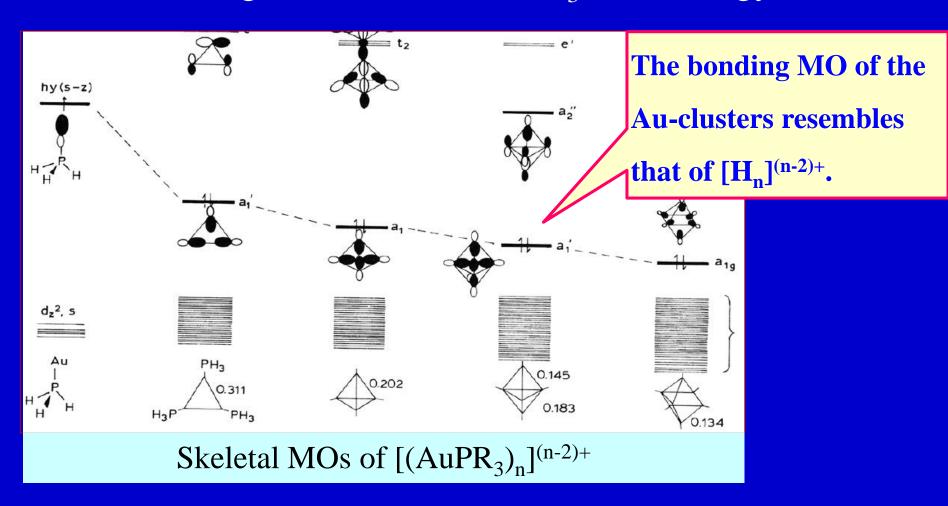
e.g., CH_2 (VE = 6, V = 2) is isolobal to $Fe(CO)_4$ (VE = 16, V = 2).





- A fragment in a molecule can be substituted with an isolobal fragment. e.g., CR₂ vs Fe(CO)₄, AuPR₃ vs H
 - \rightarrow Metal-carbene complexes: (L)_nM=CR₂
- Isolobal analogy has been widely exploited in synthetic chemistry and led to the production of numerous cluster compounds.
- One of the most widely exploited isolobal analogy is the isolobal analogy between AuPR₃ and H.

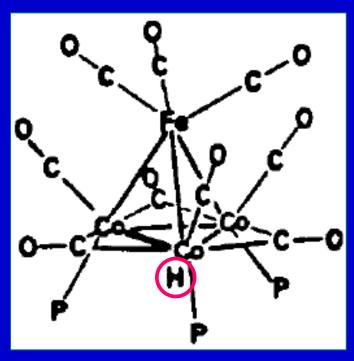
In 1970s, Mingos noticed the AuPR₃ \sim H analogy.

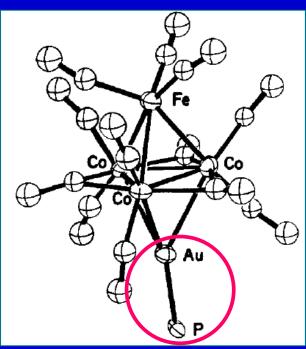


- Mingos DMP, J. Chem. Soc., Dalton Trans, 1976, 1163; J. Organomet. Chem. 1982, 232, 171.
- Hoffmann R, *Angew. Chem.*, **1982**, *94*, 725.

Early experimental evidences of isolobal AuPR₃ ~H analogy.

- isostructural [Co(CO)₄X] (X=H, AuPR₃)
- isostructural [FeCo₃(CO)₁₂(μ_3 -X)] (X=H, AuPR₃) compounds

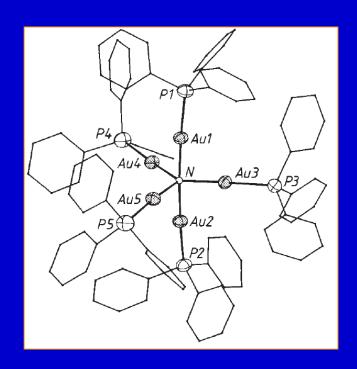


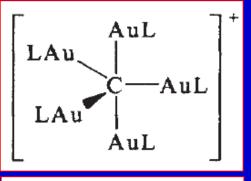


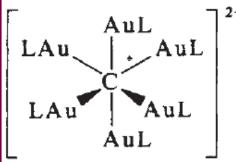
- Blundell and Powell, *J. Chem. Soc. A*, **1971**, 1685;
- McNeil and Scholer, *J. Am. Chem. Soc.* **1977**, 99, 6243.
- Lauher and Wald, *J. Am. Chem. Soc.* **1981**, *103*, 7649.

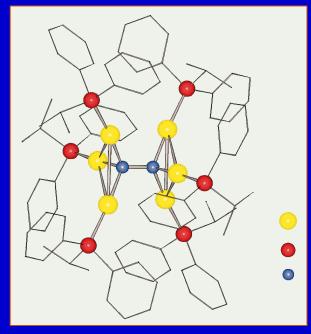
The Isolobal AuPR₃~H Analogy

The AuPR₃ synthon as H analogue has be widely exploited in bench chemistry, e.g., $[O(AuPR_3)_n]^{(n-2)+}$ (n=3-4); $[N(AuPR_3)_n]^{(n-3)+}$ (n=4-5); $[C(AuPR_3)_n]^{(n-4)+}$ (n=4-6); $[N_2(AuPR_3)_6]^{2+}$









- Schmidbaur, H. et al., *Nature*, **1990**, *345*, 140; **1991**, *352*, 141; **1995**, *377*, 503;
- Sharp P.R. et al. *Science*, **1997**, 275, 1460.

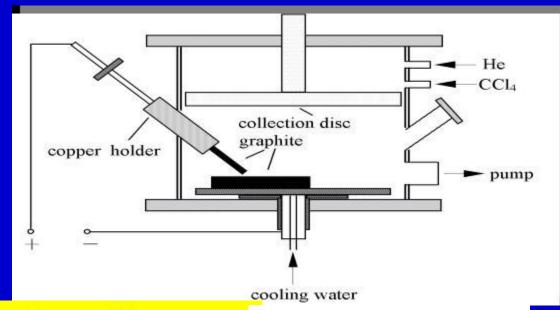
- $[O(AuPh_3)_n]^{(n-2)+}$ $(n=3-4) \approx [OH_3]^+, [OH_4]^{2+}$
- $[N(AuPh_3)_n]^{(n-3)+}$ $(n=4-5) \approx [NH_4]^+, [NH_5]^{2+}$
- $[C(AuPh_3)_n]^{(n-4)+}$ $(n=4-6) \approx CH_4, [CH_5]^+, [CH_6]^{2+}$
- $[N_2(AuPR_3)_6]^{2+}$ $\approx [H_3N-NH_3]^{2+}$;

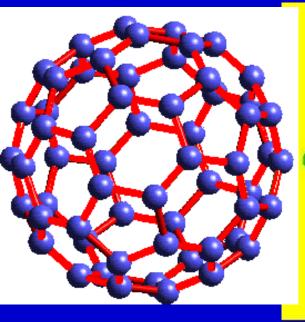
In bench chemistry, the gold-hydrogen analogy is assisted exclusively by such type of ligands as PR₃!

6.5 Carbon clusters and nanotubes

1. Fullerences

- a. Without Cl, C₆₀, C₇₀...
- b. With Cl, $C_{50}Cl_{10}...$
- c. With metal, M_x@C_v...

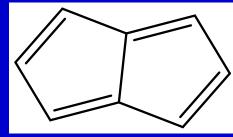




- Fullerenes are convex carbon cages comprising hexagons and exactly 12 pentagons.
- Euler's Theorem states that exactly 12 pentagons must be accommodated to allow closure of a carbon network consisting of *n* hexagons.
- Isolated pentagon rule (IPR): the pentagons within the most stable fullerenes are surrounded by hexagons and, hence, isolated from each other.
- The smallest IPR-satisfying fullerene is C_{60} (I_h), immediately followed by $C_{70}(D_{5h})$. Those with a size smaller than C_{60} or between C_{60} and C_{70} do not obey IPR.
 - Lu X et al., Chem. Rev. 2005, 105, 3643.

Non-IPR fullerenes with adjacent pentagons are always unstable. Why?

- Adjacent pentagons of a convex cage introduce enhanced steric strain (steric effect).
- Adjacent pentagons introduce antiaromatic destabilization pertaining to the pentalene-type 8π electron system (electronic effect).

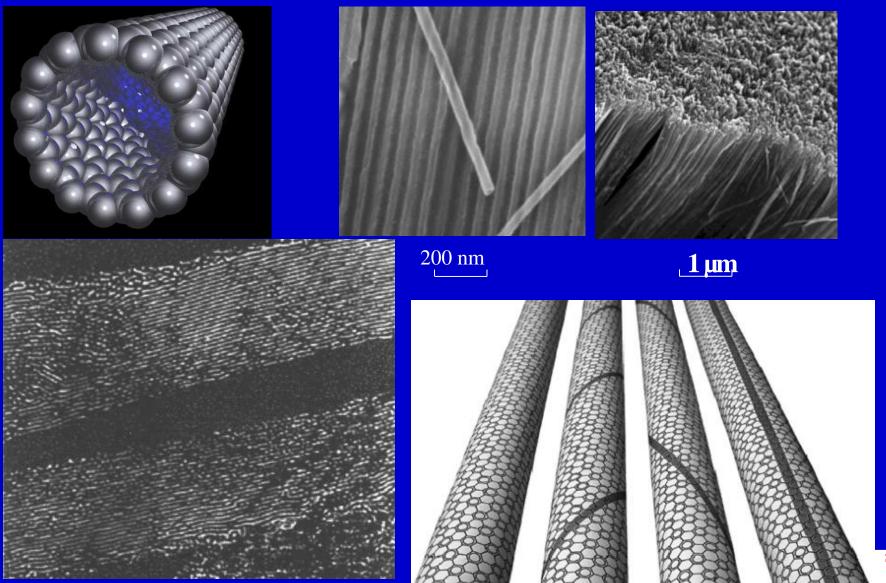


Antiaromatic pentalene

2. Carbon nanotubes

HRTEM

Discovered by Iijima (NEC, JPN) in 1991.



Single-walled carbon nanotube (SWCNT):

• The structure of a SWCNT can be uniquely defined by the roll-up vector, $C_h = na_1 + ma_2$, and is designated by (n,m).

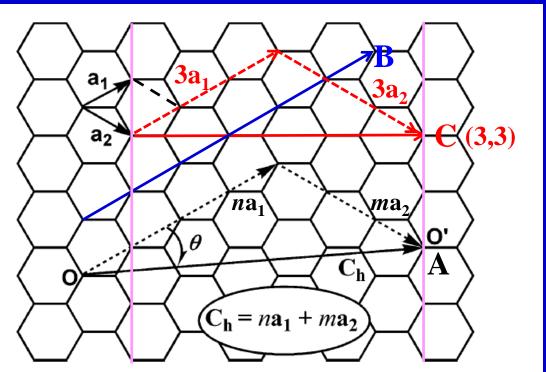


Figure 64. Roll-up vector \mathbf{C}_h ($\mathbf{C}_h = n\mathbf{a}_1 + m\mathbf{a}_2$) and chiral angle θ for a (n,m) SWCNT (for this special case, n=4, m=3), where \mathbf{a}_1 and \mathbf{a}_2 are the primitive vectors of a graphene sheet.

Types:

 $A) C_h = na_1 + ma_2$

 $(n > m, m \neq 0)$, chiral (n,m).

B) $C_h = na_1$

zigzag(n,0) - achiral

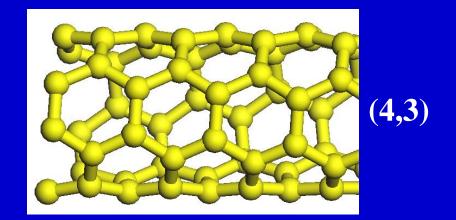
C) $C_h = na_1 + na_2$

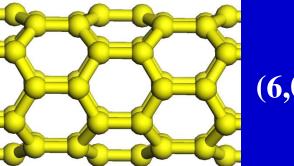
armchair (n,n)-- achiral

e.g., The roll-up vectors **A**, **B** and **C** define the SWCNTs (4,3), (6,0) and (3,3), respectively.

Types:

- a) Chiral (n,m) $(n > m, m \neq 0)$.
- b) Achiral zigzag (n,0).
- c) Achiral armchair (n,n).





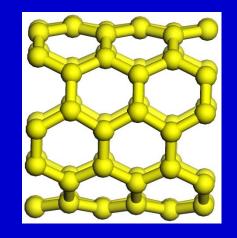
(6,0)

Conductivity:

(n-m)/3 = k (k = 0,1,2,...) ---- metallic

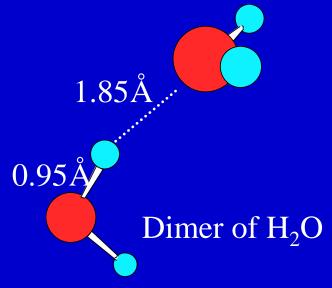
 $(n-m)/3 \neq k$ --- semiconductive

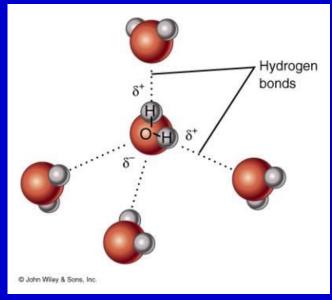
 \rightarrow Metallic (n,n) and (3m,0)

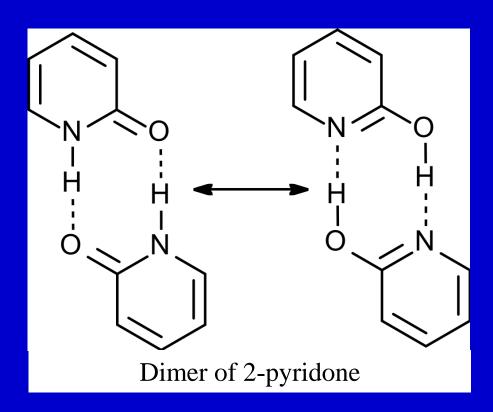


(5,5)

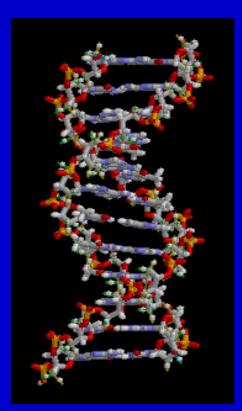
6.6 Hydrogen Bonding

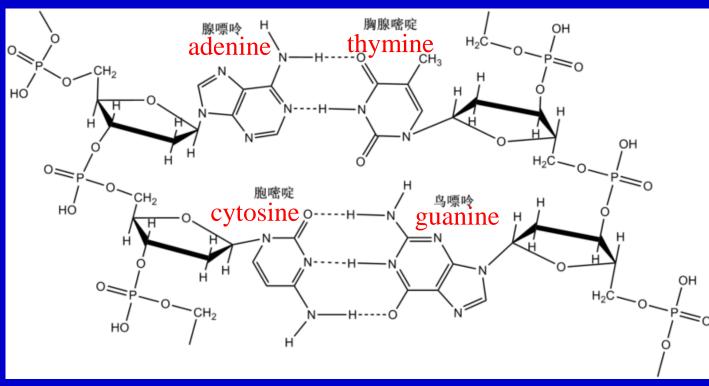






Hydrogen bonds in DNA





part of DNA

• Hydrogen bonding within the base pairs of DNA

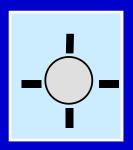
6.7 Prediction of structural features of inorganic iono-covalent compounds and tetrahedral anion complexes

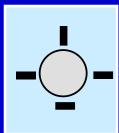
Hume-Rothery's 8 - N rule (1930/31)

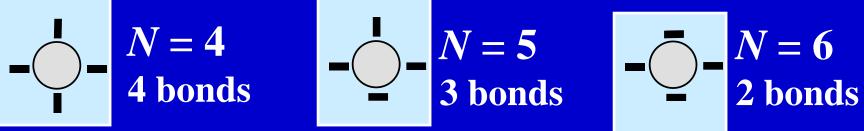
Rule rationalizes observed structural features of (post-transition) main group elements. By forming the correct number of shared bonds with its neighbors each atom succeeds to complete its octet.

The number of bonds of an element is 8 - N where N is its column number in the periodic table (only for $4 \le N \le 8$).

Element structures which obey Hume-Rothery's 8 - N rule

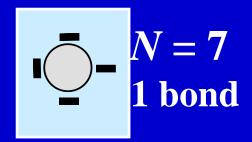




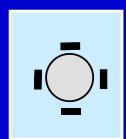


C_D, Si, Ge, α-Sn P, As, Sb, Bi

S, Se, Te

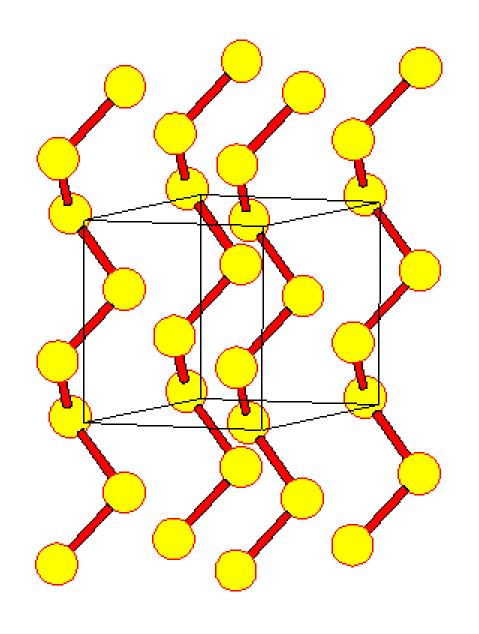


F, Cl, Br, I



N = 80 bonds

He, Ne, Ar, Kr, Xe, Rn



SELEN

Generalized 8 - N rule

Pearson (1964), Hulliger & Mooser (1965)

8 -
$$VEC_A = AA - mCC/n$$
 for C_mA_n

VEC_A: Number of valence electrons per atom in anion.

$$VEC_A < 8$$
, $AA>0$, $CC=0 \Rightarrow$ Polyanionic val. comp.

$$VEC_A = 8$$
, $AA=0$, $CC=0 \Rightarrow$ Normal valence compound

$$VEC_A > 8$$
, $AA=0$, $CC>0 \Rightarrow Polycationic val. comp.$

AA: Average number of A-A bonds per anion

CC: Average number of C-C bonds per cations and/or electrons used for inert-electron pairs on cations

Polyanionic valence compound (1)

$$K_6Pd(II)Se_{20}$$
: $VEC_A = 128/20 = 32/5$, $CC = 0$,

$$\rightarrow$$
 AA=8/5, i.e., $K_6Pd[Se_5]_4$

$$AA = (2x1)/2$$
$$= 1$$

$$AA = (2x1 + 2)/3$$

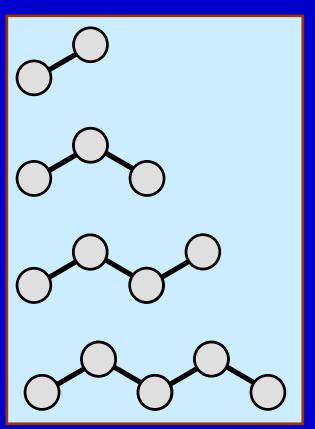
= 4/3

$$AA = (2x1 + 2x2)/4$$

= 6/4

$$AA = (2x1 + 3x2)/5$$

= 8/5



$$N_{A/M} = 2/(2 - AA)$$

N_{A/M}: Average number of atoms in a non-cyclic charged anion molecule

Polyanionic valence compounds (2)

- $LaAs_2$: $VEC_A = 6.5$; AA = 3/2; $N_{A/M} = 4$ $La_2^A[As_4]$ (LT) or $La_4^A[As_3]^A[As_5]$ (HT)
- $CsTe_4$: $VEC_A = 6.25$; AA = 7/4; $N_{A/M} = 8$ $Cs_2^{[Te_8]}$
- Th_2S_5 : VEC_A= 7.6; AA = 2/5
- $Th_2^{S}[S_2][S]_3$
- Sr_5Si_3 : $VEC_A = 7.33$; AA = 2/3
- $Sr_5^{Si_2}[Si_2]$

Polycationic valence compounds

- **HgCl**: $VEC_A = 9$; CC = 1
- [Hg-Hg]Cl₂
- CCl_3 : $VEC_A = 8.33$; CC = 1
- [C-C]Cl₆
- **SiAs** : $VEC_A = 9$; CC = 1
- [Si-Si]As₂

Caution:

In most cases, the M-M bond valence of a cluster compound derived from the electron-counting rule may not be explicitly equal to the number of its M-M linkages!

Accordingly, it is better to make use of Wade's rule to count the number of skeletal bonding electron-pairs of a cluster compound!

- For each M center of a cluster compound that fulfills the 18e rule, it adopts supposedly d²sp³ hybridization with three non-hybridized d AOs unused.
- While some of the hybridized orbitals are used to form M-L dative bonds, the rest of the HOs are used to form the skeletal MOs of the cluster compound!
- Thus, the Wade's rule demands 2(n+1) bonding skeletal electrons for a *n*-vertex polyhedron.

Example: $Fe_3(CO)_{12}$

- A. Electron-counting rule: g = 3x8 + 12x2 = 48; b=(3x18-48)/2 = 3 --seemingly adopts a triangular geometry with 3 M-M bonds!
- B. Wade's rule (MO theory):
- i) Fe (8 VEs & 9 VAOs) in Fe(CO)₄ fragment:
- 3 non-bonding VAOs (doubly occupied d AOs, thus 6VEs used);
- 4 VAOs used for M-CO dative bonds; The rest 2VAOs (together with 2 VEs) contribute to the skeletal MOs of the cluster.
- ii) Three M(CO)₄ fragments jointly form 3 bonding & 3 antibonding skeletal MOs.

In this case, predictions based on the simple electron-counting rule & Wade's rule agree well with each other!

Cautions: The electron-counting rule even fails for some lowoxidation state TM compounds!

Example:
$$M_6(CO)_{18}$$
 (M = Fe, Ru, Os)

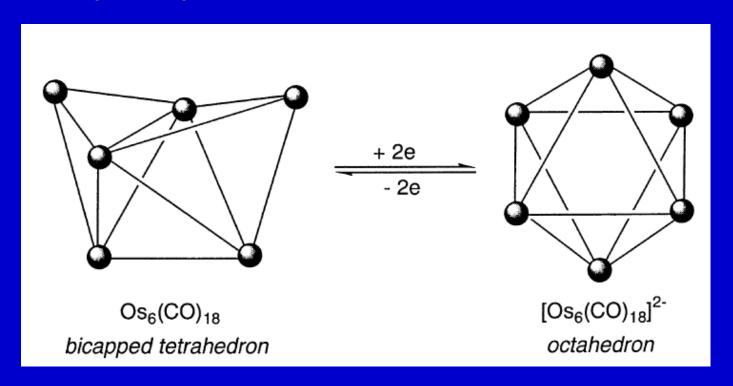
- A. Electron-counting: g = 6x8 + 18x2 = 84; b = (6x18-84)/2 = 12
- The cluster compounds seemingly have 12 M-M bonds, thus adopting an octahedral geometry! Is this prediction correct?

B. Wade's rule (MO theory):

- i) The M atom in a $M(CO)_3$ fragment has 8 VEs & 9 VAOs:
 - 3VAOs used for M-CO bonds; 3 non-bonding d VAOs & 6VEs;
- the rest 3VAOs, but only 2 VEs, used for the formation of the skeletal
- MOs of the cluster \rightarrow
- ii) The whole cluster has 12 VEs, i.e., 6 bonding skeletal MOs.
- iii) However, Wade's rule demands in total 7 bonding skeletal MOs (1 radial + 6 tangential MOs) for an octahedron.

v) The cluster is not ideally an octahedron, but actually a bicapped tetrahedron!

Instead, $[M_6(CO)_{18}]^{2-}$ is an octahedron with 7 bonding skeletal MOs!



Validation of the simple electron-counting rule requires an in-depth analysis in light of the MO theory!

m VEs n VAOs	VB description	MO description
m = n	m/2(or n/2) 2c-2e bonds: (σ /+ π), e.g., 4 C-H bonds in CH ₄	$m/2$ bonding MOs (σ /+ π) or plus Π_x^x (e.g., C_6H_6)
<i>m</i> > <i>n</i>	(<i>m-n</i>) lone pairs & (2n-m)/2 2c-2e bonds, e.g., <i>NH</i> ₃	$(m-n)$ non-bonding MOs & $(2n-m)/2$ bonding MOs or plus Π_x^x (e.g., pyridine)
<i>m</i> < <i>n</i>	Electron deficient! ?	(e.g., boranes, carboranes) 3c-2e or more delocalized σ- MOs.