§ 6 Structures of polyatomic molecules (II) Introduction:

- In chapter 5, we focused on the (localized and delocalized) σand π-bonds within polyatomic molecules in terms of hybrid orbital theory (VB) and MO theory as well as the symmetry rules for chemical reactions of polyatomic molecules.
- In this chapter, we will discuss *multi-center bonds in electrondeficient molecules* (e.g., boranes and carboranes) and the chemical bonds in coordination compounds.

§ 6 Structures of polyatomic molecules (II)

- 6.1 Multi-center bonds in electron-deficient systems
- 6.2 Chemical bonds in coordination compounds
- 6.3 Ligand Field Theory (LFT)
- 6.4 Transition-metal cluster compounds
- 6.5 Carbon clusters and nanotubes

Qualitative description of Chemical bonding within a molecule: VB vs. MO

• *VB*: Valence AOs or hybridized orbitals of each atom(s)

→ Forming 2c-2e σ -/ π -bonds with AOs of surrounding atoms.

→ If necessary, resonance of VB structures are used to account for electron delocalization (e.g., the Π_6^6 bond in benzene)!

• MO: LCAO-MO

 \rightarrow Formation of bonding & nonbonding MOs.

* Both hybridization & electron delocalization (e.g., $\Pi_a^{\ b}$ bond) are inherently taken into account.

A molecule/an aggregate of atoms can have several isomers. How to quickly predict its structure/bonding pattern?

Qualitative description of Chemical bonding within a molecule: VB vs. MO

A molecule/an aggregate of atoms can have several isomers. How can one quickly predict its structure/bonding pattern?

- Chemical bondings occur between the valence atomic orbitals (VAOs) (and valence electrons (VEs)) of the constituent atoms within a molecule.
- 2. The more VEs and VAOs involved in chemical bondings, the more stable is a molecule.

 \rightarrow A molecule prefers the bonding pattern/structure that involves as many bonding VEs & VAOs as possible!

A brief summary on the electronic structures of molecules we have learnt (MO & VB)

A polyatomic molecule with a closed-shell electronic configuration has m(=even) VEs and n VAOs.

1) If m = n,

VB: n/2 2c-2e (σ -/ π -) bonds (σ first!);

MO: n/2 bonding MOs (occupied!) & n/2 antibonding MOs. Then if necessary can electron delocalization be considered. C₂H₂: 10 VAOs/VEs = 2x4 (C) + 2x1(H) → VB: 3 σ-bonds & 2 π-bond.

 \rightarrow MO: 3 σ - & 2 π -bonding MOs.

9 3

A brief summary on the electronic structures of molecules we have learnt (MO & VB)

2) If m > n,

VB: (m-n) lone pairs & *(2n-m)/2 2c-2e* bonds;

MO: (*m-n*) *nonbonding* MOs & (2*n-m*)/2 *bonding* MOs.Then if necessary can electron delocalization be considered.

 $H_2O: 4$ VAOs(O) + 2 1s(H) + 8VE → VB: 2 LPs & 2 σ-bonds.

 \rightarrow MO: 2 nonbonding, 2 σ -bonding MOs (occupied)

& 2 antibonding MOs (unoccupied!)

3) If m < n, ? (to be learnt in this chapter).

6.1 Multi-center bonds in electrondeficient systems

6.1.1 Boranes and their relatives

i. B_2H_6

$$VAO = 4 (B) x2 + 1(H) x6 = 14$$

VE = $3(B) x^2 + 1(H) x_6 = 12$

- An ethane-like structure having 7 2c-2e bonds needs 14 VEs. Lack of two VEs!
- To make full use of all VAOs, two three-center two-electron (3c-2e) B-H-B bonds are formed.

i. B_2H_6

Localized MO description

For a B atom: sp³-hybridization

- 2 VEs used by 2 terminal B- $|E_3 = E_B c'\beta|$ H bonds
- One VE&HO is used to form a B-H-B bond with a H 1s and a HO of another B atom!

three-center two-electron B-H-B bond: $B: sp^3$ hybridization, H: 1s orbital $\psi = C_a \psi_{B1} + C_b \psi_H + C_a \psi_{B2}$ its HMO secular equation is : $\begin{vmatrix} E_{\rm B} - E & \beta & 0 \\ \beta & E_{\rm H} - E & \beta \\ 0 & \beta & E_{\rm B} - E \end{vmatrix} = 0$ $E_{\rm I} = E_{\rm H} + c\beta \qquad \text{(bonding)}$ $E_2 = E_R$ ($E_2 > E_H$) (non - bonding) (anti - bonding) $\psi_1 = \frac{1}{2}(\psi_{B1} + \sqrt{2}\psi_H + \psi_{B2})$ $\psi_2 = \frac{1}{\sqrt{2}} (\psi_{B1} - \psi_{B2})$ $\psi_3 = \frac{1}{2}(\psi_{B1} - \sqrt{2}\psi_H + \psi_{B2})$

B₂**H**₆: canonical valence molecular orbitals

Note: The CMOs can be transformed into LMOs, two of which are the 3c2e LMOs!

Three-center two-electron (3c-2e) B-H-B bond:

9 3

ii. B_5H_{11} Nido structure

Electron-deficient multi-center bonds

Triangular BBB 3c-2e bond

- VAO = 5x4(B) + 11(H) = 31 (needs 31VE)
- VE= 15(B) + 11 (H) = 26

Actually having 8 BH σ-bonds, 3 BHB 3c-2e bonds, and **2 BBB 3c-2e bonds!**

iii. B₅H₉ Nido structure

Electron-deficient multi-center bonds

- VAO=5x4(B) + 9(H) = 29
- VE=5x3(B) + 9x1(H) = 24e
- 1) 5 B-H σ -bonds; (10e)
- 2) 4 BHB 3c-2e bonds; (8e)

- 3) a **B**₅ **5c-6e bond**. (6e)
- Each peripheral B atom contributes one sp³-HO and one electron.
- The central B atom contributes three sp³-HOs and 2e.

Types of Chemical bonds in Boranes (a) Single σ -bond (2c-2e): B-H and B-B

Question arisen:

How to determine the geometric and electronic

structures of more complicated boranes?

6.1.2 $B_n H_{n+m}$ with an open-framework structure (including nido- and arachno-type) and Lipscomb's *styx* method.

In mid 1950s, Lipscomb proposed the *styx method* to predict the topological structures of boranes B_nH_{n+m} with open-framework structures.

Boranes and their chemical bonding: William Lipscomb Won Nobel prize,1976; Passed away on Apr. 14, 2011.

B_nH_{n+m} with an open-framework structure

n: the number of B atoms, thus the minimal number of B-H bonds*m*: the number of extra H atoms.

The condition for a stable borane:

 $\begin{array}{l} x = m \text{-s or } m = x \text{+s} \\ t = n \text{-s or } n = s \text{+}t \implies p \text{ sets of } styx \implies p \text{ isomers} \\ y = (2s \text{-}m)/2 \end{array}$

 To differentiate the isomers, each isomer can be labeled by a set of (*styx*).

Why do the three equations define a stable structure?

a) A B_nH_{n+m} molecule has (5n+m) valence AOs and (4n+m) valence electrons, yet being short of n electrons in order to form a normal (2c-2e)σ-bonded molecule.

(5n+m) AOs \rightarrow (5n+m)/2 2c-2e bonding σ -bonds.

b) Thus requiring the formation of *n* 3c-2e bonds to make the whole molecule stable, meaning n = s + t or t = n - s.

Why do the three equations define a stable structure? c) Except the minimal *n* terminal B-H σ -bonds, the extra *m* H atoms are used to form *s* 3c-2e B-H-B bonds and *x* extra B-H σ bonds, meaning *m* = *s* + *x* or *x* = *m* - *s*.

d) The total electrons are all used to form various types of bonds, meaning $4n + m = 2n + 2(s + t + y + x) \rightarrow y = (2s-m)/2$.

To differentiate the isomers, each isomer can be labeled by a set of (*styx*).

Example 1: B_4H_{10} (2 isomers)

Example 2: The topological structure of B_6H_{10} (3 isomers)

Closo-type (Cage): B_nH_n²⁻

 $B_{6}H_{10}$

 $B_{10}H_{14}$

6.1.3 Borohydride anions $B_n H_n^{2-}$ and carboranes $C_{n'}B_n H_{(n+n'+m)}$ with closo-structures and the Wade's rule

◆ There is little tendency to add H⁺ and form neutral species.

polyhedra with n vertices

trigonal bipyramid N = 5

octahedron N = 6

"Closo" series - formula $B_n H_n^{2-}$

• Total valence electrons:

N_{VE}(Total) = 3n (B) + n (H) + 2 (charge) = 4n+2

•Total valence atomic orbitals:

 $N_{vo}(Total) = 4n (B) + n (H) = 5n$

• Each B-H bond uses 2 electrons. (2c-2e σ -bond)

 \rightarrow N_{VE}(B-H) = 2n & N_{VO}(B-H) = 2n

• The skeletal VEs (for the polyhedral framework):

 N_{VE} (skeletal) = (4n + 2) - 2n = 2(n+1) = N_{FE}

 $N_{VO}(skeletal) = 5n - 2n = 3n$

MOs in "closo"-series B_nH_n²⁻

- Each B atom is sp-hybridized, forming an exocentric B-H bond.
- Each B atom contributes a radial hybrid orbital to form a total of *n* radial skeletal MOs with the only one bonding MO being occupied.
- Each B atom has two tangential AOs. These AOs form 2n tangential skeletal MOs, half of which are bonding orbitals and doubly occupied.
- A *n*-vertice *closo*-borane anion or carborane has in total of (n+1) bonding skeletal MOs.

Wade's (n+1) rules

radial 1 bonding n-1 antibonding tangential n bonding n antibonding

- 3n skeletal AOs/MOs
- n+1 bonding skeletal MOs
- 2n-1 antibonding skeletal MOs

.

Structure of Carboranes $1,5-C_2B_3H_5$ $1,2-C_2B_4H_6$ $1,6-C_2B_4H_6$ $2,4-C_2B_5H_7$

3 isomers of $C_2B_{10}H_{12}$ (with hydrogen omitted)

Note: Herein the topological atom-atom linkage does not mean the presence of a 2c-2e σ -bond! (3D aromaticity!)

| 3

Tang's rule

For a *closo*-borane/carborane with a *n*-vertice triangular polyhedral structure, its total bonding MOs amount to *BMO* = *4n* – *F*, with *F* = *f* + *3(s*+1).

(*f* is the number of faces in the polyhedron, *s* is the number of defected vertices. For a closo-structure, *s=0*).

e.g., for octahedral $B_6H_6^{2-}$, F=8 + 3 =11, BMO = 4x6-11=13. (6 B-H bonds, 7 skeletal bonding MOs.)

 This rule also works for *nido-* and arachno-boranes by supposing the number of defected vertices being 1 and 2, respectively.

e.g. nido-C₅H₉, **f** = 8, **s** = -1, **F** = 8, **BMO** = 4x5-8 = 12

5 B-H bonds, 7 skeletal BMOs (i.e., 4 BHB 3c2e bonds, 3 BBB 3c2e bonds).

"Nido" series – formula B_nH_(n+4)

•Total valence electrons(VEC) = 3n (B) + n(H) + 4 (extra H) = 4n + 4

•Framework electrons (NFE) = 2n + 4

(i.e., **n+2** pairs).

•The structure of the "nido" compound is based on the "closo" polyhedron with one more vertex than the "nido" compound.

"Arachno" series – formula B_nH_(n+6)

•Total valence electrons(VEC) = 4n + 6

•Framework electrons (NFE) = **2n + 6**

(i.e., **n+3** pairs).

•The structure of the "nido" compound is based on the "closo" polyhedron with two more vertices than the "nido" compound.

$$BMO = 4n - F$$

 $F = f + 3(s+1).$

Electron-deficient multi-center bonds

6.1.4 other electron-deficient compounds

Boron group **B、AI、Ga、In、TI**

Gas-phase: monomer

Solid state: dimer or polymer

Alkali metal and alkali earth metal alkylides

There is no 3c-2e bond in these compounds!

They just have normal & dative 2c-2e bonds!

12

6.2 Chemical bonds in coordination compounds

Definition of Coordination compound:

Composed of a metal atom or ion and one or more ligands.

- Ligands usually donate electrons to the metal
- Includes organometallic compounds

Theories to describe the bonding within coordination compounds.

- Valence bond theory: developed by Pauling in early 1930s to explain the coordination number, geometry and magneticity of coordination compounds. (Hybrid Orbital + Dative Bond!)
- Crystal field theory: developed by *Bethe* and *van Vleck* in early 1930 to explain the spectra of coordination compounds, but not their chemical bonding!
- 3) Molecular orbital Theory: qualitative description, also can be computationally approached by *ab initio* calculations.
- 4) Ligand field theory: a combination of CFT and MOT.

molecule	C.N.	hybridization Of metal	Symmetry	Geometry
$Ag(NH_3)^{2+}$	2	sp		linear
CuCl ₃ -	3	sp ²	D _{3h}	triangular
Ni(CO) ₄	4	sp ³	Τ _d	tetrahedral
PtCl ₄ ²⁻	4	dsp ²	D_{4h}	square planar
Fe(CO) ₅	5	dsp ³	D _{3h}	Trigonal
				bipyramidal
	5	d ² sp ²	C_{4v}	square
				pyramid
FeF ₆ ⁴⁻	6	d²sp³	O _h	octahedral
others	8		D_{4h}	tetragonal
	8		D_{4d}	Antisquare pyramidal
	10			Bicapped square antiprism
	12		l _h	icosahedral

6.2.1 Coordination polyhedron: (VB description)

Coordinate covalent bond & Coordinate ionic bond

^{9 3}

Coordinate covalent bond & Coordinate ionic bond

Coordinate covalent bond:

To form dative covalent bonds, the central transition metal ion has to rearrange its *n*d-AO electrons to empty some of its d-AOs for hybridization!

 \rightarrow Central transition metal ion adopts a low-spin state.

Coordinate ionic bond: M-L bond is ionic (electrostatic)!

 \rightarrow Central transition metal ion adopts a high-spin state.

6.2.2 Crystal Field Model

Mainly focuses on the energy splitting of d (or f) orbitals (belonging to the central TM atom).

Assumptions:

- 1. Ligands are regarded as negative point charges or point dipoles.
- 2. Metal-ligand bonding is supposed to be entirely ionic.

The otherwise degenerate (n-1)d-orbitals of the central metal atom are split into two or more groups of different energies and symmetries in the electrostatic field exerted by the surrounding ligands.

- Strong-field: large splitting of *d* orbitals \rightarrow low-spin
- Weak-field: small splitting of *d* orbitals \rightarrow high-spin
Perturbation Theory

Spherical symmetry

Non-spherical symmetry

- The AOs' symmetries of the central atom now depend on the symmetry of the crystal field.
- The energy gap between the otherwise degenerate atomic orbitals (e.g., *d AOs*) is dependent on the strength of the crystal field.

CFT A. Crystal-field splitting of d orbitals Example 1: octahedral field

- CF: octahedrally distributed negative charges.
- A qualitative picture:

The dz² and d(x²-y²) orbitals of the central atom suffer from stronger repulsion from the ligands than do the other three dorbitals.

Octahedral field: Semi-quantitative picture

Crystal-field stabilization energy (CFSE):

For a d^n ion in a crystal field (e.g., an octahedral field), the

Question: Please derive the pattern of d-orbital splitting in a cubic field (also being O_h -symmetric)?

A. Crystal-field splitting of d orbitals

Example 2: tetrahedral field - qualitative analysis

- The distance between dxy (also dyz, dxz) and ligands is shorter than that between $d(x^2-y^2)$ (also dz^2) and ligands.
- Accordingly, the d_{xy} , d_{yz} , and d_{xz} suffer stronger repulsion of the ligands than do the $d(x^2-y^2)$ & dz^2 orbitals.

Example 2: tetrahedral field – A semiquatitative picture

A. Crystal-field splitting of d orbitals

Example 3: Planar tetragonal (D_{4h}) field

Different types of crystal field induce different patterns of d-orbital splitting.

- $\begin{array}{cccccccc} l & AOs & O_h \left(octahedral \right) & T_d & D_{4h} \\ 0 & s & a_{1g} & a_1 & a_{1g} \\ 1 & p & t_{1u} & t_2 & a_{2u} < e_u \\ 2 & d & t_{2g} < e_g & e_g & e_g < a_{1g} < b_{2g} \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ \end{array}$
- 3 f $a_{2u} + t_{1u} + t_{2u}$

Question: Why are the three p orbitals degenerate in a crystal field of O_h - or T_d -symmetry, but non-degenerate in a crystal-field of D_{4h} symmetry?

6

B. Effects of Crystal-field splitting

B. Effects of Crystal field splitting

charge on metal

• greater charge \Rightarrow larger Δ

(ligands held more closely, thus interacting more strongly with *d* orbitals, and exerted a stronger crystal field.)

B2. Magnetic properties

No unpaired electrons, S = 0, diamagnetic

unpaired electrons, $S \neq 0$, paramagnetic, ESR active!

Magnetic momentum $\mu_m = 2\sqrt{S(S+1)}\mu_B = \sqrt{n(n+2)}\mu_B$ *n*: number of spinunpaired electrons

e.g., $Fe(H_2O)_6^{2+}$ (Fe²⁺ = d^6) weak-field ligands !

Case I: low-spin (maximum pairing) diamagnetic

Case II: high-spin \leftarrow found (minimum pairing) experimentally paramagnetic S=2, $\mu \approx 4.9\mu_B$, ¹²

B2. Magnetic properties

e.g., $Fe(NH_3)_6^{2+}$ (Fe²⁺ = d^6) Strong-field ligands

Case I: low-spin \leftarrow found(maximum pairing)experimentally!diamagneticS=0

Case II: high-spin (minimum pairing) paramagnetic

9 **1** 3

Question: Is it possible to design such a coordination compound that has comparable energy in its high- and low-spin states?

- Spin crossover (SCO)/Spin transition (ST) Entropy-driven! 1) M^{q+} : d^4 - d^7 ; 2) $\Delta E(HS-LS) \approx k_B T$; 3) Mostly six-coordinated. $\Delta S(HS-LS) > 0 \& \Delta H(HS-LS) \approx \Delta E(HS-LS) > 0$ $\Delta G(HS-LS) = \Delta H-T\Delta S \approx \Delta E-T\Delta S$;
 - When $T > T_c$, $\Delta G \le 0$; $\rightarrow T_c = \Delta E / \Delta S \& \Delta E (HS-LS) \approx k_B T$

External stimuli for spin crossover:

- 1) Variation of Temperature
- 2) Variation of pressure
- 3) Light irradiation
- 4) Influence of a magnetic field

Methods of Study:

SQUID(Magnetic susceptibility), Mössbauer Spectroscopy, X-ray crystallography, UV-vis, Raman etc.

6.2.3 σ ligands and σ bond: A Molecular orbital (MO) theory description Example:

Octahedral coordination complex

Categories of central metal valence orbitals:

σ type: s (A_{1g}); p_x, p_y, p_z(T_{1u}); d_{x²-y²}, d_{z²}(E_g) π type: d_{xy}, d_{xz}, d_{yz} (T_{2g})

6 ligands contribute 6 lone pairs:

6.2.3 σ ligands and σ -bonding MO's Symmetry-adapted linear combination (SALC) of MOs:

$$\psi_1 = \varphi_{4s} \pm \frac{1}{\sqrt{6}} (\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4 + \sigma_5 + \sigma_6)$$

$$\psi_2 = \varphi_{4px} \pm \frac{1}{\sqrt{2}} (\sigma_1 - \sigma_4)$$

a_{1g}

 $\mathbf{t}_{1\mathbf{u}}$

$$\psi_3 = \varphi_{4py} \pm \frac{1}{\sqrt{2}} (\sigma_2 - \sigma_5) \qquad \psi_4 = \frac{1}{\sqrt{2}} (\sigma_5 - \sigma_5) \qquad \psi_5 = \frac{1}{\sqrt{2}} (\sigma$$

$$\psi_4 = \varphi_{4pz} \pm \frac{1}{\sqrt{2}} (\sigma_3 - \sigma_6)$$

x T thus

$$\mathbf{e_g} \\ \psi_5 = \varphi_{3dz^2} \pm \frac{1}{2\sqrt{3}} (2\sigma_3 + 2\sigma_6 - \sigma_1 - \sigma_2 - \sigma_4 - \sigma_5)$$

$$\psi_6 = \varphi_{3dx^2 - y^2} \pm \frac{1}{2}(\sigma_1 - \sigma_2 + \sigma_4 - \sigma_5)$$

 $e_{g(x^2-y^2)}$

9 3 6

Energetic diagram of σ molecular orbitals

T,

6.2.4 Metal-ligand π – Bonding

In addition to the aforementioned σ -bonding interactions, metalligand π -bonding may present in some metal complexes.

• A π -donor ligand <u>donates</u> electrons to the metal center in an interaction that involves a filled ligand orbital and an empty metal orbital.

– Cl⁻, Br⁻, and I⁻ donates p_{π} electrons to the metal center

- A π -acceptor ligand <u>accepts</u> electrons from the metal center in an interaction that involves a filled metal orbital and an empty ligand orbital.
 - CO, N₂, NO, and alkenes accept d_{π} -electrons into their vacant anti-bonding π^* -MOs.

 $-\pi$ -acceptor ligands can stabilize low oxidation state metal complexes.

Dewar-Chatt-Duncanson complexation model

Bonding and charge transfer between transition metal and Ligands:

- 1. σ -bonding results in σ -donation from ligand to empty AO/HO of TM.
- 2. π -bonding, if available, gives rise to π -backdonation from $d\pi$ of TM to the empty π^* of ligands.

 \rightarrow 18-electron rule of transition metal complexes ! ,

,

6.2.5 18-electron rule

- First proposed by *Irving Langmuir* in 1921.
- For a *low-oxidation-state* organometallic complex (mostly containing π-acceptor ligands), the metal center tends to acquire 18 electrons in its valence shell, i.e., (n-1)dnsnp.
- Combination of the 9 atomic orbitals, (n-1)dnsnp, of a TM atom with ligand orbitals creates 9 occupied molecular orbitals that are either metal-ligand bonding or non-bonding.
- metal is electron rich (low oxidation number)
- ligands are good π -acceptors (CO, NO) \rightarrow strong d π - π^* bonding enhances M-L σ -bonding \rightarrow larger Δ .

– mostly 6-coordinated complexes with large splitting energy, i.e., the *M* atom adopts *d*²*sp*³ *hybridization*. (More convenient VB description). How to use the 18e rule:

- Treat the ligand as neutral entity.
- The number of valence electrons for a zero-valent metal center is equal to the group number. e.g., Cr(6e) in $Cr(CO)_6$. $Cr(CO)_6$ -- $d^2sp^3 + 3d^6vs$. $3d^54s^1$ (free Cr)
- Rearrangement of valence-shell electrons, if necessary, occurs on the central TM atom.

Fe(CO)₅: square pyramidal, Fe(3d⁸ + dsp³ hybridization) (free Fe atom--3d⁶4s²)

Ni(CO)₄: tetrahedral, Ni ($3d^{10} + sp^3$ hybridization).

(free Ni atom--3d⁸4s²)

Alternatively, you may treat the metal and its ligands in their valence states.

18-electron rule

Many ligands donate more than 1 electron. How to count the electrons donated by ligands?

a) 1-electron donor:

H^{•(}in any bonding mode), and terminal Cl[•], Br[•], l[•], R[•] (e.g. R=alkyl or Ph), and RO[•];

c) 3-electron donor:

 η^3 –C₃H₅ (allyl radical), RC(carbyne), μ_2 -Cl[•], μ_2 -Br[•], μ_2 -l[•], μ_2 -R₂P[•]; π -MOs as ligand orbitals. +Lone pair as ligand orbital.

Some examples:

[ReH₉]²⁻: 7e (Re) + 9e (9H) + 2e = 18e
 Nine-coordinated! Tricapped trigonal prism!
 All (n-1)dnsnp AOs of metal are used to form M-L bonds!

- All lanthanides can form nine-coordinated aquo-ions. $[Ln(H_2O)_9]^{3+}$; Ln 4f AOs are not involved in the dative bonding.
- In situation where covalency is important, *nine* would be the limiting coordination number of TM metals!
- However, many of the complexes involving small, nonpolarizable main-group ligand atoms have high-degree ionic characters and coordination numbers greater than 9.

• $[Ce(NO_3)_6]^{2-}$ 12-coordinate

Some exceptions:

- If there is no possibility to stabilize the t_{2g} level via π-bonding
 → complexes with less than 18 electrons
 Examples: WCl₆²⁻ (14 e), OsCl₆²⁻ (16 e), TcF₆²⁻ (15 e)
- Or if Δ is small, e_g* orbitals may be occupied, Examples: Co(H₂O)₆²⁺ (19 e), Ni(en)₃²⁺ (20e), Cu(NH₃)₆²⁺ (21e)
 [It is not essential for weaker CFT complexes to fulfill the 18e rule!]
- "Left side" metals: 18 electron valence shell would require too many ligands (steric repulsion)

→ complexes with less than 18 electrons are very common Examples: $\text{TiF}_6^{2-}(12 \text{ e})$, $\text{Cr}(\text{NCS})_6^{3-}(15 \text{ e})$, $\text{VCl}_6^{2-}(13 \text{ e})$

Square planar complexes: "16 electron rule" (all bonding orbitals are occupied, 18 e complex would have 2 e in antibonding orbitals) ¹/₃

Some exceptions:

• $[PtCl_3(C_2H_4)]^-$: 10e (Pt) + 3e (3Cl) + 2e (C_2H_4) + e = 16e

(Pt is dsp^2 -hybridized with one $6p_2$ orbital being unoccupied. However, this unhybridized $6p_z$ orbital can interact with the p_π orbitals of such π -donor ligands as Cl, Br, I etc.)

- $[Au(CI)_{4}]^{-}$: 11e (Au) + 4e (4Cl) + e = 16e
- $[M(CN)_{4}]^{2-}$ (M=Pt, Ni): 10e (M) + 4e (4CN) + 2e = 16e in-plane (involving in-plane and out-of-plane CN $d\pi$ - π * bondings!)

A more general rule accounts for such exceptions!

6.3 Ligand Field Theory (LFT)

- A combination of the crystal field theory, MO theory, and group theory, but focusing on the energy splitting, spectral terms of metal ion in coordination compounds.
- Two factors influence the d-orbital splitting of a metal atom in a ligand field,
- 1) The interaction between d-orbital electrons;
- 2) The bonding between the metal and ligands.
- A strong ligand field is formed in case type **2** interaction is stronger than type **1**. Otherwise, the ligand field is a weak field.
- This rule also helps us to understand the strong and weak crystal fields defined in the crystal field theory.

6.4 Transition-metal cluster compounds6.4.1 Metal-metal multiple bonds

 $Re_2Cl_8^{2-}$ Re-Re 2.24Å(2.76 Å in Re crystal)

ReCl₄⁻: Re³⁺-5d⁴, dsp², {5dx²-y², 6s, $6p_x$, $6p_y$ };

- Each HO forms a dative Re←CI bond.
- The rest four 5d AO's (+4e) of Re³⁺ ^{[ReCl₄]⁻} are used to form Re-Re quadruple bonds with another Re³⁺.

Quadruple Bond

$$\sigma_g^2 \pi_u^4 \delta_g^2$$

Analog: Mo₂(O₂CR)₄ and Cr₂(O₂CR)₄

Extremely, a TM-TM bond can be a quintuple bond by making use of all (*n-1)d* orbitals, e.g., in Cr(I)-Cr(I) and Mo(I)-Mo(I) complexes.

 $\sigma^2 \pi^4 \delta^4$

 Similarly, two f-series metals (Ln-series or Am-series metal) can form f-orbital-based multiple M-M bond, i.e., U₂

has a quintuple U-U bond.

• Gagliardi and Roos, *Nature*, 2005, 433, 848.

 A M-M bond also can be formed between *ns* AOs of two metal atoms, e.g., in Zn(I)-Zn(I) and Mg(I)-Mg(I) complexes.

Note: The number of edges of such polyhedra do not necessarily correspond to the number of M-M bonds!

ii. Electron counting and metal-metal bonds

 $b = \frac{1}{2}(18n - g) \begin{cases} * \text{ Derived from the 18e rule for low-} \\ oxidation-state transition metal complexes!} \\ * \text{ Valid for low-oxidation-state metal clusters.} \end{cases}$

b: bond valence (i.e., total number of metal-metal bonds)

n: number of transition-metal atoms

g: total valence-shell electrons, including electrons from all

In a metal cluster, a ML_x fragment forms a suitable number of metal-metal covalent bond(s) with its neighboring ML_y fragments to attain 18 valence-shell electrons!

If a cluster involves main-group atoms,

$$b = \frac{1}{2}(18n_1 + 8n_2 - g)$$

 n_1 : number of transition-metal atoms

n₂: number of main-group atoms in the cluster polyhedron.

Examples:

VE = g = 4x9 (Ir: $5d^{7}6s^{2}$) + 12x2 (CO) = 60 ∴ b = (18n - g)/2 = (18x4 - 60)/2 = 6

Ir(CO)₃ VAO (Ir) = 9 i.e., (n-1)d (5) + ns (1) + np (3) (Ir: $5d^{7}6s^{2}$) VE = 9 + 3x2 = 15

 \rightarrow Being lack of 3 VEs to fulfill the 18e rule!

→ The Ir atom in $Ir(CO)_3$ forms three covalent M-M bonds with other M centers to get three more electrons.

Full picture: In $Ir_4(CO)_{12}$, each Ir adopts d^2sp^3 hybridization with three VEs/HOs being used to form three M-M bonds, as well as three unhybridized 5d AOs doubly occupied.

Examples:

Problem: The metallocene Cp_2Ni reacts with $Ni(CO)_4$ to afford a binuclear complex: $Cp_2Ni + Ni(CO)_4 \rightarrow [CpNiCO]_2 + 2CO$ Please derive the Ni-Ni bond order and structure of this complex! (Cp = cyclopentadienyl)

1)
$$VE = g = 2x10$$
 (Ni: $3d^84s^2$) + 2x5 (Cp) +2x2 (CO) = 34
b = $(2x18-34)/2 = 1$ (Ni-Ni bond order)

2)Key question: Are the CO ligands bridging or terminal?

Key point: Each Ni atom should follow the 18e rule. Each Ni atom adopts d^2sp^3 hybridization, thus forming 6 σ -bonds with its surrounding atom/ligands:

- 3 of them are used by a Cp ligand.
- 1 of them is used by the Ni-Ni bond.
- 2 of them should be used by the CO ligands.
- Only two CO ligands are available.
- \rightarrow two μ_2 -CO ligands!

iii. Bond valence and cluster geometry

A. Tri-nuclear compounds

Metal cluster compounds	g	b	M-M/pm	
Os ₃ (CO) ₉ (μ ₃ -S) ₂	50	2	Os-Os, 281.3	
Mn ₂ Fe(CO) ₁₄	50	2	Mn-Fe, 281.5	
Fe ₃ (CO) ₁₂	48	3	Fe-Fe, 281.5	
Os ₃ H ₂ (CO) ₁₀	46	4	Os-Os, 281.5 Os=Os,268.0	
[Re ₃ (µ ₂ -Cl) ₃ Cl ₉] ³⁻ Re(III) ~ 5d⁴	42	6	Re=Re, 247	
[Mo ₃ (μ ₃ -O)(μ ₂ -O) ₃ F ₉)] ⁵⁻ Mo(IV) ~4d ²	42	6(expected) 3 (actually)	Mo-Mo,250.2	

The last compound has such high-valent metal cations that are too electron-deficient to afford the hypothetic M-M bonds.

12

Special case: $[Mo_3(\mu_3-X)(\mu_2-X)_3]^{4+}$ (X= S, O) core with

d-p π -conjugation & quasiaromaticity

 $[Mo_3(\mu_3-O)(\mu_2-O)_3F_9)]^{5-} \bullet Each 6-coordinate Mo(IV) is d^2sp^3-hybridized.$

(IV)

VIO

(VI)Mo

·Mo(IV)

- Each Mo(IV) contributes two d-AO's and two VE's to afford three bonding skeletal MO's.
 - Each Mo (IV) has 16VE with an empty d-AO!
 - The 6c-6e d(Mo)-p(S) π -conjugation within the puckered [Mo₃S₃]⁶⁺ ring, i.e., **the so-called quasi-aromaticity**.
 - Only upon inclusion of such p(S)→d(Mo) π bonding can each Mo center approximately
 fulfill the 18e Rule.

Lu, J.X., Chen. Z.D, Int. Rev. Phys. Chem., 1994, 13, 85.

Pentanuclear compounds

Hexanuclear compounds

Multi-nuclear (N>6) compounds

(c)

iii. Metal-metal dative bond

- VE or g = (2x8+6+14x2)=50, b = (18xn-g)/2 = 2
- For the $Os(CO)_5L$, its Os1 atom fulfills the 18e rule. So this fragment works as a ligand of Os2.
- $W(CO)_5$ requires 2 extra electrons to fulfill the 18e rule.
- Both metal-metal bonds could be regarded as dative bonds for the metal atoms to achieve an 18e configuration.
 see Pomeroy et al, *Inorg. Chem.*, 1992, 31, 3155.

Metal-metal dative bond: more examples

- Pt sp-hybridization. Pt achieves a 14e configuration in $Pt(PCy_3)_2$. Or more exactly, Pt --sd_{σ}-hybridization, 3c4e σ -bond in $Pt(PCy_3)_2$.
- Thus in Pt(PCy₃)₂, the occupied Pt sd_σ hybridized orbital has a high-degree of 6s contribution, and is diffusive and electron-donative!
 see Braunschweig et al, *Chem. Comm.*, 2010, 46, 913.

6.4.3 Molecular fragment, Generalized octet rule, and Isolobal analogy

- Molecular fragment -- the constitutive groups of atoms in a molecule, e.g., functional groups in organic chemistry, monomer of a polymer, $Ir(CO)_3$ in $Ir_4(CO)_{12}$.
- A molecule can be regarded as a combination of molecular fragments chemically bonded with each other. (Proposed by R. Hoffmann!)

e.g.,
$$CH_3CH_2OH = (CH_3)(CH_2)(OH); Ir_4(CO)_{12} = [Ir(CO)_3]_{4;}$$

 $H_2O_2 = (HO)_2;$

• This concept facilitates us to understand the construction of complicated molecules and to design new molecules.

• In practice, a molecular fragment can be regarded as an atom with certain valence electrons (VEs) and unsaturated valence V_i .

 $V_i = 2O_i - i$ (V_i: unsaturated valence or covalency; O_i : number of VO's; i: number of VE's)

• For a given molecular fragment, we focus on the total VEs (*i*) & VOs of its central atom with unsaturated valence (V_i), e.g., both CH₃ and OH have 7 VEs/4VOs and 1 free valence, CH₂ has 6 VEs and free valence of 2, Ir(CO)₃ has 15VEs/9VOs and free valence of 3, Fe(CO)₄ has 16 VEs and free valence of 2.

Examples:

Carbene CR_2 : O = 4, i(VE) = 6, V = 2M(CO)_x: Fe(CO)₄, Cr(CO)₅, W(CO)₅ O = 9, i = 16, V = 2

The fragments can form M=C double bond as in the following Fischer

carbene complexes,

Representative Fischer Carbenes:

Comparision of Fisher Carbene and Schrock carbene:

How to understand the bond valence of a TM cluster compound in terms of molecular fragment theory? $b = \frac{1}{2}(18n - g)$

• For the *i*th fragment of a cluster compound, the unsaturated valence

$$V_i = 2O_i - i \quad (V_i : unsaturated valence or covalency;)$$
$$O_i : number of VO's; \quad i : number of VE's)$$

→ The total free valence (*V*) of all fragments in a cluster compound can be saturated upon formation of M-M bonds (*b*), i.e., V = 2b.

$$V = \sum_{i} V_{i} = \sum_{i} 2O_{i} - \sum_{i} i = \sum_{i} 2O_{i} - g, \quad b = V/2 = (\sum_{i} 2O_{i} - g)/2$$

• For a TM cluster compound with *n* TM atoms, each TM center has $O_i = 9$. Then $\sum_{i=1}^{n} 2O_i = 18n \Rightarrow b = (18n - g)/2$

Generalized octet rule: proposed by Pearson

- If the total VEs (*i*) of a molecular fragment is 2 times of its total valence orbitals (O_i), this molecule fragment has a closed-shell electronic configuration and can itself be an stable molecule. $i.e., i = 2O_i \Rightarrow V_i = 2O_i i = 0$
- central atom = main-group element (O_i =4), i.e., octet rule central atom = transition metal (O_i =9), i.e., 18e rule (CQ)₃

• This rule also governs the chemical bondings between molecular fragments, e.g., $Ir(CO)_3$ has 15 VEs and 9 VOs, being short of 3VEs. To fulfill the rule, it forms three 2c-2e M-M bonds with other $Ir(CO)_3$ fragments in $Ir_4(CO)_{12}$.

Generalized octet rule

Rules	O _i	i	VO's	Examples
2e	1	2	S	LiH, LiR, Li2
<i>4e</i>	2	4	sp	BeR ₂ , R-Mg-Cl
6e	3	6	sp²	BEt ₃ , La(Ph) ₃
8e	4	8	sp³	CH_4 , NF_3 , H_2O
10e	5	10	sp³d	PF ₅ , SF ₄ , XeF ₂
12e	6	12	sp³d²	SF ₆ , MoF ₆ , PF ₆ ⁻ , SiF ₆ ²⁻
14e	7	14	sp³d³/d⁵sp	IF ₇ / Agl ₂ ⁻ , Au(CN) ₂ ⁻
16e	8	16	d ⁵ sp ²	Cp ₂ Cr, Au(CN) ₄ ⁻
18e	9	18	d ⁵ sp ³	Ni(CO) ₄ , Fe(CO) ₅ , Cr(CO) ₆

12 | _____3

6

Generalized octet rule (GOR): examples

• Complexes fulfilling the octet rule:

Why is isomer **b** more stable than isomer **a**?

Note: isomer **a**, has two Mg-Me-Mg 3c-2e bonds.

- 1) No metal-metal bond. $V = 8n-g=0 \rightarrow g=8n = 16!$
- 2) However, total skeletal bonding MO's: 8 (b) > 6 (a). \rightarrow
- 3) Total skeletal bonding electrons: g=16 (b) > 12 (a) (needs extra 4e)
- 4) Isomer **a** conflicts with GOR. Isomer **b** having four more bonding skeletal electrons and fulfilling GOR is more stable!

Generalized octet rule: examples

• 16e complexes:

- The Pt²⁺ (5d⁸) adopts dsp² hybridization in order to form the 4-coordinated planar complexes. Meanwhile, each ligand contributes a lone-pair orbital.
- 2) A total of 8 AOs are involved in the M-L bondings, forming 8 σ-MOs (4 bonding and 4 antibonding).
- 3) The total valence electrons around Pt: 8 (nonbonding $5d^8$) + 8 (4 bonding σ -MOs/dative bonds) = 16.

Generalized octet rule: examples

Beyond 18e: Thorocene and Uranocene

 $[M(C_8H_8)_2], M=Th, U$

- 1) Th (5f⁰6d²7s²) and 2C₈H₈ (8πe) → Th⁴⁺ and 2C₈H₈²⁻(10πe).
- 2) D_{8h} -symmetry, VE = 20.

3)
$$(\sigma_g)^2 (\sigma_u^*)^2 (\pi_u)^4 (\pi_g^*)^4 (\delta_g)^4 (\delta_u^*)^4$$

4) A 5f AO of Th (U) is involved in the metal-ligand bonding!

Prediction: Uranocene -- Fischer, R.D. *Theor. Chim. Acta*, **1963**, *1*, 418. Synthesis: Uranocene -- Streitweiser A. Jr., J. Am. Chem. Soc. **1968**, *90*, 7364. Thorocene-- Streitweiser A. Jr., J. Am. Chem. Soc. **1969**, *91*, 7528.

Isolobal Analogy: proposed by R. Hoffmann

Molecular fragments having *same number of VEs* (or *VE_a* = *VE_b*-10) and *similar frontier orbitals* are isolobal.

e.g., CH_2 (*VE* = 6, *V*=2) is isolobal to $Fe(CO)_4$ (*VE* =16, *V*=2).

 $CH_2 = CH_2$ vs. $Fe_2(CO)_8$

- A fragment in a molecule can be substituted with an isolobal fragment. e.g., CR₂ vs Fe(CO)₄, AuPR₃ vs H
 → Metal-carbene complexes: (L)_nM=CR₂
- Isolobal analogy has been widely exploited in synthetic chemistry and led to the production of numerous cluster compounds.
- One of the most widely exploited isolobal analogy is the isolobal analogy between AuPR₃ and H.

In 1970s, Mingos noticed the $AuPR_3 \sim H$ analogy.

• Mingos DMP, J. Chem. Soc., Dalton Trans, **1976**, 1163; J. Organomet. Chem. **1982**, 232, 171.

9

• Hoffmann R, Angew. Chem., 1982, 94, 725.

Early experimental evidences of isolobal AuPR₃ ~H analogy.

- isostructural [Co(CO)₄X] (X=H, AuPR₃)
- isostructural [FeCo₃(CO)₁₂(μ_3 -X)] (X=H, AuPR₃) compounds

- Blundell and Powell, J. Chem. Soc. A, 1971, 1685;
- McNeil and Scholer, J. Am. Chem. Soc. 1977, 99, 6243.
- Lauher and Wald, J. Am. Chem. Soc. 1981, 103, 7649.

The Isolobal AuPR₃~H Analogy

The AuPR₃ synthon as H analogue has be widely exploited in bench chemistry, e.g., $[O(AuPR_3)_n]^{(n-2)+}$ (n=3-4); $[N(AuPR_3)_n]^{(n-3)+}$ (n=4-5); $[C(AuPR_3)_n]^{(n-4)+}$ (n=4-6); $[N_2(AuPR_3)_6]^{2+}$

• Schmidbaur, H. et al., *Nature*, **1990**, *345*, 140; **1991**, *352*, 141; **1995**, *377*, 503;

• Sharp P.R. et al . *Science*, **1997**, *275*, 1460.

In bench chemistry, the gold-hydrogen analogy is assisted exclusively by such type of ligands as PR₃!

• $[C(AuPh_3)_n]^{(n-4)+} (n = 4-6) \approx CH_4, [CH_5]^+, [CH_6]^{2+}$

 $\approx [\mathrm{H}_{3}\mathrm{N}-\mathrm{NH}_{3}]^{2+};$

9 3

• $[N(AuPh_3)_n]^{(n-3)+}$ $(n=4-5) \approx [NH_4]^+, [NH_5]^{2+}$

• $[N_2(AuPR_3)_6]^{2+}$

• $[O(AuPh_3)_n]^{(n-2)+} (n=3-4) \approx [OH_3]^+, [OH_4]^{2+}$

6.5 Carbon clusters and nanotubes

- Fullerenes are convex carbon cages comprising hexagons and exactly *12* pentagons.
- Euler's Theorem states that exactly 12 pentagons must be accommodated to allow closure of a carbon network consisting of *n* hexagons.
- **Isolated pentagon rule (IPR)**: the pentagons within the most stable fullerenes are surrounded by hexagons and, hence, isolated from each other.
- The smallest IPR-satisfying fullerene is C_{60} (I_h), immediately followed by $C_{70}(D_{5h})$. Those with a size smaller than C_{60} or between C_{60} and C_{70} do not obey IPR.
 - Lu X et al., Chem. Rev. 2005, 105, 3643.

Non-IPR fullerenes with adjacent pentagons are always unstable. Why?

- Adjacent pentagons of a convex cage introduce enhanced steric strain (*steric effect*).
- Adjacent pentagons introduce antiaromatic destabilization pertaining to the pentalene-type 8π -

electron system (*electronic effect*).

Antiaromatic pentalene

2. Carbon nanotubes

Discovered by Iijima (NEC, JPN) in 1991.

.

Single-walled carbon nanotube (SWCNT):

• The structure of a SWCNT can be uniquely defined by the roll-up vector, $C_h = na_1 + ma_2$, and is designated by (n,m).

Types:

A) $C_{h} = na_{1} + ma_{2}$

 $(n \ge m, m \ne 0)$, chiral (n,m).

B) $\mathbf{C}_{\mathbf{h}} = n\mathbf{a}_{\mathbf{1}}$

zigzag(n,0) - achiral

$$C) C_h = na_1 + na_2$$

Figure 64. Roll-up vector $C_h (C_h = na_1 + ma_2)$ and chiral angle θ for a (n,m) SWCNT (for this special case, n = 4, m= 3), where \mathbf{a}_1 and \mathbf{a}_2 are the primitive vectors of a armchair (n,n)-- achiral graphene sheet.

9

e.g., The roll-up vectors A, B and C define the SWCNTs (4,3), (6,0) and (3,3), respectively.

Types:

a) Chiral (n,m) (n >m, m \neq 0).

b) Achiral zigzag (n,0).

c) Achiral armchair (n,n).

Conductivity:

(n-m)/3 = k (k = 0, 1, 2, ...) --- metallic

 $(n-m)/3 \neq k$ --- semiconductive

 $\bullet Metallic (n,n) and (3m,0)$

(4,3)

(6,0)

(5,5)

O John Wiley & Sons, Inc.

Hydrogen bonds in DNA

• Hydrogen bonding within the base pairs of DNA

6.7 Prediction of structural features of inorganic iono-covalent compounds and tetrahedral anion complexes

Hume-Rothery's 8 - *N* rule (1930/31)

Rule rationalizes observed structural features of (post-transition) main group elements. By forming the correct number of shared bonds with its neighbors each atom succeeds to complete its octet.

The number of bonds of an element is 8 - N where N is its column number in the periodic table (only for $4 \le N \le 8$). Element structures which obey Hume-Rothery's 8 - N rule

 C_D , Si, Ge, α -Sn P, As, Sb, Bi

S, Se, Te

9

SELEN

Generalized 8 - N rule

Pearson (1964), Hulliger & Mooser (1965)

8 - VEC_A = AA -
$$mCC/n$$
 for C_mA_n

VEC_A: Number of valence electrons per atom in anion.

VEC_A < 8, AA>0, CC=0 ⇒ Polyanionic val. comp. VEC_A = 8, AA=0, CC=0 ⇒ Normal valence compound VEC_A > 8, AA=0, CC>0 ⇒ Polycationic val. comp.

AA: Average number of A-A bonds per anion CC: Average number of C-C bonds per cations and/or electrons used for inert-electron pairs on cations

Polyanionic valence compound (1)

$$K_{6}Pd(II)Se_{20}: VEC_{A} = 128/20 = 32/5, CC = 0,$$

→ AA=8/5, i.e., $K_{6}Pd[Se_{5}]_{4}$

AA = (2x1)/2

= 1

AA = (2x1 + 2)/3

= 4/3

N_{A/M} = 2/(2 - AA)

N_{A/M} : Average

AA = (2x1 + 2x2)/4= 6/4

AA = (2x1 + 3x2)/5= 8/5

 $N_{A/M} = 2/(2 - AA)$ $N_{A/M}$: Average number of atoms in a non-cyclic charged anion molecule , "

Polyanionic valence compounds (2)

- LaAs₂: VEC_A= 6.5; AA = 3/2; N_{A/M} = 4 La₂^[As₄] (LT) or La₄^[As₃]^[As₅] (HT)
- $CsTe_4$: $VEC_A = 6.25$; AA = 7/4; $N_{A/M} = 8$ $Cs_2^{[Te_8]}$
- Th_2S_5 : $VEC_A = 7.6$; AA = 2/5
- $Th_2^{S_2}[S]_3$
- Sr_5Si_3 : VEC_A= 7.33; AA = 2/3
- $Sr_5^{Si_2}[Si_2]$

Polycationic valence compounds

- **HgCl** : VEC $_{A}$ = 9; CC = 1
- [Hg-Hg]Cl₂
- CCl₃ : VEC_A= 8.33; CC = 1
- $[C-C]Cl_6$

• **SiAs** : $VEC_A = 9$; CC = 1

[Si-Si]As₂

Caution:

In most cases, the M-M bond valence of a cluster compound derived from the electron-counting rule may not be explicitly equal to the number of its M-M linkages!

Accordingly, it is better to make use of Wade's rule to count the number of skeletal bonding electron-pairs of a cluster compound!

- For each M center of a cluster compound that fulfills the 18e rule, it adopts supposedly d²sp³ hybridization with three non-hybridized d AOs unused.
- While some of the hybridized orbitals are used to form M-L dative bonds, the rest of the HOs are used to form the skeletal MOs of the cluster compound!
- Thus, the Wade's rule demands 2(n+1) bonding skeletal electrons for a *n*-vertex polyhedron.

Example: Fe₃(CO)₁₂

- A. Electron-counting rule: g = 3x8 + 12x2 = 48; b=(3x18-48)/2 = 3--seemingly adopts a triangular geometry with 3 M-M bonds!
- B. Wade's rule (MO theory):
- i) Fe (8 VEs & 9 VAOs) in $Fe(CO)_4$ fragment:
- 3 non-bonding VAOs (doubly occupied d AOs, thus 6VEs used);
- 4 VAOs used for M-CO dative bonds; The rest 2VAOs (together with 2 VEs) contribute to the skeletal MOs of the cluster.
 The M(CO) of the cluster of the cluster.

ii) Three $M(CO)_4$ fragments jointly form 3 bonding & 3 antibonding skeletal MOs.

In this case, predictions based on the simple electron-counting rule & Wade's rule agree well with each other!

Cautions: The electron-counting rule even fails for some lowoxidation state TM compounds!

Example: $M_6(CO)_{18}$ (M = Fe, Ru, Os)

A. Electron-counting: g = 6x8 + 18x2 = 84; b=(6x18-84)/2 = 12

The cluster compounds seemingly have 12 M-M bonds, thus adopting an octahedral geometry! Is this prediction correct?

- B. Wade's rule (MO theory):
- i) The M atom in a $M(CO)_3$ fragment has 8 VEs & 9 VAOs:

3VAOs used for M-CO bonds; 3 non-bonding d VAOs & 6VEs; the rest 3VAOs, but only 2 VEs, used for the formation of the skeletal MOs of the cluster \rightarrow

ii) The whole cluster has 12 VEs, i.e., 6 bonding skeletal MOs.

iii) However, **Wade's rule** demands in total 7 bonding skeletal MOs (1 radial + 6 tangential MOs) for an octahedron. v) The cluster is not ideally an octahedron, but actually a bicapped tetrahedron!

Instead, $[M_6(CO)_{18}]^{2-}$ is an octahedron with 7 bonding skeletal MOs!

Validation of the simple electron-counting rule requires an in-depth analysis in light of the MO theory!

m VEs n VAOs	VB description	MO description
m = n	<i>m</i> /2(or n/2) 2c-2e bonds: (σ /+ π), e.g., 4 C-H bonds in CH ₄	<i>m</i> /2 bonding MOs (σ /+ π) or plus Π_x^x (e.g., C_6H_6)
m > n	<i>(m-n)</i> lone pairs & (2n-m)/2 2c-2e bonds, e.g., <i>NH</i> ₃	(<i>m-n</i>) non-bonding MOs & (2 <i>n-m</i>)/2 bonding MOs or plus Π_x^x (e.g., pyridine)
<i>m</i> < <i>n</i>	Electron deficient! ?	(e.g., boranes, carboranes) 3c-2e or more delocalized σ- MOs.