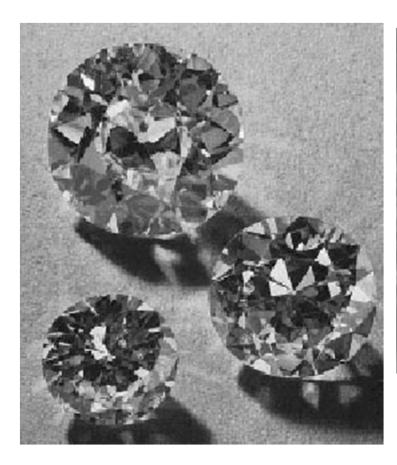
Chapter 7 Introduction to Crystallography

- 7.1 Periodicity and lattices of crystal structure
- 7.2 Symmetry in crystal structures
- 7.3 X-ray diffraction of crystals
- 7.4 Quasi-crystal, liquid crystal and amorphous

Crystalline Substances: e.g., Diamond and Table Salt



Diamonds

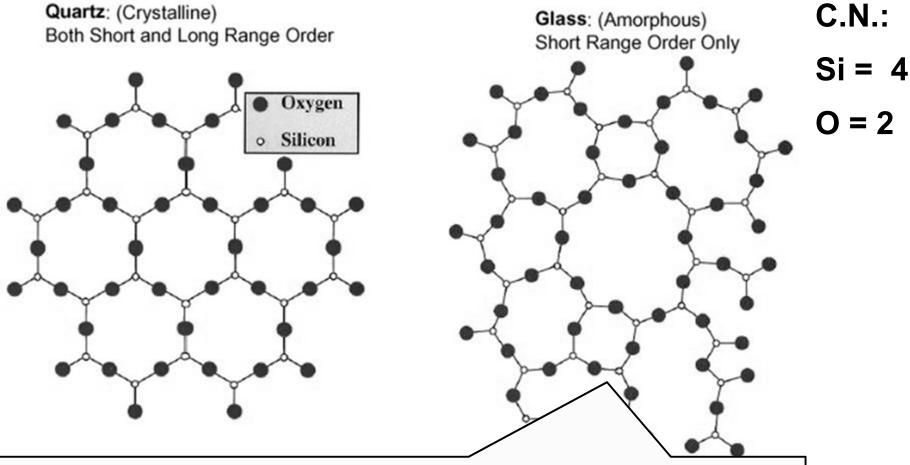
7.1 periodicity and lattices of crystal structure

7.1.1 The characteristics of crystal structure

- 1. A few definitions:
- Solids can be divided into two primary categories, crystalline solids and amorphous solids.
- Crystalline Solids are built from atoms or molecules arranged in a periodic manner in space, e.g., rock salt and diamond.
- Amorphous Solids possess short-range order only. They are not related through symmetry, e.g. glass, rosin, amber glass.
- > Short-Range Order: Fixed bond lengths and angles
- ➤ Long-Range Order: Associated with a lattice point

Crystals are solids that are built from atoms or molecules arranged in a periodic manner in space.

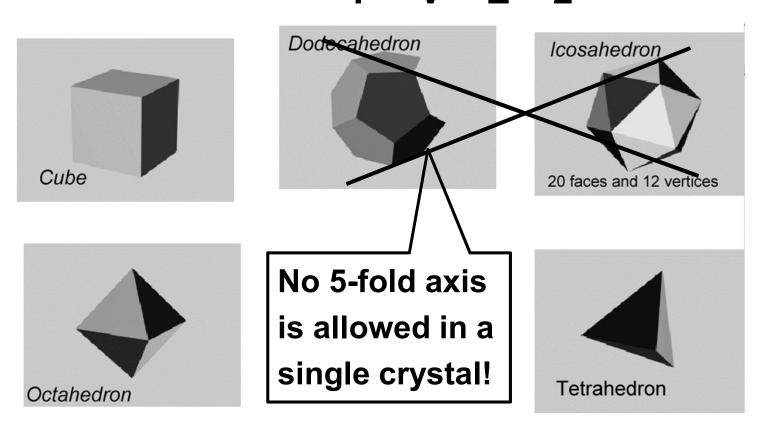
Crystalline vs. Amorphous of SiO₂



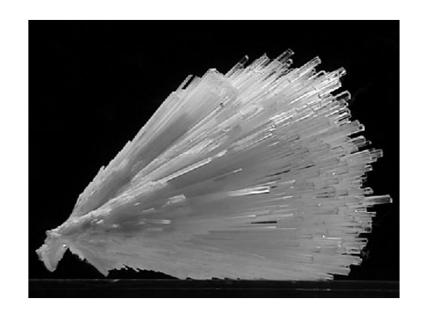
Short range order: fixed bond lengths and angles due to the bonding nature of constituent atoms.

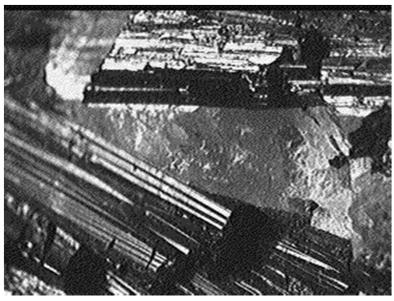
2. Fundamental characteristics of crystal

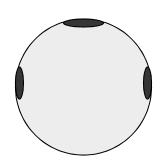
a) Spontaneous formation of polyhedral shapes
 F + V = E + 2



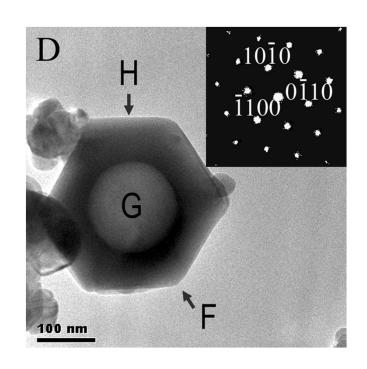
b) Uniformity: periodic distribution of atoms/molecules

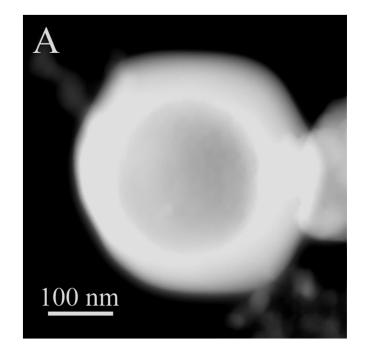






Single crystal gold bead with naturally formed facets

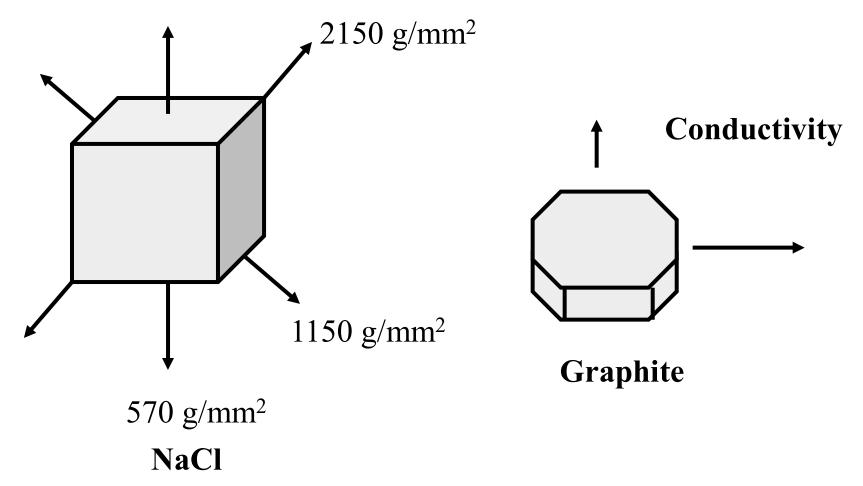




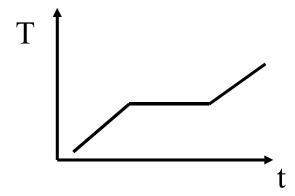
HRTEM images of hollow beads

Anisotropy

Different periodicity and density for different direction.

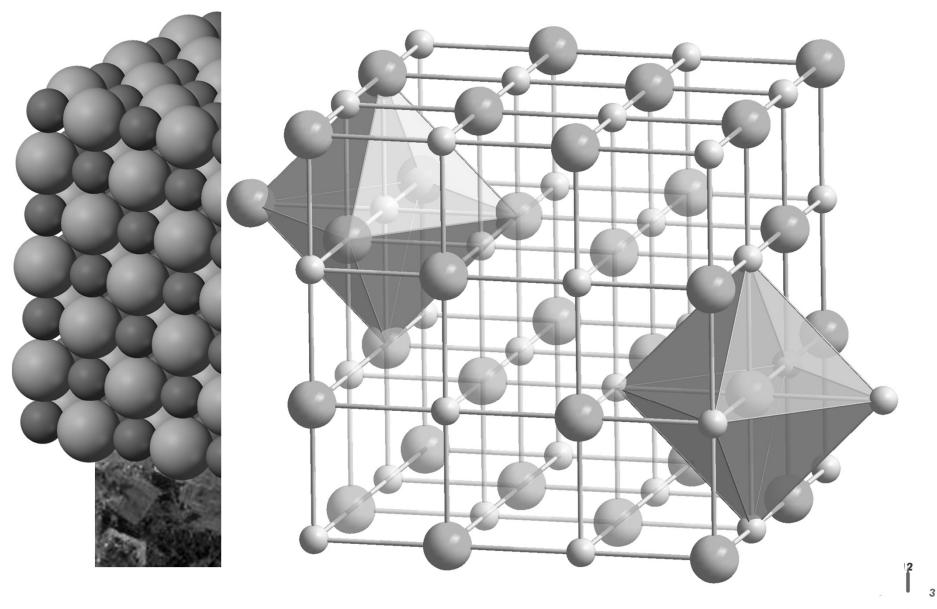


Definite sharp melting points



- Symmetry: crystal shape (macroscopic)
 lattice arrangement (microscopic)
 - •X-ray diffraction by crystals: atomic distances match the wavelength of x-ray.

Sodium Chloride: Solid and Crystal structure

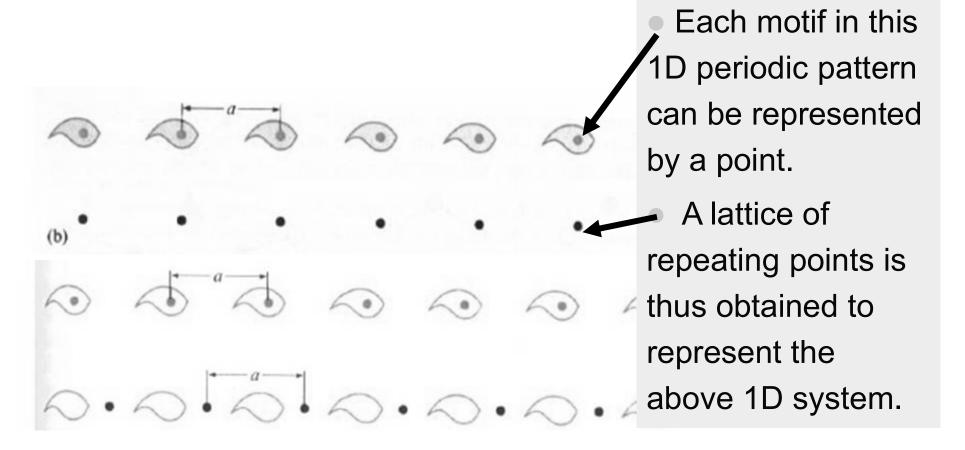


7.1.2 The lattice and unit cell

Lattice:

- A periodic pattern of points in space, such that each lattice point has identical surroundings.
- Can be reproduced by translational motion along the vector between any two points.

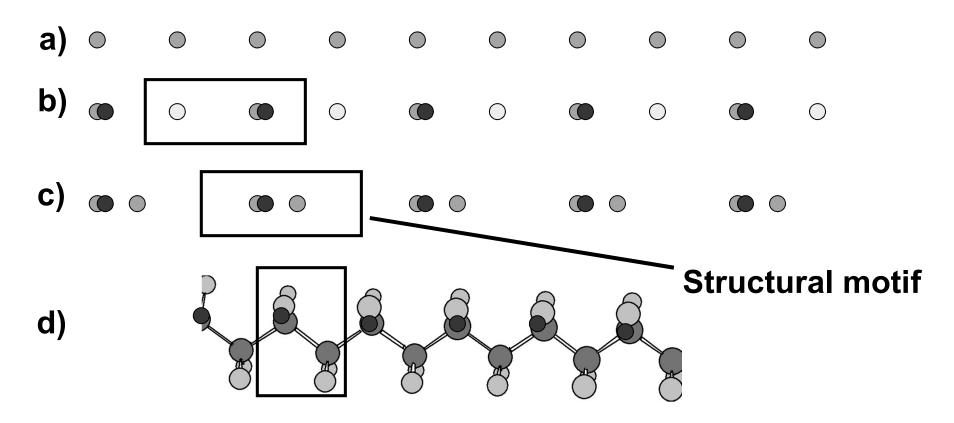
a. 1D lattice and its unit:



 The translation vectors connecting any two lattice points constitute a translation group. i.e.,

$$T_m = ma$$
 (m = 0, ± 1 , ± 2 , ..., $\pm \infty$) a : basic vector.

Examples of 1D lattice



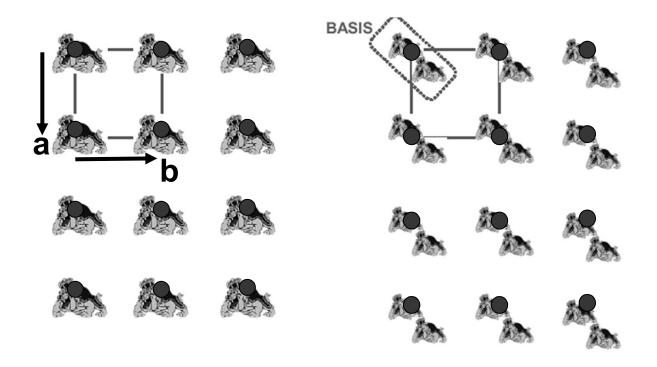
a is a 1D lattice itself;

b-d are not lattices, but can be represented by a lattice.

A pattern with periodicity = a lattice + structural motif!

b. Lattice and its unit in 2D:

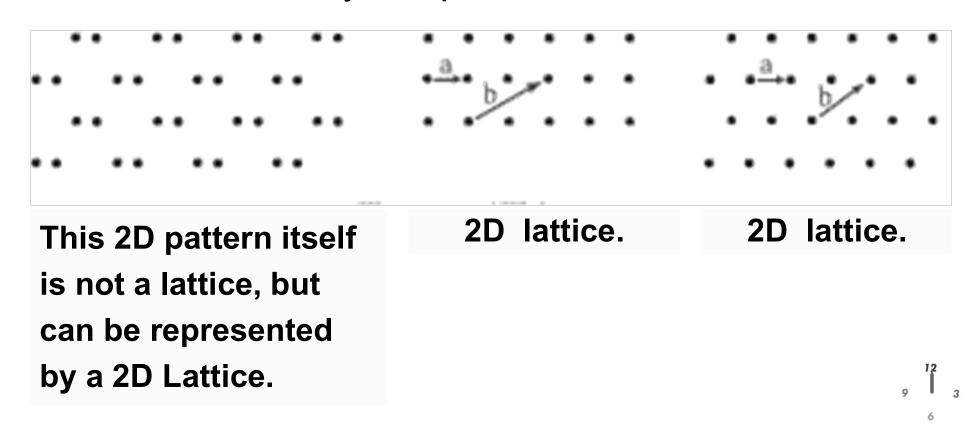
$$T_{mn} = m\underline{a} + n\underline{b}$$
 (m, n = 0,±1, ±2, ...)
 $a \& b$: independent basic vectors
 $\{T_{mn}\}$ – a translation group



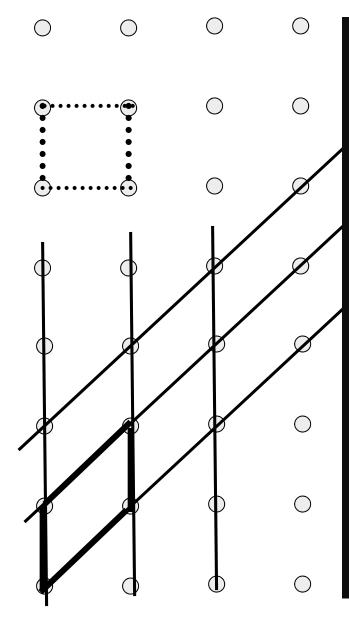
•Crystal structure = lattice + structural motif (basis)

Lattice:

- A periodic pattern of points in space, such that each lattice point has identical surroundings.
- Can be reproduced by translational motion along the vector between any two points.



2D Primitive Cell

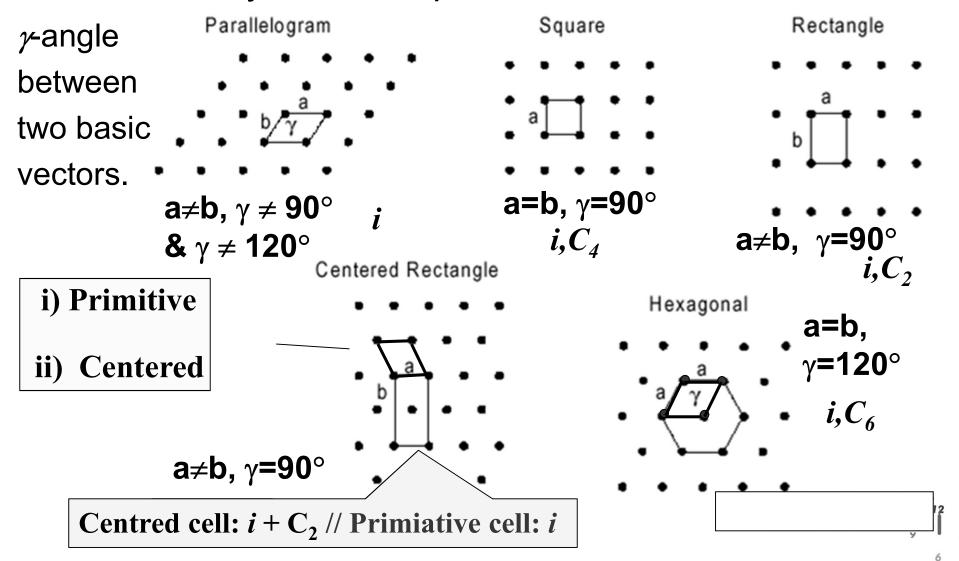


Choice of Unit Cell

- > There is always more than one possible choice of unit cell.
- By convention, the chosen unit cell should be as small as possible while reflecting the full symmetry of the lattice.
 - 1) The highest symmetry
 - 2) The smallest area (or volume)

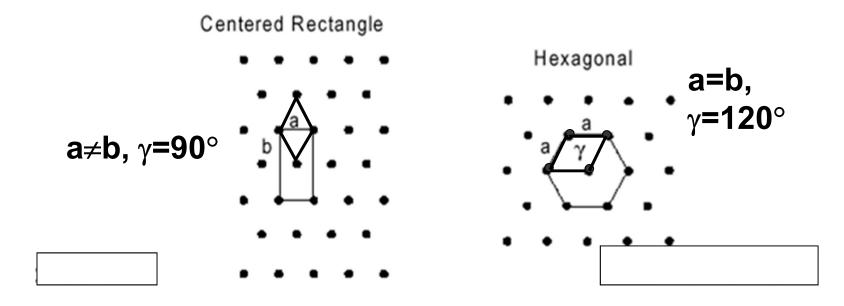
Five types of 2D lattices

There are literally thousands of crystalline materials, there are only 5 distinct planar lattices.

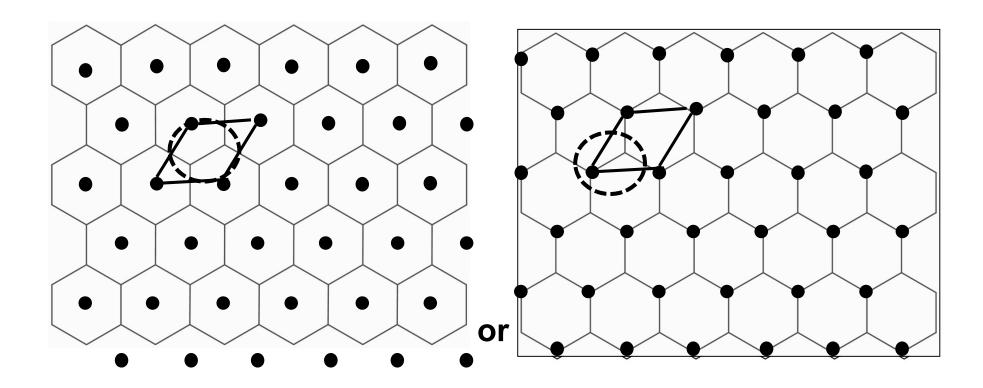


Question:

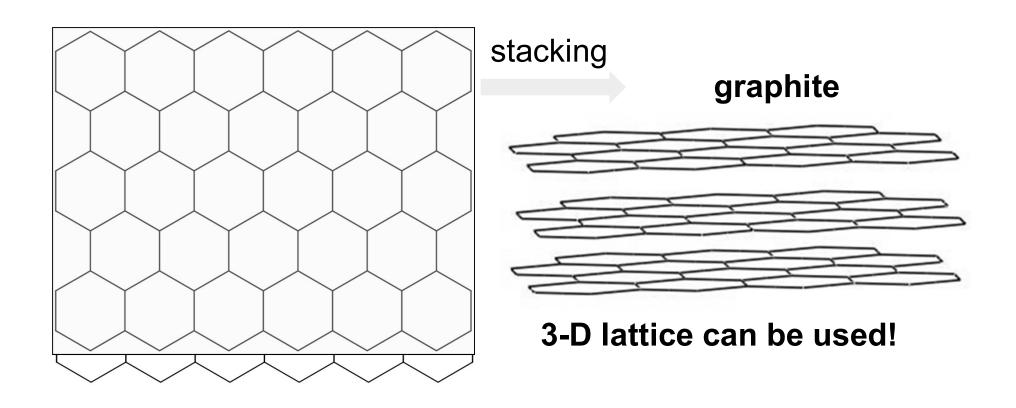
Both the centred rectangular and simple hexagonal 2D lattices have a rhombic primitive unit cell. What is the key difference between them?



Example: 2D-lattice of Graphene



- What's the smallest structure motif of a graphene sheet?
- What type of lattice does a planar graphene sheet belong to?

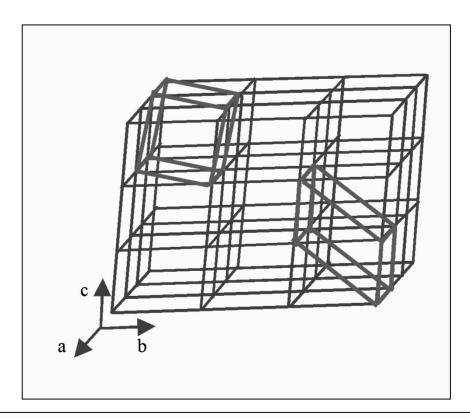


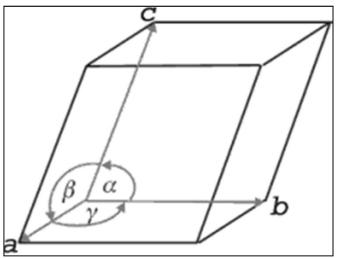
c. Lattices and its unit in 3D:

$$T = m\underline{a} + n\underline{b} + p\underline{c}$$
 (m, n, p = 0, ±1, ± 2, ...)

c. Lattices and its unit in 3D:

$$T = m\underline{a} + n\underline{b} + p\underline{c}$$
 (m, n, p = 0, ±1, ± 2, ...)



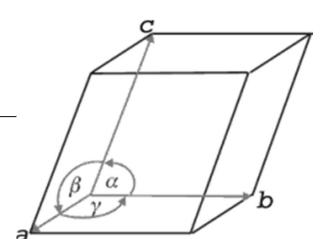


The Choice of a Unit Cell:

Having the highest symmetry and minimal size

The Choice of a Primitive Cell

1) The axial system consisting of the basis vectors should be right handed.

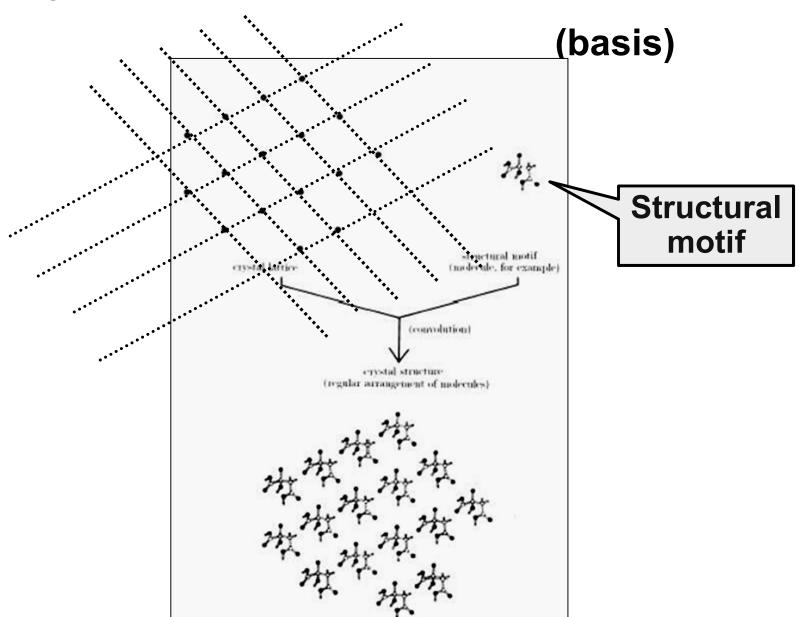


- 2) The basis vectors should coincide as much as possible with directions of the highest symmetry.
- 3) Should be the smallest volume that satisfies condition 2.
- 4) Of all lattice vectors none is shorter than **a**.
- 5) Of those not directed along **a** none is shorter than **b**.
- 6) Of those not lying in the **a**, **b** plane none is shorter than **c**.
- 7) The three angles between the basis vectors **a,b,c** are either all acute or obtuse.

Conditions 4-6 define

$$\left| |\vec{a}| \le \left| \vec{b} \right| \le \left| \vec{c} \right|$$

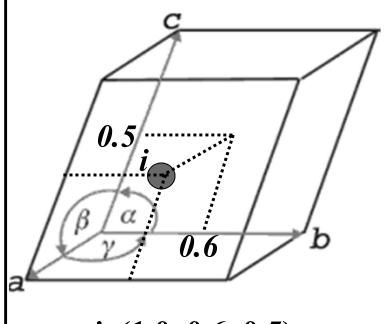
Crystal structure = lattice + structural motif



Atomic Coordinates: Fractional coordinates

Fractional coordinates:

- The positions of atoms inside a unit cell are specified using fractional coordinates (x,y,z).
- These coordinates specify the position as fractions of the unit cell edge lengths.



i: (1.0, 0.6, 0.5)

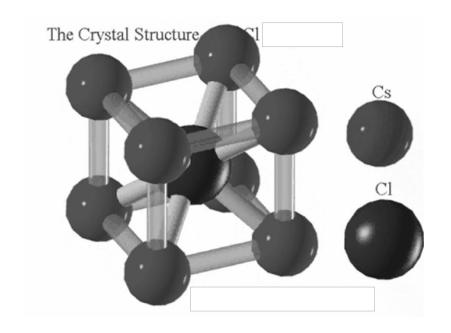
Example:

Cubic unit cell of CsCl,

$$\alpha = \beta = \gamma = 90^{\circ}$$

Cs:(0,0,0)

CI: (1/2,1/2,1/2)



In this case, the lattice point can be put at the position of either Cs or Cl atom. Each unit cell contains both a Cs and Cl atom.

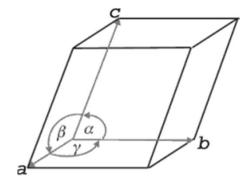
Single Crystal: Composed of only one particular type of space lattice.

Polycrystalline matter: Clusters of multiple crystals.

7.1.3 Crystal systems and Bravais Lattices

a. Crystal systems

There are a total of seven types of crystal systems differing in symmetry.



Crystal systems	Characteristic	Unit cell	Choice of axis	Lattic
	symmetry	parameters		Point
	elements			Group
Triclinic	Nil	a≠b≠c		C_{i}
		α≠β≠γ		
Monoclinic	C_2, σ_h	a≠b≠c	b // C ₂	C_{2h}
		α=γ=90°≠β		
Orthorhombic	$3C_2$, $2\sigma_h$	a≠b≠c	a, b, c // 3C ₂	D_{2h}
		α=β=γ=90°		

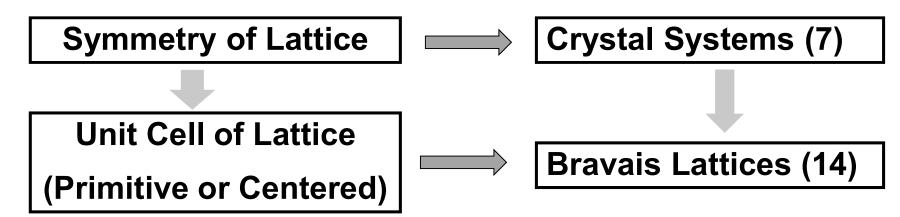
Unit cell is chosen in such a way that it contains as many symmetry elements of the lattice as possible and has the smallest volume.

Trigonal	C_3	Rhombohedral		D_{3d}
		a=b=c,		
		α=β=γ<120°≠90°		
		Hexagonal		D_{6h}
		$a=b\neq c, \alpha=\beta=90^{\circ}$		
		γ=120°		
Tetragonal	C_4	a=b≠c,	c // C ₄	D_{4h}
		α=β=γ=90°		
Hexagonal	C_6	a=b≠c	c // C ₆	D_{6h}
		α=β=90°, γ=120°		
Cubic	4C ₃	a=b=c	Four C ₃ axes	O_h
		α=β=γ=90°	are parallel to	
			the body	
			diagonals of	
			the cube	

b. Bravais Lattices: (14) [developed by Bravais in 1850!]

Primitive cell: minimal size, one lattice point only!

Unit Cell of Bravais Lattice: having the highest symmetry & minimal size, may contain more than one lattice point.



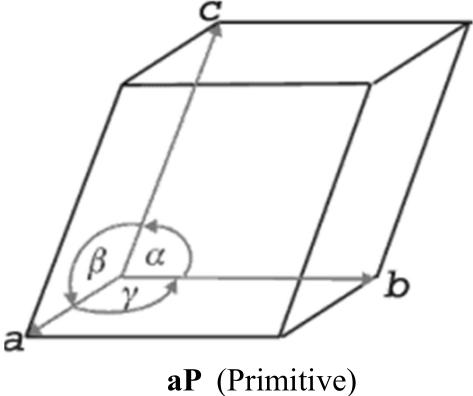
Triclinic	Monoclinic	Orthor- hombic	Tetragonal	Cubic	Trigonal	Hexagonal
aP	mP, mC	oP, oC oF, oI	tP, tI	cP, cI, cF	hR, hP	hP

Lowercase letter (crystal system) + Capital letter (Type of cell) e.g., hR-- R-centred hexagonal, mC-- C-centred monoclinic

* Triclinic

$$a\neq b\neq c$$

$$\alpha \neq \beta \neq \gamma$$



- Triclinic crystal system has the lowest symmetry.
- It can be simply represented by a primitive cell.
- Symmetry element: i

* Monoclinic

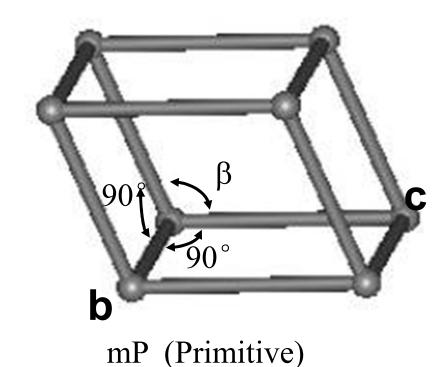
A primitive cell contains one lattice point and a C-centered unit cell contains two lattice points.

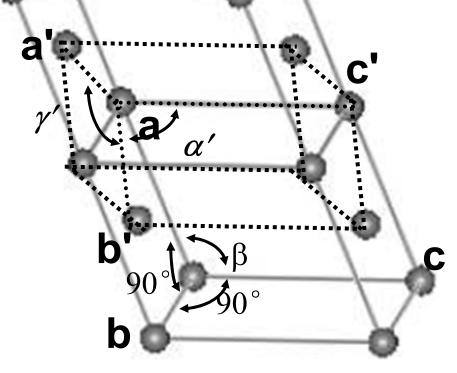
$$a\neq b\neq c$$

$$\alpha = \gamma = 90^{\circ} \neq \beta$$

Sym. Elements:

$$i$$
, $C_2(//b)$, σ_h ,

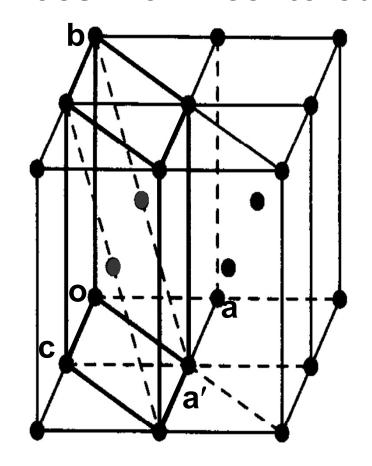


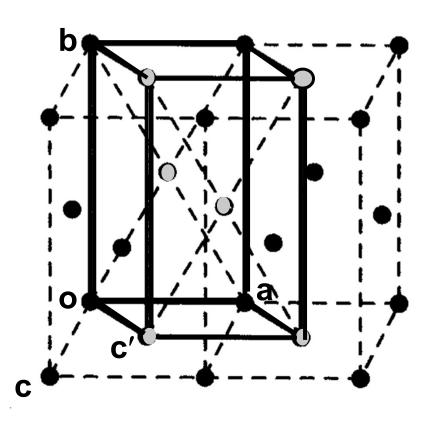


mC (C-centered or A-centered)

The primitive cell of a C-or A-centered monoclinic is triclinic!

Does I- or F-centered monoclinic lattice exist?





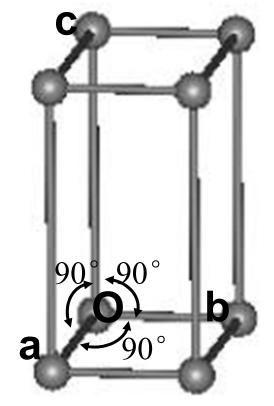
mI ? = mC

mF ? = mC

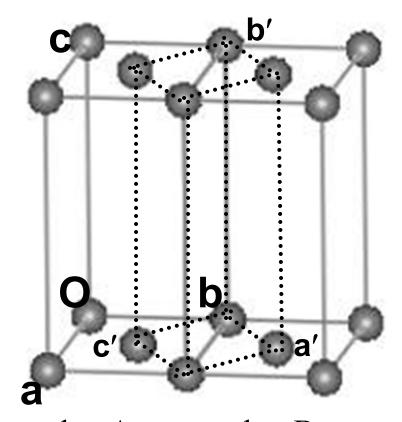
Both I- and F-centered monoclinic are unnecessary and can be represented by a mC!

* Orthorhombic

 The primitive cell of a C-centred orthorhombic lattice is actually monoclinic!



oP (Primitive)



C-centered or A-centered or B-centered

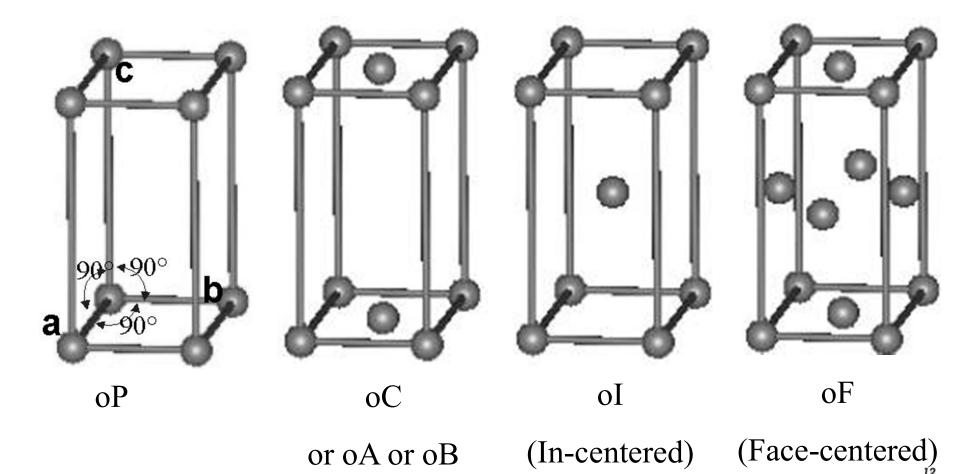
* Orthorhombic

$$a\neq b\neq c$$

$$\alpha = \beta = \gamma = 90^{\circ}$$

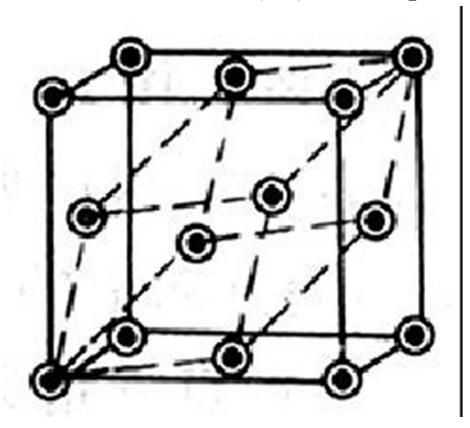
Sym. Elements:

 $3C_2$ (//a,b,c), *i*, $3\sigma_h$ (//A,B,C)



* Orthorhombic

Face-centered cell (oF) and its primitive cell



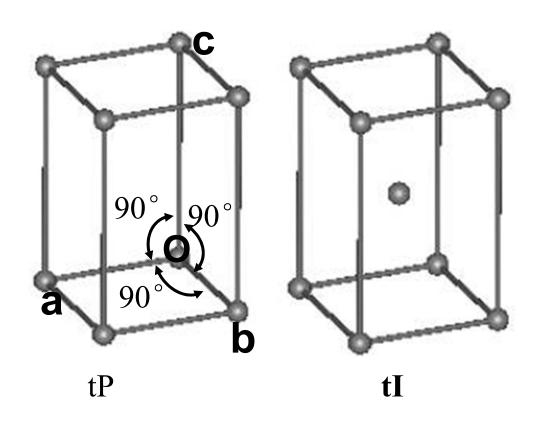
- A Face-centered unit cell contains four lattice points!!
- Its primitive cell is triclinic, and does not contain such symmetry elements as C_2 and σ_h of the lattice.

Question: For a body-centered orthorhombic lattice, is its primitive cell triclinic or monoclinic?

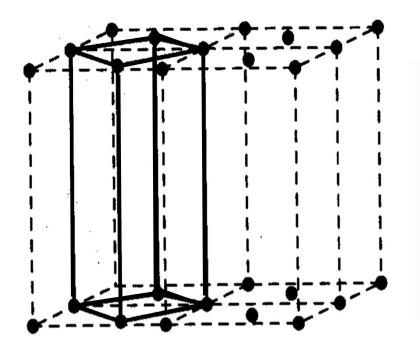
* Tetragonal

Sym. Elements:
$$\alpha = \beta = \gamma = 90^{\circ}$$

$$C_4(//c), 2C_2(//a,b), i, 3\sigma_h (\perp a,b,c)$$



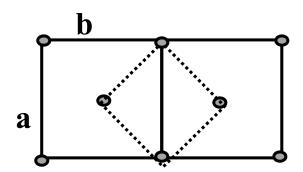
Does a C- or F-centered tetragonal lattice exist?



Neither C-centered tetragonal nor F-centered tetragonal exists.

Please prove it!

$$tC = tP$$



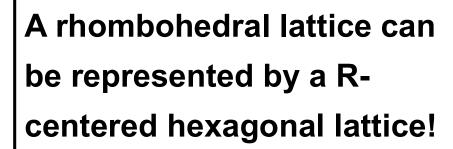
* Trigonal

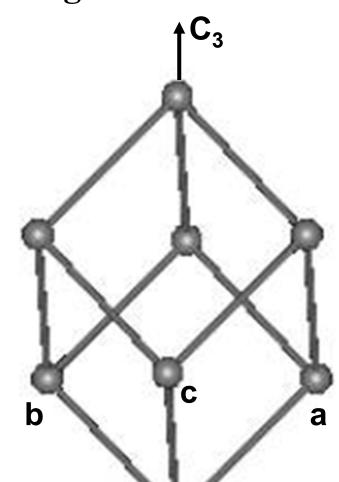
Rhombohedral

$$a=b=c$$

$$\alpha = \beta = \gamma \neq 90^{\circ}$$

Sym. Elements: C₃, i,





* Hexagonal

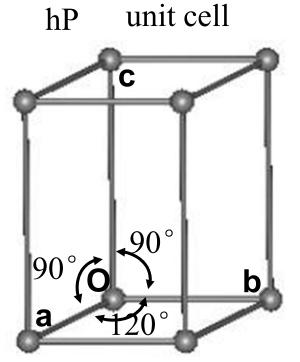
$$a=b\neq c$$

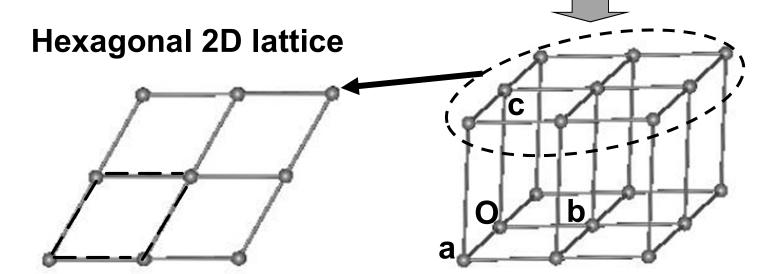
$$\alpha = \beta = 90^{\circ},$$

$$\gamma = 120^{\circ}$$

Sym. Elements:

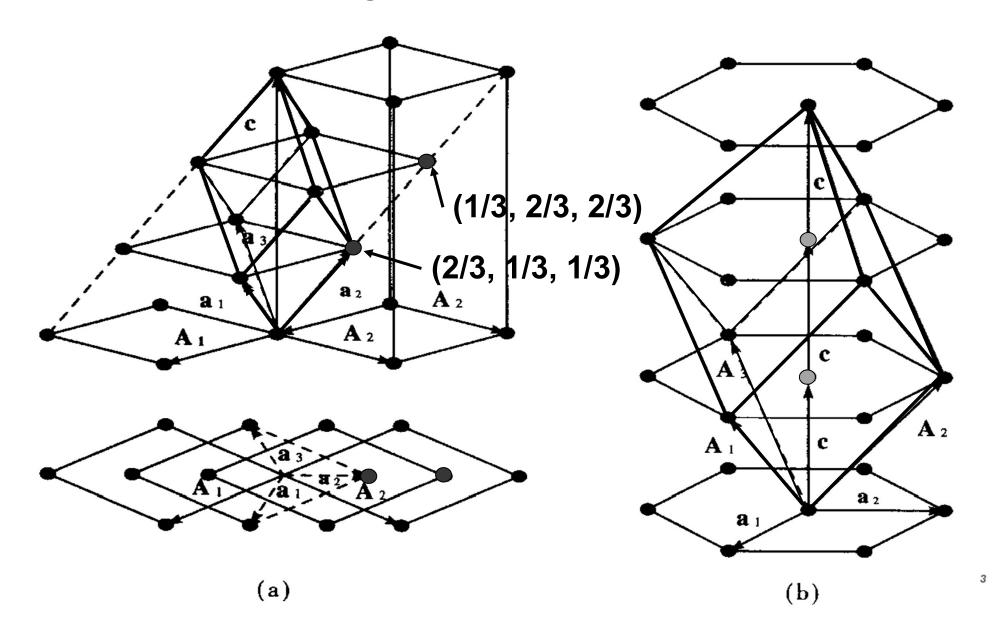
 $C_6(//c)$, i, σ_h ($\perp c$, //C)





a. Primitive rhomohedral =r-centered hexagonal

b. primitive hexagonalr-centered rhombohedral



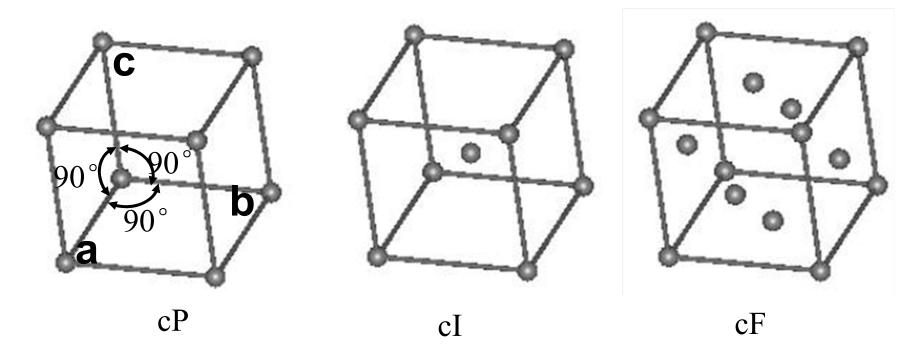
* Cubic

$$a=b=c$$

$$\alpha = \beta = \gamma = 90^{\circ}$$

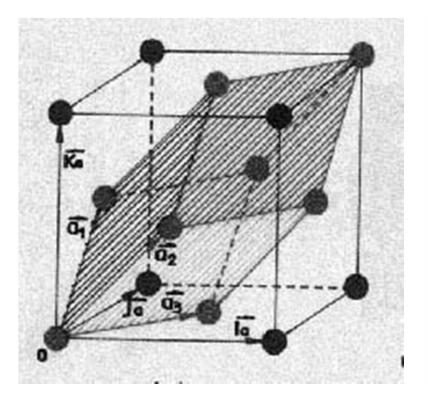
Sym. Elements:

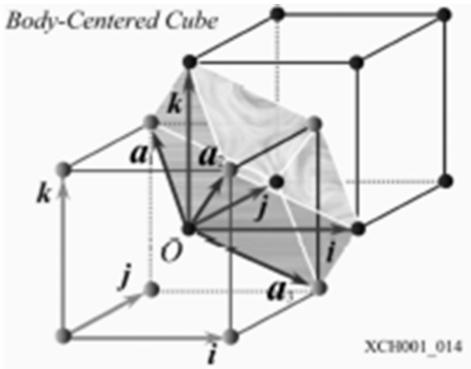
3C₄(//a,b,c), 4C₃, *i*, 3σ_h (⊥a,b,c, //A,B,C)



Is there a c-centered cubic lattice?

 Introducing a C-center eliminates all C₃-axes and results in only one C₄ axis. The lattice should be actually tetragonal. The primitive cell of a fcc or bcc lattice is rhombohedral,
 which does not include the C₄—axes of the lattice!





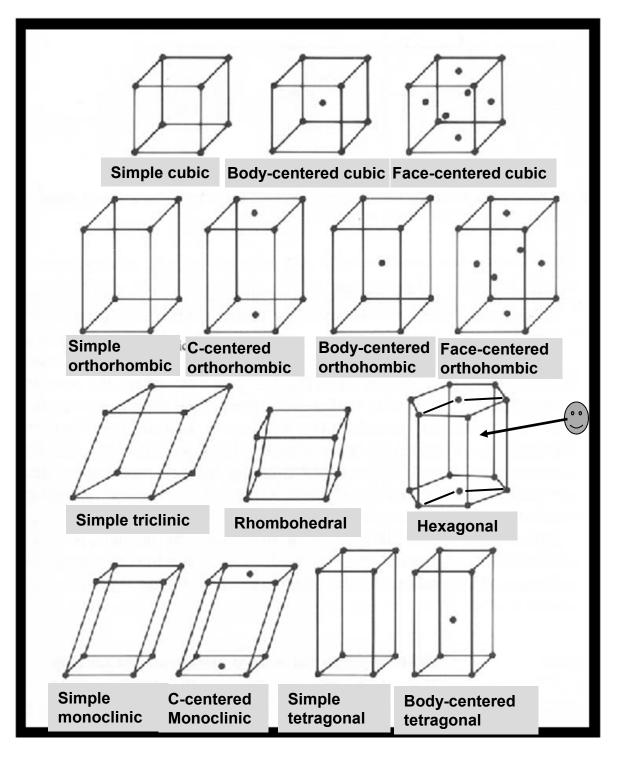
Bravais Lattices: (14)

Unit Cell: the highest symmetry + minimal size

Centered unit cell is thus introduced to contain the highest symmetry of the lattice.

Crystal systems	P	C	I	F
Triclinic				
Monoclinic				

Orthorhombic			
Trigonal			
Tetragonal			
Hexagonal			
Cubic		1	



Augusta Bravais

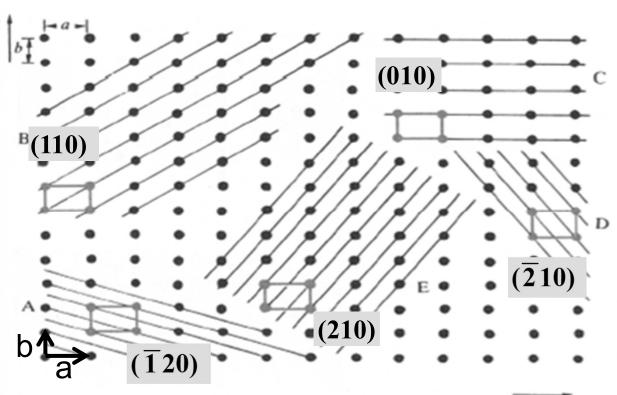
Died on 30 Mar 1863 (born 23 Aug 1811)
French physicist best remembered for his work on the lattice theory of crystals; Bravais lattices are named for him.

7.1.4 Crystal Planes and Miller Indices

a. Lattice planes

A 2D lattice plane, i.e. (001), of an oP lattice.

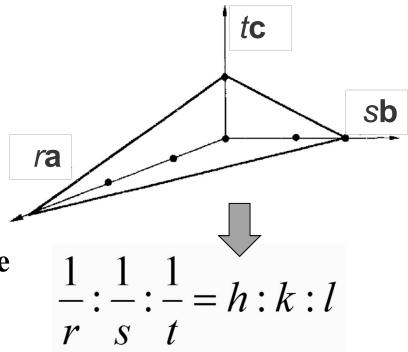
Those lines are the projections of crystal planes (//c-axis) onto this plane.



- It is possible to describe certain directions and planes with respect to the crystal lattice using a set of three integers referred to as Miller Indices.
- Miller indices describe the orientation and spacing of a family of planes.

b. Miller indices (hkl)

- Introduced in 1939 by the British mineralogist W. H. Miller.
- Miller indices are the reciprocal intercepts of the lattice plane on the unit cell axes.



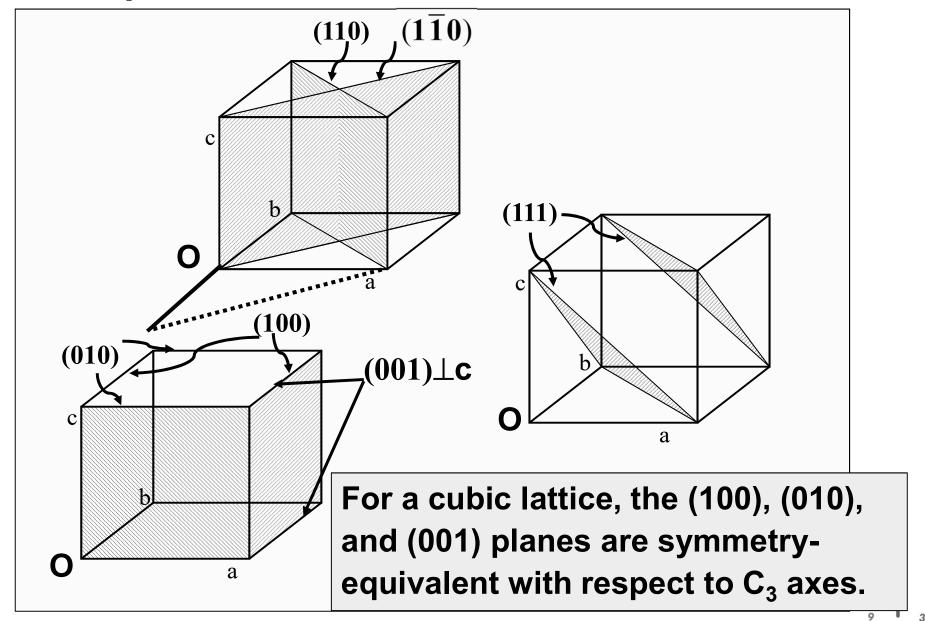
For this special case:
$$r = 3$$
, $s = 2$, $t = 1$

$$h:k:l = (1/3):(1/2):(1/1) = 2:3:6$$

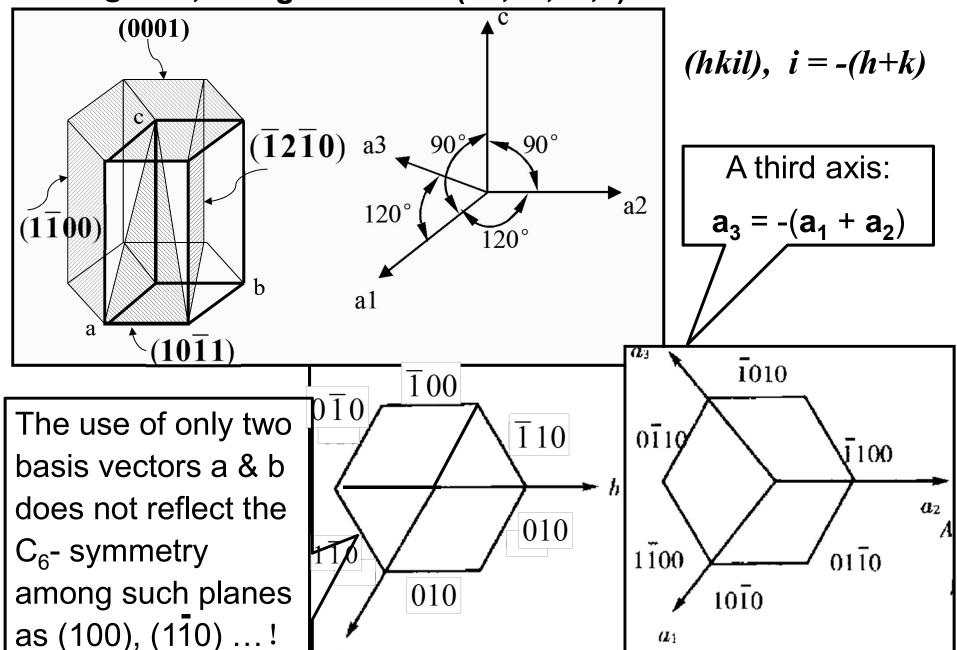
 \rightarrow The Miller index of this lattice plane is (236)!

Question: why do we not use *r:s:t* directly to represent a lattice plane?

Example: Miller indices in a cubic lattice

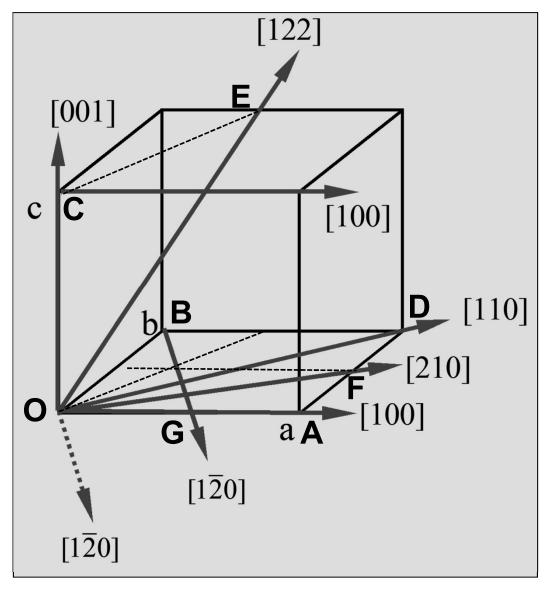


Hexagonal, using four axes (a1,a2,a3,c)



(1)

C. Directions in lattice Miller Indices [uvw]



The direction of a lattice vector, ua + vb +wc, is represented by three indices [uvw], which are prime to each other.

e.g. *a* axis: [100]. (OA) *b* axis: [010]. (OB) *c* axis: [001]. (OC)

OD = *a* + *b* → [110].

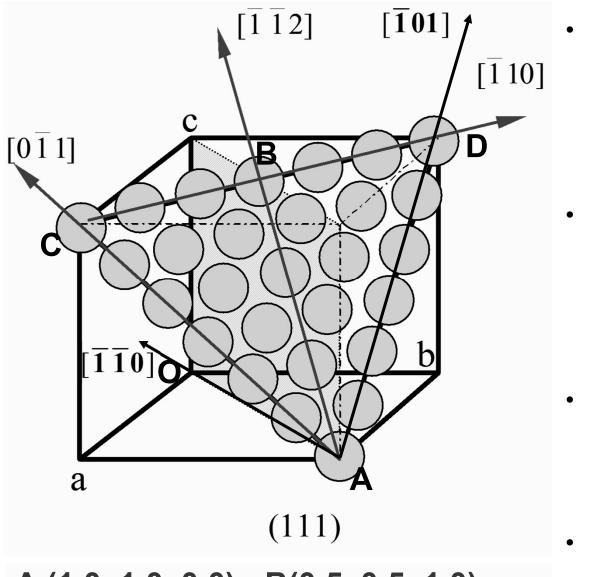
$$OE = 0.5a + b + c \rightarrow [122]$$

OF =
$$a + 0.5b$$
 \rightarrow [210]

$$BG = 0.5a - b \rightarrow [210]$$

9 3

Example: Directions on the (111) plane of a cubic lattice.



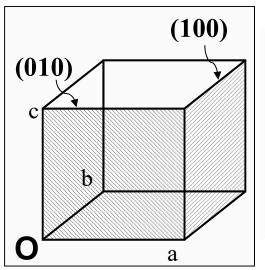
A (1.0, 1.0, 0.0); B(0.5, 0.5, 1.0);

C(1.0, 0.0, 1.0); D(0.0, 1.0, 1.0)

- Various lattice vectors can be defined by the lattice points within the (111) plane.
- e.g., the vector from points A to B, i.e., -0.5a
 0.5b + c, defines the direction [112]
- The vector from points
 A to C, -b+c, is defines
 the direction [011].
- The vector CD, i.e., a+b, defines the
 direction [110]

Miller indices (hkl) are used to specify the orientation and spacing of a family of planes.

{hkl} are used to specify all symmetryequivalent sets of planes



e.g., For a cubic lattice system, the lattice planes (100), (010), (001) are symmetry-equivalent upon C_3 or C_4 rotations, and can be represented by {100}.

[uvw] zone axis

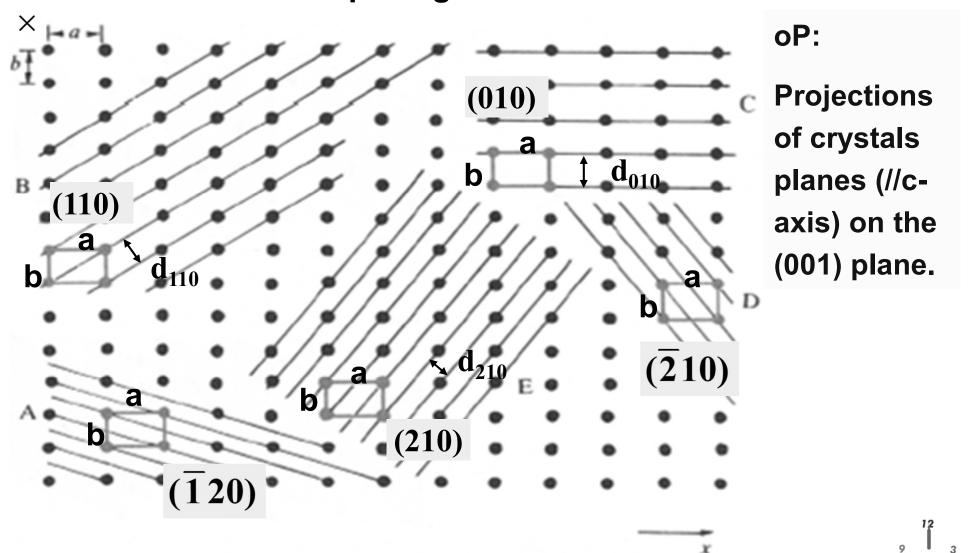
Direction Vector = ua + vb + wc

Miller indices: [hkl] are used to specify a direction in space with respect of the unit cell axes.

<hkl> are used to specify a set of symmetryequivalent directions.

d. d-spacing dhkl

The spacing between adjacent planes in a family is referred to as a "d-spacing".



The spacing between adjacent planes in a family is referred to as a "d-spacing"

- Cubic:
$$1/d^2 = (h^2 + k^2 + l^2)/a^2$$
 or $d^2 = a^2/(h^2 + k^2 + l^2)$

- Tetragonal:
$$1/d^2 = (h^2 + k^2)/a^2 + l^2/c^2$$

- Orthorhombic:
$$1/d^2 = h^2/a^2 + k^2/b^2 + l^2/c^2$$

• Hexagonal:
$$1/d^2 = (4/3)(h^2 + hk + k^2)/a^2 + l^2/c^2$$

• Monoclinic:
$$1/d^2 = [(h/a)^2 + (k/b)^2 \sin^2 \beta + (l/c)^2 - (2hl/ac)\cos \beta]/\sin^2 \beta$$

Triclinic:

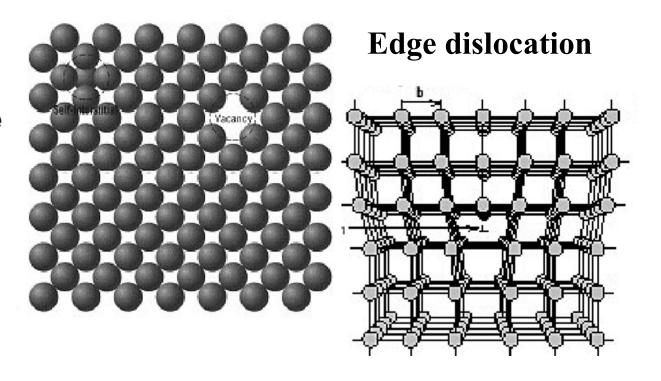
7.1.5 Real crystals and Crystal defects:

Real crystals are only close approximations of space lattices

 Simplest point defect is a vacancy or vacant lattice site

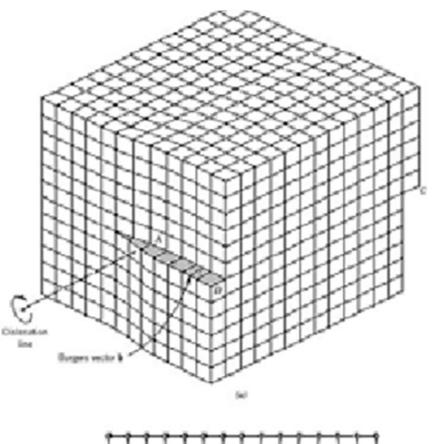
■ For most metals:

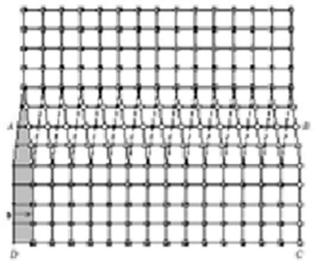
Caused through thermal vibration



Screw Dislocation

- Formed by shear stress
- Also linear and along a dislocation line





7.2 Symmetry in crystal structures.

- 7.2.1 Symmetry elements and symmetry operations
- Crystallographers make use of all the symmetry elements available in a crystal to minimize the number of independent coordinates.
- > Three types of symmetry elements in a crystal lattice:
- Lattice symmetry (translational symmetry)
- Point symmetry (rotation, inversion & reflection etc.)
- Other translational symmetry elements: screw axes and glide planes

a. Lattice symmetry--- translation operation

$$T_{mnp} = ma + nb + pc$$
 or

$$T_{mnp} = \begin{pmatrix} m & 0 & 0 \\ 0 & n & 0 \\ 0 & 0 & p \end{pmatrix} \begin{pmatrix} \vec{a} \\ \vec{b} \\ \vec{c} \end{pmatrix}$$
 a, b, c: basic vectors!

All unique translation operations available in a crystal lattice constitute a translation group $\{T_{mnp}\}$ (order = ∞).

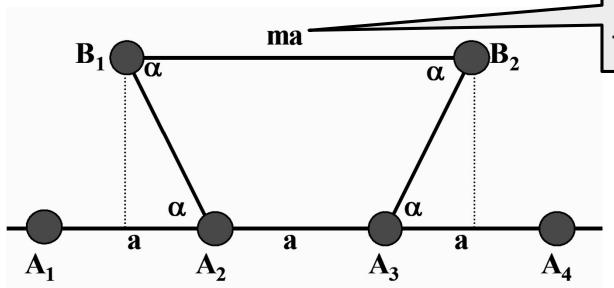
b. Point symmetry elements compatible with 3D translations

- A point-symmetry operation does not alter at least one point that it operates on, e.g., rotation, reflection, inversion, and rotation-inversion.
- Point symmetry elements available in a lattice must be compatible with the 3D translations, including

Operation	Point symmetry elei	ments
Reflection	Mirror Plane	m
Rotation operation	Rotation axis	n=1, 2, 3, 4, 6
Inversion	Center of symmetry	<u>1</u>
Rotatory inversion	Inversion axis	$\overline{3}, \overline{4}, \overline{6}$

It is provable that translational symmetry of a lattice excludes the presence of 5-fold axis!

Rotation axis: 1,2,3,4,6 only!! Why???



Limitation induced by Translation symmetry!

Four lattice points: A_1 , A_2 , A_3 , A_4 Upon an *n*-fold rotation,

$$A_1 \longrightarrow B_1$$

$$A_4 \longrightarrow B_2$$

with $A_1A_4 // B_1B_2$.

$$B_1B_2 = a + 2a\cos\alpha = ma$$

$$\cos\alpha = (m-1)/2$$

$$\rightarrow |(m-1)/2| \le 1 \rightarrow |m-1| \le 2$$

$$\rightarrow$$
 m = 3, 2, 1, 0, -1

$$\rightarrow$$
 cos α = 1, 1/2, 0, -1/2, -1

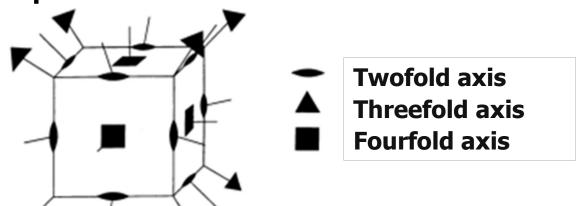
$$\rightarrow \alpha = 2\pi/n = 0^{\circ}, 60^{\circ}, 90^{\circ}, 120^{\circ}, 180^{\circ}$$

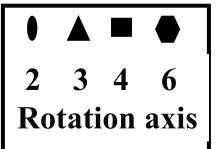
$$\rightarrow$$
 n= 1, 6, 4, 3, 2

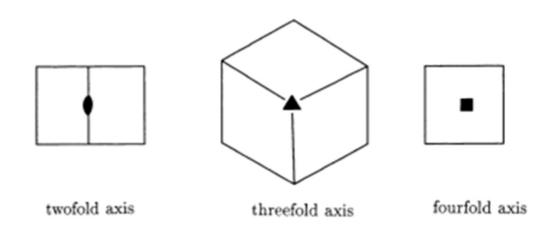
rotation axes: 1,2,3,4,6 only!!

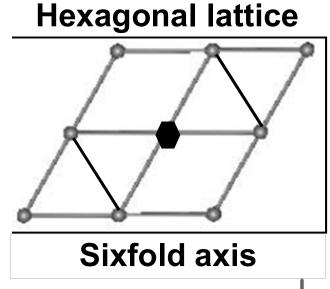
Example: The symmetry elements

in a primitive cell of a cubic lattice.









General equivalent positions:

i) 2-fold axis (e.g., b axis in monoclinic lattice)

 $(x, y, z) \rightarrow (-x, y, -z)$ (Note: in fractional coordinates)

Equivalent upon rotation around a 2-fold axis.

$$R(2) = \begin{bmatrix} \bar{1} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \bar{1} \end{bmatrix}$$

$$(-x,y,-z)$$

$$-x$$

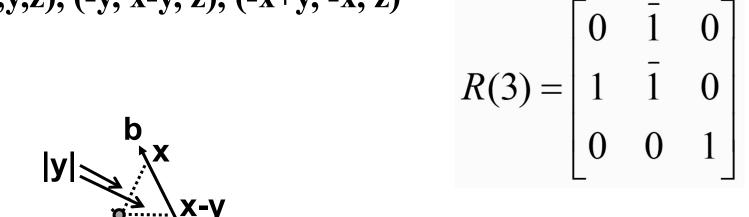
$$(x,y,z)$$

Note: β is not essentially 90°.

General equivalent positions:

ii) 3-fold axis //c axis in a hexagonal lattice

$$(x,y,z), (-y, x-y, z), (-x+y, -x, z)$$



(x,y,z)

$$R(4) = \begin{bmatrix} 0 & \bar{1} & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 $R(4) = \begin{bmatrix} 0 & \overline{1} & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ 4 fold axis // c axis (cubic axis) general equivalent positions: (x,y,z), (-y, x, z), (-x,-y,z), (y,-x,z)4 fold axis // c axis (cubic lattice)

$$R(6) = \begin{bmatrix} 1 & \overline{1} & 0 \\ 1 & \overline{1} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 general equivalent positions:

$$(x,y,z), (x-y, x, z), (-y, x-y, z),$$

$$(-x,-y,z), (y-x,-x, z), (y, y-x,z)$$

6 fold axis // c axis (hexagonal lattice)

$$(x,y,z), (x-y, x, z), (-y, x-y, z),$$

$$(-x,-y,z), (y-x,-x,z), (y,y-x,z)$$

c. Screw axes n_m (m<n) and glide planes:

A *screw axis* symmetry is combination of *rotation about an axis* and a *translation* parallel to that axis leaves a crystal unchanged.

translation a/2

Screw operation
$$n_m = T(\frac{m\vec{a}}{n}) \cdot C_n^1$$
 $(C_n /\!\!/ \vec{a}, m = 1, 2, ..., n-1)$

An n-fold screw axis can be $n_1, n_2, ...,$ or n_{n-1} .

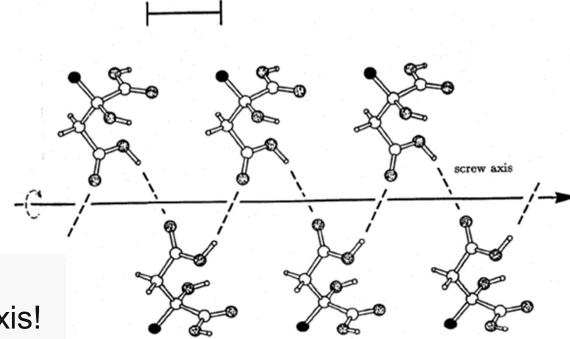
Example: 2₁// a axis

$$(x, y, z) \xrightarrow{C_2(//a)}$$

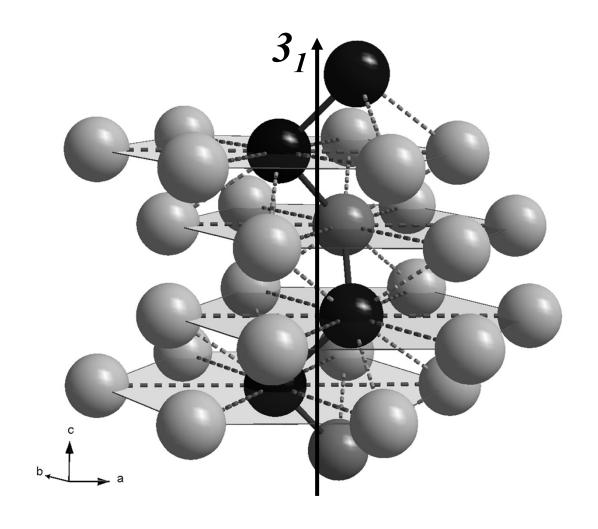
$$(x, -y, -z) \xrightarrow{T(a/2)}$$

$$(x+1/2, -y, -z)$$

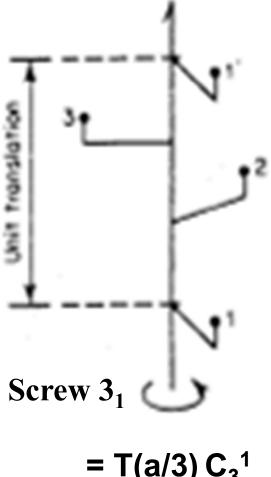
A helical structure is related to a screw axis!



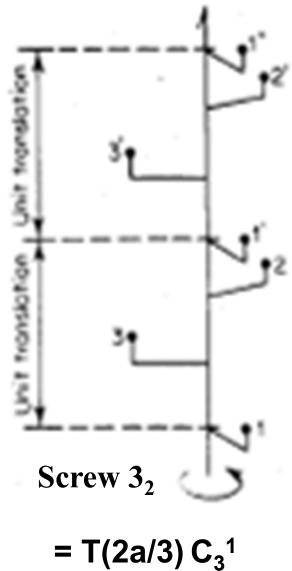
A 3₁ screw axis in the crystal of tellurium



Screw axes: 3_1 and 3_2

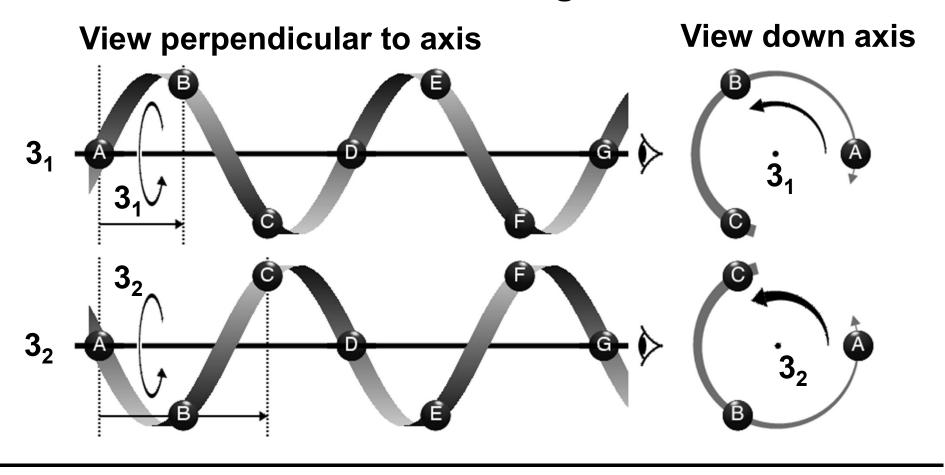


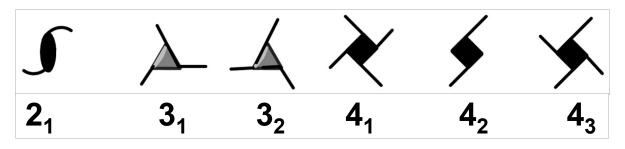
$$= T(a/3) C_3^1$$



$$= T(2a/3) C_3^{1}$$

Helical structures along screw axes





Glide operations: a, b, c, n and d glides

Glide operation: $G = T(t) \cdot M$ Mirror: M (reflection)

t = a/2, b/2, c/2, (a+b)/2, (b+c)/2, (a+c)/2, (a+b+c)/4 etc.

GG = $[T(t)M]^2$ = T(2t), τ = 2t (maybe a basis vector of lattice)

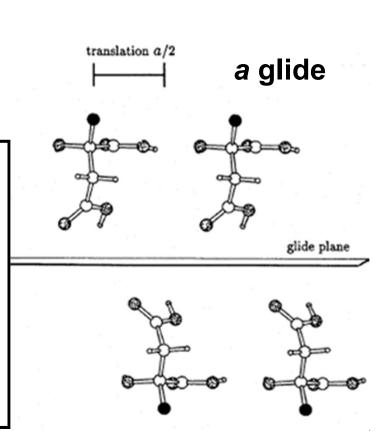
a,b,c glide: t = a/2, b/2, c/2

n glide: t = (a+b)/2, (b+c)/2, (a+c)/2

d glide: t=(a+b+c)/4, (a+b)/4, (b+c)/4,

or (a+c)/4.

e glide (double glide plane).



Graphical representations of glide and mirror planes

Type	Projection (⊥)	Parallel (//)
m		
a,b		7 7
e		
С		
n		
d		7

Summary of symmetry elements and symmetry operations in crystal structure

Symm. operation	Symm. Elements
 Rotation operation 	rotation axis C_n
 Reflection operation 	mirror plane <i>m</i>
 Inversion operation 	inversion center
 Rotation inversion operation 	inversion axis
 Translation operation 	lattice
 Screw operation 	screw axis n _m
Glide operation	glide plane

(n=1, 2, 3, 4, 6)

Combinations of the 8 point symm. elements (5 n-axis, i, m, S_4) result in 32 crystallographic point groups.

Combining symmetry elements

- When a crystal possesses more than one of the above point symmetry elements, these macroscopic symmetry elements must all pass through a common point.
- There are 32 possible combinations of the above symmetry elements that pass through a point.
- There are the 32 crystallographic point groups.
- So far we have
- 7 Crystal systems → 14 Bravais lattices (Translation) + 32 crystallographic point groups (Point symmetry)
- → 230 space groups

7.2.2 Crystallographic point group and space group

1. Crystallographic point group

Combinations of the 8 point symm. elements (5 n-axis, i, m, S_4) result in 32 crystallographic point groups.

e.g., Monoclinic system: point symmetry elements -- 2, m,

$$2 - \{E, C_2\} - C_2$$
 point group; $m - \{E, \sigma\} - C_s$ point group.

2,m --
$$\{E, C_2, \sigma, i\}$$
 -- C_{2h} point group.

Two notations of crystallographic point group

Schonflies notation vs. International notation

C ₂	2
Cs	m
C_{2h}	2/m

- Each crystal system includes a set of distinctive crystallographic point groups.
- A total of 32 crystallographic point groups.

Crystal system	Schonflies notation	International notation	Symmetry elements	Examples
monoclinic	C_2	2	\mathbf{C}_{2}	BiPO ₄
	C_{S}	m	σ	KNO ₂
	C_{2h}	2/m	C_2, σ_h, i	KAlSi ₃ O ₈
orthorhombic	\mathbf{D}_2	222	3C ₂	HIO ₃
	C_{2v}	mm2	C_2 , 2σ	NaNO ₂
	$\mathbf{D}_{2\mathbf{h}}$	mmm	$3C_2$, 3σ , i	MgSO ₄
		a b c		, '[

2. Crystallographic space group

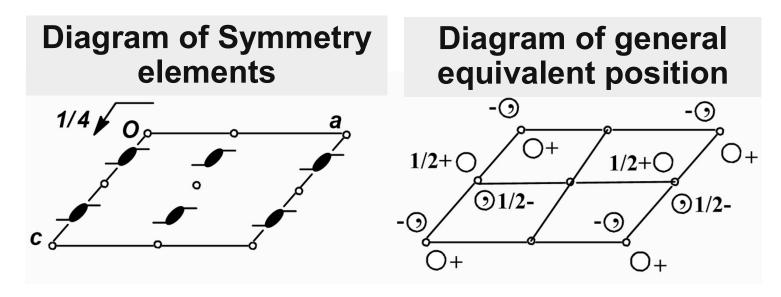
Point groups (32) + translational symmetries = Space groups (230)

Schonflies notation vs. International notation

e.g, D _{2h} ¹⁶ - P2 ₁ /n 2 ₁ /m 2 ₁ /a		$C_{2h}^{5} - P2_{1}/c$	
System		directions	
	1	2	3
Cubic	a	a+b+c	a+b
Hexagonal	C	a	2a+b
Tetragonal	C	a	a+b
Trigonal (hR)	a+b+c	a-b	-
Trigonal* (hP)	С	a	
Orthorhombic	a	b	C
Monoclinic	b	-	- 12

How to understand/use Space Group? Symmetry elements & equivalent positions

- 1. Each space group can be schematically represented by using two types of diagrams, i.e., diagrams of symmetry elements and diagram of general equivalent positions.
- 2. The physical meaning of general equivalent positions: if there is an X atom at position (x,y,z), there should a same X atom at each equivalent position within a unit cell.



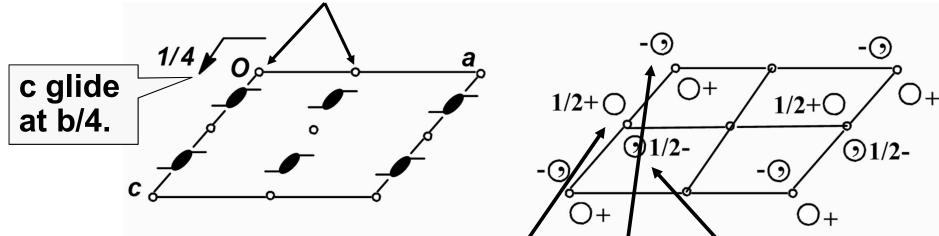
Example: monoclinic point group C_{2h}-2/m

Six space groups belong to C_{2h} point group, denoted:

$$C_{2h}^{1}-P2/m$$
, $C_{2h}^{2}-P2_{1}/m$, $C_{2h}^{3}-C2/m$,

$$C_{2h}^4$$
-P2/c, C_{2h}^5 -P2₁/c, C_{2h}^6 -C2/c,

e.g., $C_{2h}^5 - P2_1/c$ (*i* is always available!)



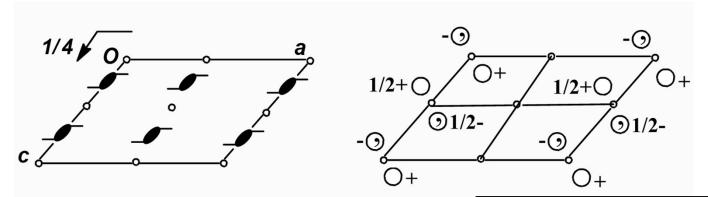
A set of equivalent positions located within a unit cell!

General equivalent positions:

4 e 1
$$(x,y,z)$$
, $(-x, y + 0.5, 0.5 - z)$, $(-x, -y, -z)$, $(x, 0.5 - y, 0.5 + z)$

Multiplicity, Wyckoff letter, site symmetry

e.g., $C_{2h}^{5} - P2_{1}/c$



Special equivalent positions:

2 d
$$\overline{1}$$
 $(\frac{1}{2},0,\frac{1}{2}),(\frac{1}{2},\frac{1}{2},0);$ 2 c $\overline{1}$ $(0,0,\frac{1}{2}),(\frac{1}{2},0,0);$

2 c
$$\overline{1}$$
 $(0,0,\frac{1}{2}),(\frac{1}{2},0,0)$

2 b
$$\overline{1}$$
 $(\frac{1}{2},0,0),(\frac{1}{2},\frac{1}{2},\frac{1}{2});$ 2 a $\overline{1}$ $(0,0,0),(0,\frac{1}{2},\frac{1}{2})$

$$2 \ a \ \overline{1}$$

$$(0,0,0),(0,\frac{1}{2},\frac{1}{2})$$

- Equivalent positions are correlated by symmetry elements and can be produced from a given position upon available symmetry operations.
- Thus it is unnecessary to list all atoms, but unique type of atoms within a unit cell.

Diamond: face-centred cubic O_h⁷- Fd3m

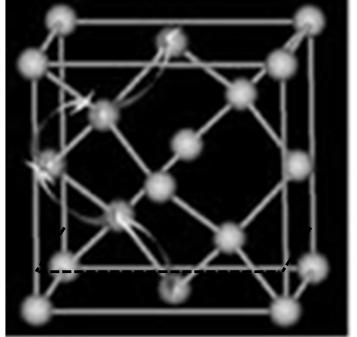
4₁

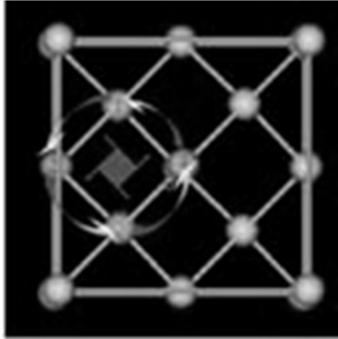
d glide plane at

1/8,3/8,

5/8,8/7

Fcc





Sideview

topview

- Lattice points: (0,0,0)+, (1/2,1/2,0)+, (0,1/2,1/2)+, (1/2,0,1/2)+
- Structure motif -2C 0,0,0; 1/4,1/4,1/4
- Totally 8 C atoms within a unit cell.

Note: In this case, the presence of same-type atoms in structure motif introduces more symmetry elements!

7.2.3 The description and application of crystal structure

Example 1. Crystal of iodine

Crystal System orthorhombic

Space group D_{2h}^{18} -Cmca (or C 2/m 2/c $2_1/a$)

Cell parameters a=713.6 pm b=468.6 pm c=987.4 pm

Number of molecules per unit cell Z = 4

Atomic coordinate for I x y z

0 0.15434 0.11741

Lattice points within a unit cell: (0,0,0)+, (1/2,1/2,0)+ (C-centered).

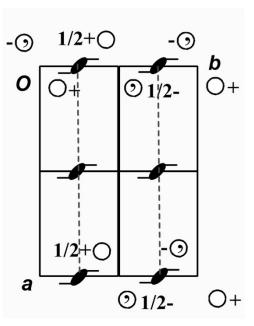
General equivalent positions:

 $C 2/m 2/c 2_1/a$

$$(x,y,z); (-x,-y,-z); (-x,-y+1/2,z+1/2); (x,y+1/2,-z+1/2)$$

$$(0, -.15434, -.11741)$$

$$(1/2, .34566, -.11741)$$



a) Bond length (Bond distance)

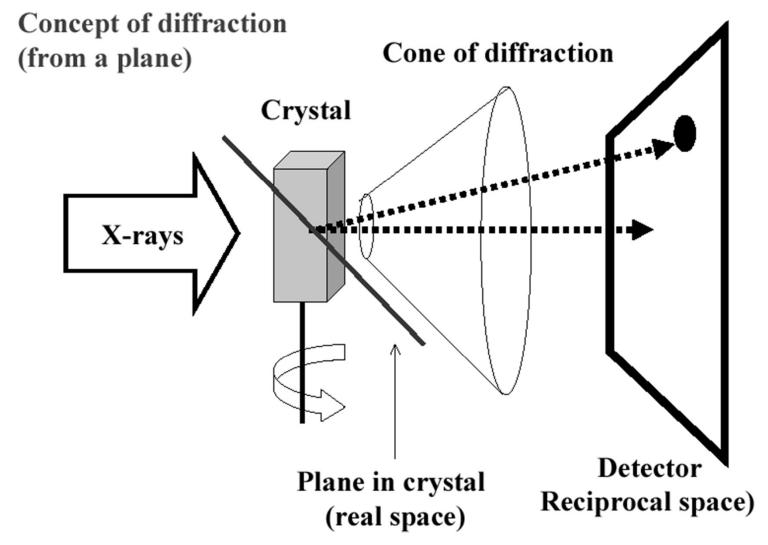
$$r_{1-2} = [(x_1-x_2)^2a^2+(y_1-y_2)^2b^2+(z_1-z_2)^2c^2]^{1/2} = 2.715 \text{ Å}$$

b) Density of crystal

$$V = a \times b \times c = 3.27 \times 10^8 \text{ pm}^3$$

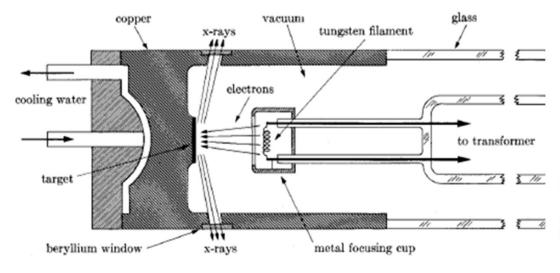
$$D = 8 \times 127.0 / (6.02 \times 10^{23} \times 327.0 \times 10^{-24}) \text{ g cm}^{-3} = 5.16 \text{ g cm}^{-3},$$

7.3 X-ray diffraction of crystals



The wavelengths (0.05-2.5 Å) of x-rays match the d-spacing of crystal planes, resulting in diffraction!

7.3.1 The source and property of X-ray



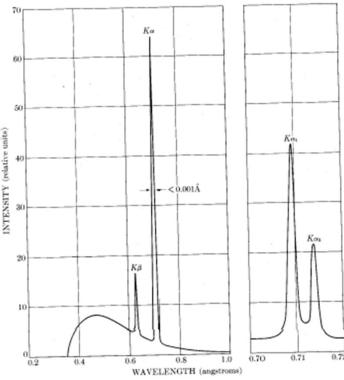
X-ray tube
The wavelengths of X-ray are in the range
of 100-0.01Å

• 1-0.01Å: hard x-ray

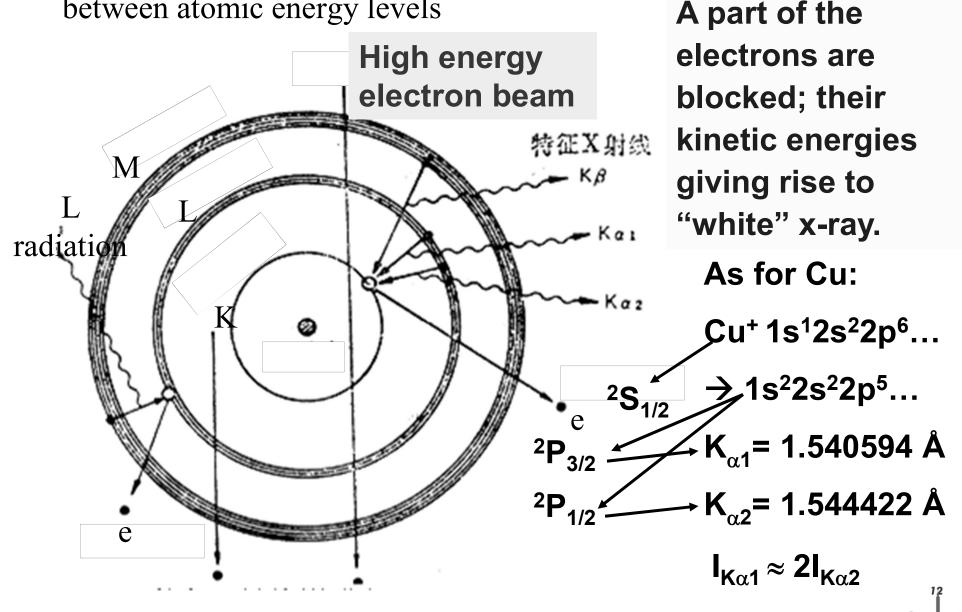
• 100 \sim 1Å: soft x-ray

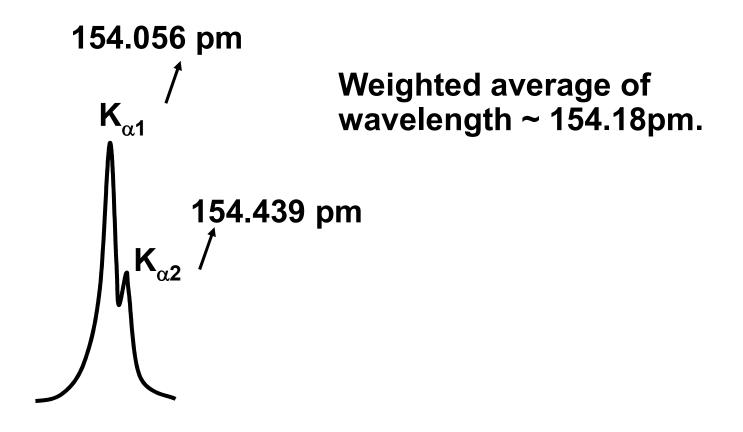
• 2.5-0.5Å: used in crystal structure analysis

1-0.05Å: used in medical perspective, detection of materials wound



X-rays produced by electronic transition between atomic energy levels

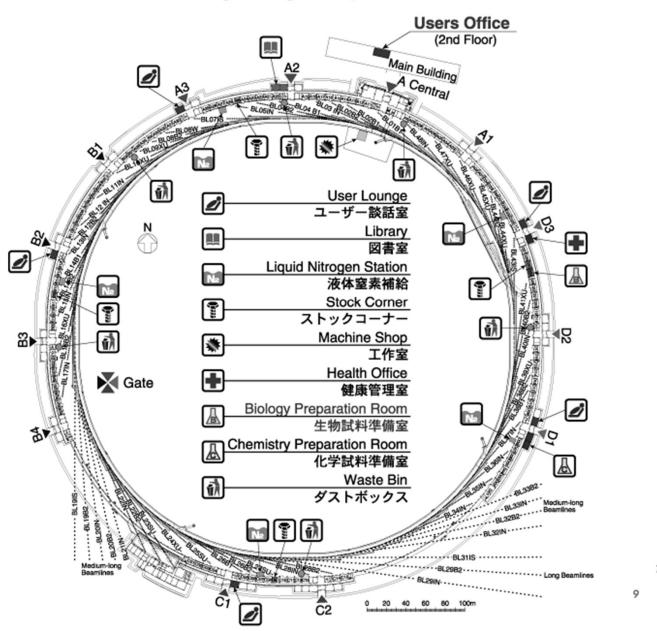


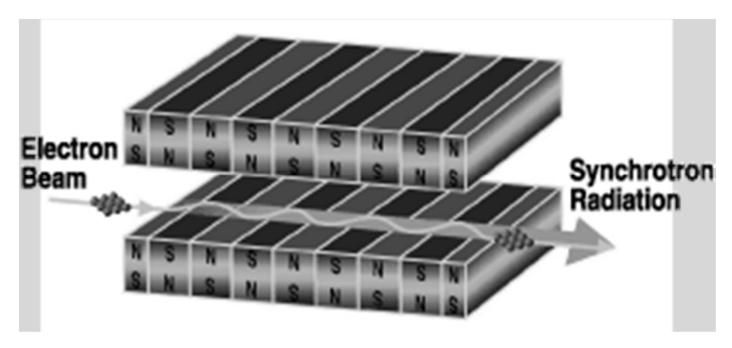


Note: $K_{\alpha 2}$ can not be striped by the monochromator.

Synchrotron Radiation X-ray Source

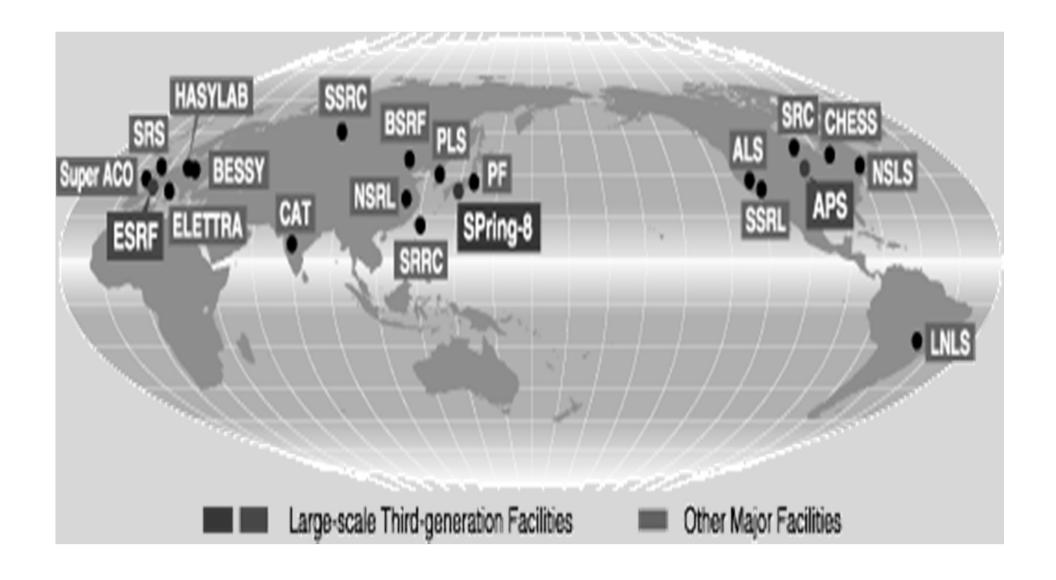
Storage Ring Utility Facilities





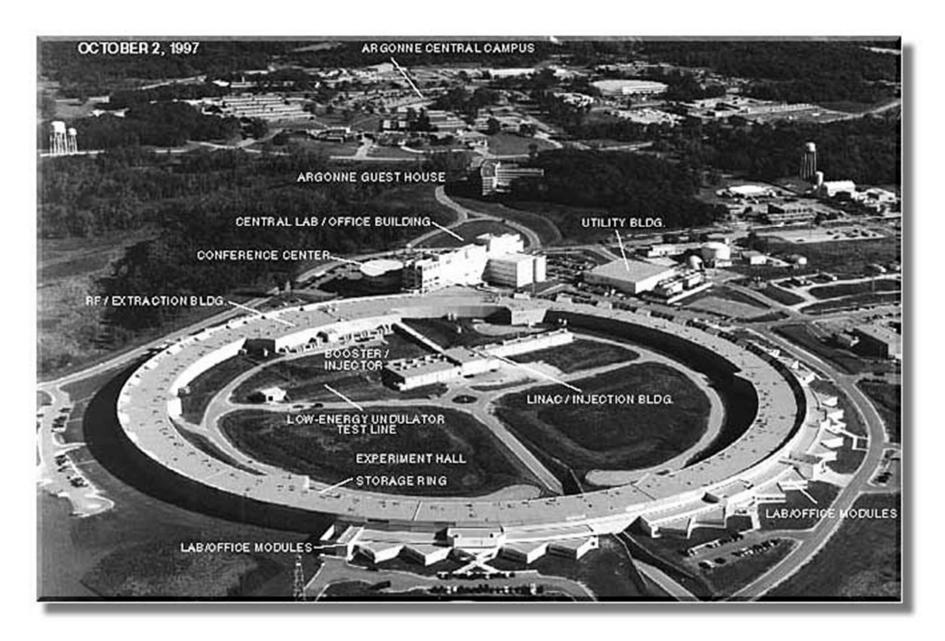
Benefits of Synchrotron radiation X-ray:

- Narrow range of x-ray wave-lengths, i.e., high monochromicity
- High intensity of x-ray.
- High intensity and high quality of diffraction data
- High resolution characterization microcrystals
 Tooooooo Expensive facility!



SPring-8, at Osaka, Japan. www.spring8.or.jp

ESRF - European Synchrotron Radiation Facility, Polygone Scientifique Louis Néel - 6, rue Jules Horowitz - 38000 Grenoble - France, http://www.esrf.fr



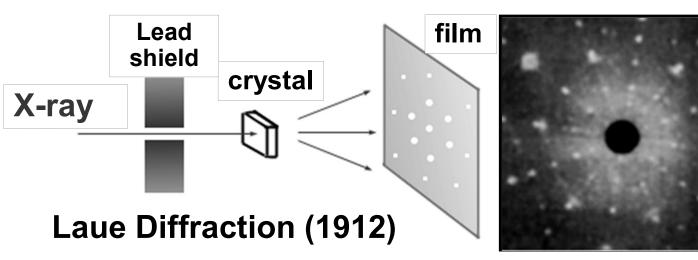
The Advanced Photon Source (APS) at Argonne National Laboratory, http://www.aps.anl.gov/aps.php

7.3.2 Laue equation and Bragg's Law

1. Laue equations

Laue first mathematically described diffraction from crystals.

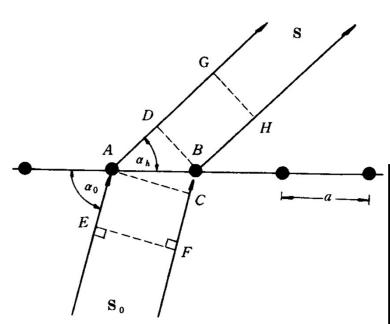
- consider X-rays scattered from every atom in every unit cell in the crystal. and how they interfere with each other
- to get a diffraction spot you must have constructive interference.



Max Von Laue Nobel Prize in Physics 1914

Laue diffraction pattern of ruby

Laue equations (Based on diffraction by 1D atomic lattice)



For each *h* value, the diffraction rays from a 1D lattice make a cone!



a — lattice parameter

 α_{o} — angle between **a** and S_{o}

 α — angle between **a** and **S**

Interference condition:

The difference in path lengths of adjacent lattice points must be a multiple integral of the wavelength.

i.e.,
$$\Delta = AD-CB = h\lambda$$
, $h = 0, \pm 1, \pm 2,...$

$$AD = \mathbf{a} \cdot \mathbf{S} = a \cos \alpha$$

$$CB = \mathbf{a} \bullet \mathbf{S}_0 = a \cos \alpha_0$$

$$\Delta = \mathbf{a} \cdot (\mathbf{S} - \mathbf{S}_0)$$
$$= a(\cos \alpha - \cos \alpha_0) = h\lambda$$

, '[

Expanded to 3D lattice case:

$$a \cdot (S-S_0) = a(\cos\alpha - \cos\alpha_0) = h\lambda$$

 $b \cdot (S-S_0) = b(\cos\beta - \cos\beta_0) = k\lambda$
 $c \cdot (S-S_0) = c(\cos\gamma - \cos\gamma_0) = l\lambda$
 a,b,c —lattice parameter

 $\alpha_0, \beta_0, \gamma_0$ —angle between basis vectors a,b,c and S_0

 α,β,γ —angle between basis vectors a,b,c and S

h,k,l — indices of diffraction, integers

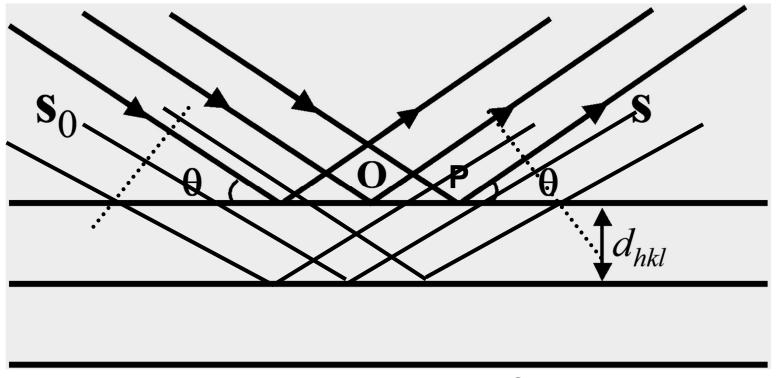
which may not be prime to each other and are different from Miller indices for crystal plane!

- Each equation defines a cone of diffraction.
- Only when the three cones of diffraction intersect can the diffraction beam be observable!

3

2. The Bragg's Law

Bragg considered the diffraction arising from reflection by lattice planes.



Conditions to obtain constructive inferences,

a. The scattered x-ray must be coplanar with the incident x-ray and the normal of the lattice plane.

b.
$$\theta_{S} = \theta_{S0}$$

The difference in path lengths,

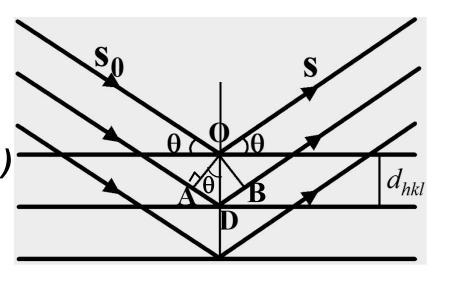
$$\Delta = AD + DB = 2d_{(hkl)} \sin \theta$$

Condition for diffraction:

$$\Delta = n\lambda = 2d_{(hkl)}\sin\theta_n \quad (n=1,2,3,\dots)$$

 θ_n : the angle of reflection

n: the order of the reflection



Define
$$d_{nhnknl} = d_{(hkl)}/n$$
 miller indices

$$\rightarrow 2 \cdot d_{nhnknl} \cdot \sin \theta_{nh,nk,nl} = \lambda$$

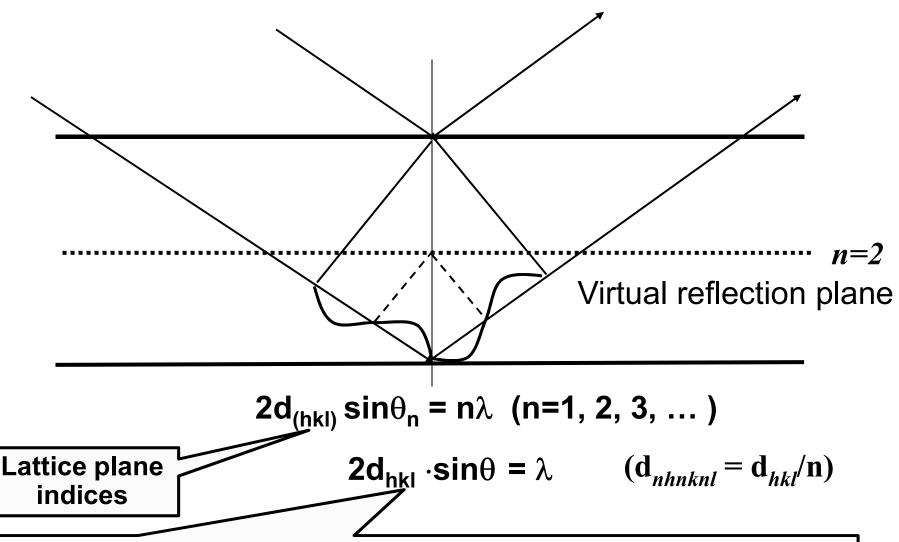
Note: n is not measurable! Let $\mathbf{d}_{nhnknl} = \mathbf{d}_{hkl}$

Bragg's Law: $2d_{hkl} \cdot sin\theta = \lambda$

reflection indices

What is the physical meaning of d_{hkl} ?

The Braggs, father and son, shared the 1915 Nobel Prize in Physics for their work in crystallography.

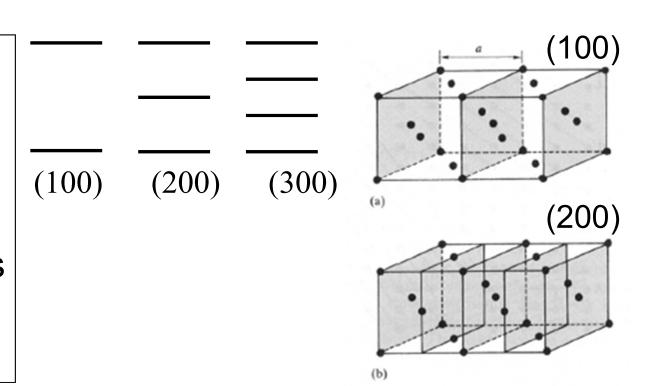


Diffraction indices or virtual reflection plane indices.

The Bragg's law defines the direction of diffraction beams from a given set of lattice planes!

diffraction crystal planes - (100), (200), ...

Families of planes Lattice planes-(100)



The Bragg's Law vs. Laue equation:

- Both equations define the relationship between the direction of diffraction beams, the x-ray wavelength and the parameters of a crystal lattice.
- The Bragg's law: simple, easier to derive *lattice parameters* from the *direction of diffraction beams*. $2d_{hkl} \cdot \sin \theta = \lambda$

3. Reciprocal lattice

$$\vec{a}^* = \frac{\vec{b} \times \vec{c}}{V}$$

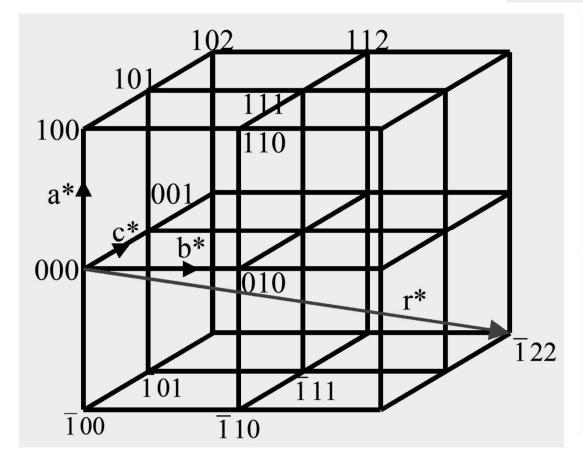
$$\vec{a}^* = \frac{\vec{b} \times \vec{c}}{V} \quad \vec{b}^* = \frac{\vec{c} \times \vec{a}}{V} \quad \vec{c}^* = \frac{\vec{a} \times \vec{b}}{V}$$

$$\vec{c}^* = \frac{\vec{a} \times \vec{b}}{V}$$

Basis vectors of a reciprocal lattice

$$\vec{r}^* = h\vec{a}^* + k\vec{b}^* + l\vec{c}^*$$

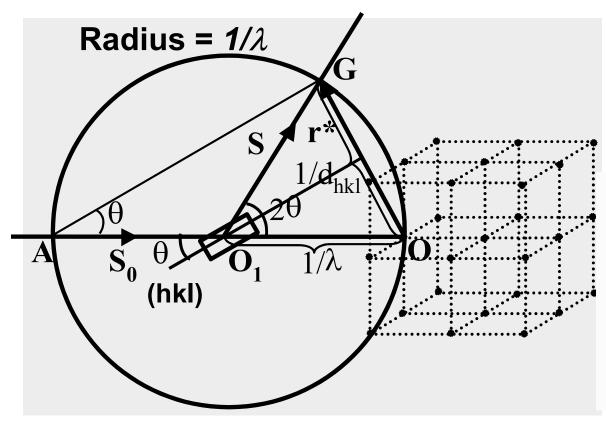
$$\left|\vec{r}^*\right| = 1/d_{hkl}$$



A reciprocal lattice point corresponds to a diffraction (lattice) plane of its original lattice!!!!!!!!!!!

A reciprocal vector r* is perpendicular to a lattice plane with the same indices (hkl).

4. Ewald sphere (reflection sphere)



G: a diffraction point /a reciprocal lattice point

Only when the reciprocal lattice point is located on the Ewald sphere can constructive interference occur!

$$|OG| = 2|O_1O *|\sin\theta = (2/\lambda)\sin\theta = 1/d_{hkl}$$
 :: $2d_{hkl}\sin\theta = \lambda$

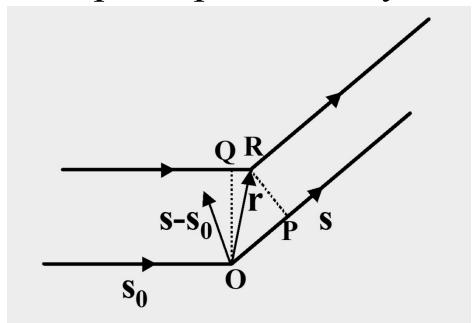
- Monochromic x-ray → fixed radius of the Ewald sphere!
- Fixed single crystal → Very few diffraction data!

How to get more diffraction data?

- a) Fixed λ : Rotate the crystal to enable more reciprocal points (diffractions) dynamically located on the Ewald sphere.
- b) Fixed crystal: use x-rays with varying wavelengths (e.g., white x-ray). By doing so, the Ewald sphere becomes filled.
- The first technique is preferred and has been widely used in practice!
- The second method can be used to determine the orientation of a single crystal.

7.3.3. The intensity of diffraction beam

1. The principle of X-ray scattering



To save your time,
Let's neglect part 1 and
move directly to part 2!
If you are interested in
this part, just go
through it by yourself.

For elastic scattering, each electron scatters the plane wave causing a spherical wave $(\exp[2\pi i(k \cdot r)])$.

The phase difference is: $\Delta = (r \cdot s - r \cdot s_0)/\lambda$

The scattered x-ray: $\exp\{2\pi i[r\cdot(s-s_0)/\lambda]\}\$ or $\exp\{2\pi i[r\cdot q/\lambda]\}$

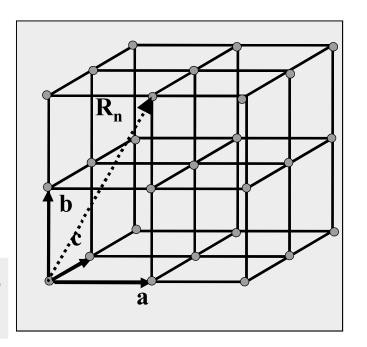
The contribution of the scattering of all electrons of a given atom:

$$\int \rho(r) \exp(2\pi i q \cdot r/\lambda) d^3 r$$

For the crystal structure:

$$\rho(r) = \sum_{n} \rho_{cell}(r + R_n)$$

$$A = \sum_{n} \int \rho_{cell}(r + R_n) \exp(2\pi i q \cdot r / \lambda) d^3 r$$



$$A = \left(\int \rho_{cell}(r) \exp(2\pi i q \cdot r/\lambda) d^3 r\right) \sum_{n} \exp(2\pi i q \cdot R_n/\lambda)$$
$$= F(q) \sum_{n} \exp(2\pi i q \cdot R_n/\lambda)$$

F(q) --- structure factor

$$F(q) = \int \rho_{cell}(r) \exp(2\pi i q \cdot r/\lambda) d^3 r$$

Supposed that there are N_1 , N_2 , N_3 periods along **a**, **b**, **c**, and all the atoms locate on the position of lattice points, F(q) can be replace with a constant 'f'. f is scattering factor of atoms.

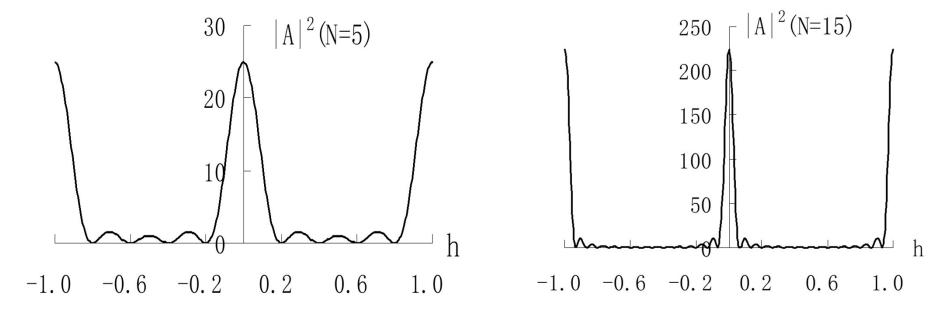
$$A_{mnp} = f \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} \sum_{n_3=0}^{N_3-1} e^{2\pi i/\lambda (n_1 \mathbf{a} + n_2 \mathbf{b} + n_3 \mathbf{c}) \cdot \mathbf{q}}$$

For the case of 1D and f=1,

$$A_N = \sum_{n=0}^{N-1} e^{2\pi i n \mathbf{a} \cdot q/\lambda} = \frac{1 - e^{2\pi i N \mathbf{a} \cdot q/\lambda}}{1 - e^{2\pi i \mathbf{a} \cdot q/\lambda}}$$

The intensity:

$$I \propto |A_N|^2 = A_N A_N^* = \frac{\sin^2\left(\frac{\pi N}{\lambda} \mathbf{a} \cdot \mathbf{q}\right)}{\sin^2\left(\frac{\pi}{\lambda} \mathbf{a} \cdot \mathbf{q}\right)} = \frac{\sin^2(\pi N h)}{\sin^2(\pi h)}$$



In the case of 3-D:

$$I \propto \left[A_{mnp} \right]^{2} = \left| f \right|^{2} \frac{\sin^{2} \left(\frac{\pi N_{1}}{\lambda} \mathbf{a} \cdot \mathbf{q} \right)}{\sin^{2} \left(\frac{\pi}{\lambda} \mathbf{a} \cdot \mathbf{q} \right)} \cdot \frac{\sin^{2} \left(\frac{\pi N_{2}}{\lambda} \mathbf{b} \cdot \mathbf{q} \right)}{\sin^{2} \left(\frac{\pi}{\lambda} \mathbf{a} \cdot \mathbf{q} \right)} \cdot \frac{\sin^{2} \left(\frac{\pi N_{3}}{\lambda} \mathbf{c} \cdot \mathbf{q} \right)}{\sin^{2} \left(\frac{\pi}{\lambda} \mathbf{b} \cdot \mathbf{q} \right)}$$

Therefore,

$$a \cdot q/\lambda = h$$
, $b \cdot q/\lambda = k$, $c \cdot q/\lambda = l$ (h , k , l should be integer) or $a \cdot q = h\lambda$, $b \cdot q = k\lambda$, $c \cdot q = l\lambda$

---- Laue conditions for X-ray diffraction

$$I \propto |f|^2 N_1^2 N_2^2 N_3^2 \Longrightarrow I \propto |F_{hkl}|^2 N_1^2 N_2^2 N_3^2$$

Only those scatterings fulfilling these conditions give rise to measurable diffraction beams.

2. The intensity of diffraction beam

• The directions of the diffraction beams

Bragg's Law

$$2d_{hkl} \cdot \sin \theta = \lambda$$

The directions of the diffraction beams are determined by the cell parameters.

• The intensity of diffraction beam

$$I_{hkl} = K | F_{hkl}|^2 \quad \text{Structure factor} \quad F_{hkl} = 0 \Rightarrow I_{hkl} = 0$$

$$F_{hkl} = \iiint \rho(x,y,z) e^{2\pi i (hx+ky+lz)} dx dy dz$$
 Electron density distribution in a unit cell.
$$= \sum_{j=1}^{n} f_j e^{2\pi i (hx_j + ky_j + lz_j)} \quad \text{Phase difference between the scattered and incident x-ray over atom j.}$$
 Sum over all atoms within a unit cell.
$$f_j \text{ atomic scattering factor defined by atomic electron density distribution.}$$

- The intensities of the diffraction beams are determined by types of atoms and the arrangement of atoms in the cell!
- By measuring the cell parameters and the intensities of diffraction points, the atomic arrangement can be derived.

3. systematic absence

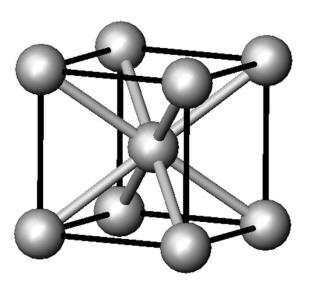
Calculation of structure factor Example A, Body-centered crystal

Simple case: Each lattice point is a metal atom.

$$F_{hkl} = \sum_{j=1}^{N} f_j e^{2\pi i (hx_j + ky_j + lz_j)}$$
 (e.g., Na

(e.g., Na)

$$N = 2$$



(0,0,0)

$$= f_1 e^{2\pi i(h0+k0+l0)} + f_2 e^{2\pi i(h\frac{1}{2}+k\frac{1}{2}+l\frac{1}{2})}$$
(1/2,1/2,1/2)
$$= f_{Na} (1 + e^{\pi i(h+k+l)})$$
 (f₁ = f₂ = f_{Na})

i) While
$$h+k+l=2n+1$$
, $e^{\pi i(h+k+l)}=e^{(2n+1)\pi i}=-1$

 $\rightarrow F_{hkl} = \theta$, Systematic absence!

ii) While
$$h+k+l=2n$$
, $e^{\pi i(h+k+l)}=1 \Longrightarrow F_{hkl}=2f_{Na}$

Strongest!,2

Body-centered crystal –Two lattice point in a unit cell! General case: each lattice point contains *m* different atoms.

- The total number of atoms within a unit cell is 2m;
- For jth atom in a structural motif (a lattice point): (x_i,y_i,z_i)
- Its body-centered equivalent: $(0.5+x_j, 0.5+y_j, 0.5+z_j)$

$$F_{hkl} = \sum_{i=1}^{2m} f_i e^{2\pi i (hx_i + ky_i + lz_i)}$$

$$= \sum_{i=1}^{m} \{ f_{j} e^{2\pi i (hx_{j} + ky_{j} + lz_{j})} + f_{j} e^{2\pi i [h(\frac{1}{2} + x_{j}) + k(\frac{1}{2} + y_{j}) + l(\frac{1}{2} + z_{j})]} \}$$

$$= [1 + e^{\pi i(h+k+l)}] \sum_{j=1}^{m} f_j e^{2\pi i(hx_j + ky_j + lz_j)}$$

While
$$h+k+l=2n+1$$
,
$$e^{\pi i(h+k+l)}=e^{(2n+1)\pi i}=-1 \Rightarrow F_{hkl}=0$$
 Systematic absence

Face-centered cubic crystal – general case

- Lattice points (LPs): (0,0,0), (1/2,1/2,0)+, (0,1/2,1/2)+, (1/2,0,1/2)+
- Each lattice point contains m atoms, $\{(x_i,y_i,z_i)\}$ (j=1,...,m)
- Each unit cell contains N=4m atoms, e.g., an atom $A(x_i,y_i,z_i)$ in one LP has other three equivalent A atoms within the same unit cell!

$$F_{hkl} = \sum_{i=1}^{N=4m} f_i e^{2\pi i (hx_i + ky_i + lz_i)}$$
Sum up over all atoms within a unit cell!

$$F_{hkl} = I + e^{2\pi i (\frac{h}{2} + \frac{k}{2})} + e^{2\pi i (\frac{h}{2} + \frac{l}{2})} + e^{2\pi i (\frac{k}{2} + \frac{l}{2})} I \times \sum_{j=1}^{m} f_{j} e^{2\pi i (hx_{j} + ky_{j} + lz_{j})}$$
From translation symmetry of fcc! sum up over all atoms within a LP!

When h,k,l are neither all even nor all odd, $F_{hkl} = 0$, systematic absence!

When *h*,*k*,*l* are all even or all odd, **diffraction observable**!

$$F_{hkl} = 4\sum_{j=1}^{n} f_{j} e^{2\pi i(hx_{j} + ky_{j} + lz_{j})}$$

Example. Unit cell has a 2_1 screw axis along the c axis.

→ Equivalent positions: (x, y, z), (-x , -y , z+1/2)

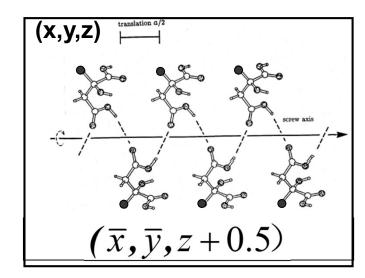
$$F_{hkl} = \sum_{j=1}^{N} f_{j} \{ exp[i2\pi(hx_{j} + ky_{j} + lz_{j})] + exp[i2\pi(-hx_{j} - ky_{j} + l(z_{j} + \frac{1}{2}))] \}$$

$$F_{00l} = [(1 + exp(i\pi l))] \sum_{j=1}^{N} f_{j} exp(i2\pi lz_{j})$$

$$l$$
 = 2n+1 F_{00l} = 0 systematic absence

Sum over all atoms of a molecule.

Each molecule has N atoms.



Herein two molecules within a unit cell are correlated by 2₁ axis.

How about systematic absence arising from such screw axes as 3_1 , 4_1 and 6_1 ?

•
$$3_{1}||c-axis|| F_{00l} = [1 + exp(\frac{2\pi li}{3}) + exp(\frac{4\pi li}{3})] \cdot \sum_{i=1}^{N/3} exp(i2\pi lz_{i})$$

= $[1 + 2\cos(\pi l)\cos(\frac{\pi l}{3})] \sum_{i=1}^{N/3} exp(i2\pi lz_{i})$

- \rightarrow Systematic absence when $l \neq 3$ m (m=1,2,...)!
- n_1 //c-axis

$$F_{00l} = \sum_{j=1}^{n} \exp(\frac{2\pi(j-1)li}{n}) \bullet \sum_{i=1}^{N/n} \exp(i2\pi lz_i)$$

 \rightarrow Systematic absence when $l \neq m \cdot n \pmod{m=1,2,...}!$

Systematic Absence

- Crystals of the same lattice type behave similarly in systematic absence!
- Crystal structures which contain centering, glide plane and screw axis will have systematic absences.
- Namely, some reflections/diffractions will be systematically absent in such a crystal lattice that has centering, glide plane or screw axis.

Systematic Absence and Symmetry (p214-215)

Types of reflection	Conditions for extinction (systematic absence)	Cause of extinction	Centering and symmetry elements
hkl	h+k+l = odd	I-centred	1
	h+k = odd C-centred		С
	h+l = odd	B-centred	В
	k+l = odd A-centred		Α
	h,k,l not all even and not all odd	Face-centred	F
	-h+k+l not multiples of 3	R-centred	R(hexagonal)
0kl	k = odd	Translation in (100) b/2	b-glide ⊥a (b,c)
(or h0l,	<i>l</i> =odd	c/2	c-glide⊥a (b,c)
hk0)	k+l =odd	(100) glide (b+c)/2	n-glide⊥a (b,c)
	k+l not multiples of 4	planes (b+c)/4	d-glide⊥a (b,c)
001	l =odd	Translation c/2	2 ₁ , 4 ₂ , 6 ₃
(or h00,	<i>l</i> not multiples of 3	Along c/3	3 ₁ , 3 ₂ , 6 ₂ , 6 ₄
or 0k0	<i>l</i> not multiples of 4	(001) c/4	4 ₁ , 4 ₃
	<i>l</i> not multiples of 6	Screw axis c/6	6 ₁ , 6 ₅

7.3.4 Applications of X-ray diffraction

1. Methods

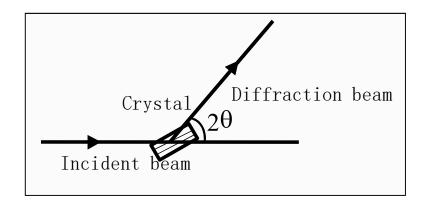
* Single crystal diffraction

Monochromatic camera method -- Monochromatic X-ray

Rotation, Oscillation, Weissenberg ...

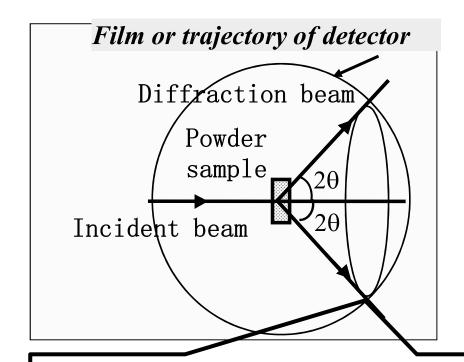
Laue photography --- white X-ray

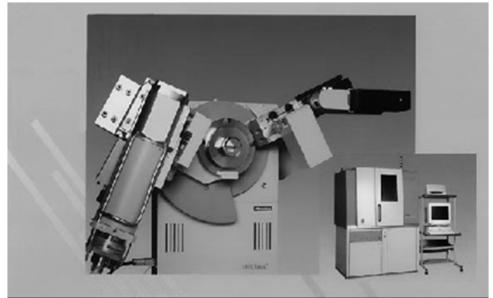
Diffractometer -- Monochromatic X-ray



* Powder diffraction

Monochromatic X-ray





Powder Diffractometer

- In a powder sample, the microcrystalls orient differently, so does a given lattice plane in the sample.
- Thus a given lattice plane gives a cone of diffraction beam with an specific angle 2θ. (Why?)

Radiation sources

X-ray tubes

Synchrotron radiation

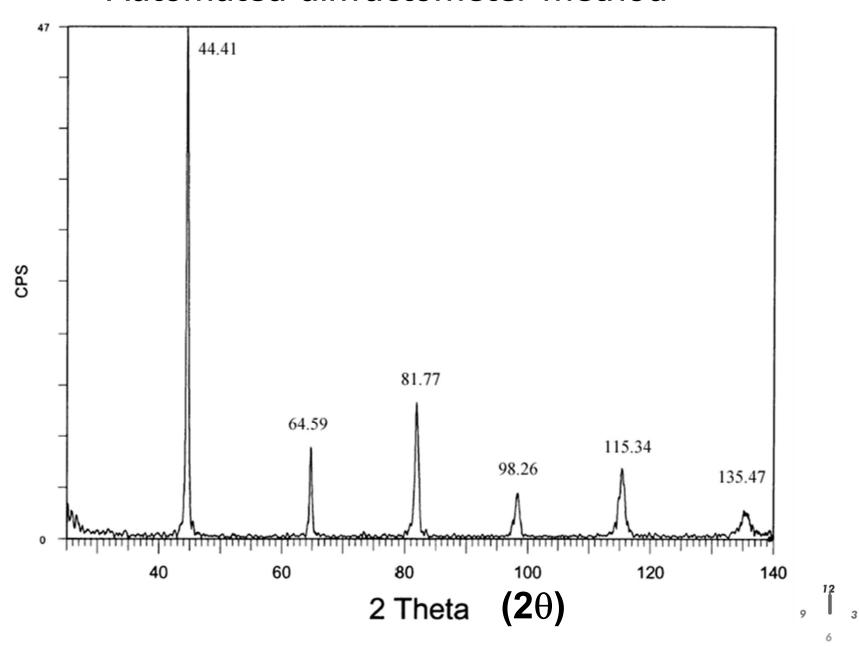
Monochromator – e.g.HOPG

Filter – e.g. Ni for Cu Kα

Detectors

- Film
 - poor sensitivity, high background, low dynamic range
- Scintillation counters
- good sensitivity, low background, high dynamic range
- Imaging plates
- good sensitivity, low background, good dynamic range, very efficient data collection
- CCDs and Multiwire detectors (widely used nowadays)
- fast readout, good sensitivity, low background, good dynamic range, very efficient data collection

Automated diffractometer method



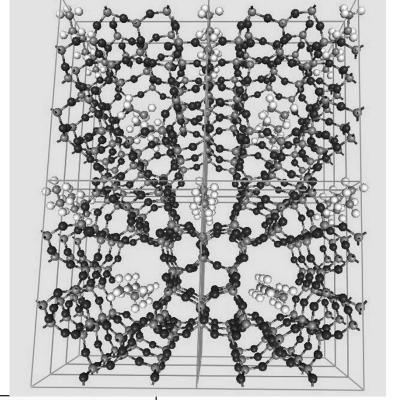
2. Applications of X-ray diffraction

a. crystal structure determination

Direction & intensity data collection

Indexing | Crystal system and → Cell parameters

$$I_{hkl} = K \big| F_{hkl} \big|^2$$



Phase problem

$$F(hkl) = \iiint \rho(x, y, z) e^{2\pi i(hx + ky + lz)} dx dy dz$$

$$\rho(x, y, z) = V^{-1} \sum_{h} \sum_{k} \sum_{l} F(hkl) e^{-2\pi i(hx + ky + lz)}$$

Inverse **Fourier Transform**

$$\sum A_i(x,y,z)$$

Example: Indexing of a cubic system

$$d_{hkl} = a/\sqrt{h^2 + k^2 + l^2}$$
 $2d_{hkl}\sin\theta = \lambda$ Bragg's law

$$\sin^2 \theta = (\lambda / 2a)^2 (h^2 + k^2 + l^2)$$

$$\sin^2\theta \propto h^2 + k^2 + l^2 \qquad \qquad \sin^2\theta_1 : \sin^2\theta_2 : \sin^2\theta_3 : \sin^2\theta_4 : \dots$$

General steps of indexing:

- 1. Get the directions of the diffraction beams, $\{\theta_i\}$
- **2.** Get $\sin^2 \theta_1 : \sin^2 \theta_2 : \sin^2 \theta_3 : \sin^2 \theta_4 : ...$
- 3. Get $(h^2 + k^2 + l^2)_1$: $(h^2 + k^2 + l^2)_2$: $(h^2 + k^2 + l^2)_3$
- 4. Get the lattice type and cell parameters.

Indexing of a cubic system

$$\sin^2 \theta = (\lambda/2a)^2 (h^2 + k^2 + l^2)$$
 \implies $\sin^2 \theta \propto h^2 + k^2 + l^2$

$$\sin^2 \theta_1 : \sin^2 \theta_2 : \sin^2 \theta_3 : \sin^2 \theta_4 : \dots$$

$$= (h^2 + k^2 + l^2)_1 : (h^2 + k^2 + l^2)_2 : (h^2 + k^2 + l^2)_3 \dots$$

Characteristic line sequences of cubic systems:

P: (*hkl*) 100, 110, 111, 200, 210, 211, 220, 221, 222, 300,

$$(h^2 + k^2 + l^2)$$
 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, ... Systematic absence

I: (hkl) <u>100</u>, 110, <u>111</u>, 200, <u>210</u>, 211, 220, <u>221</u>, 222, <u>300</u>, ...

$$(h^2 + k^2 + l^2)$$
 2, 4, 6, 8, 10, 12, 14, 16 ... \rightarrow (1: 2: 3: 4: 5: 6: $\underline{7}$: 8:...)

F: (hkl) 100, 110, 111, 200, 210, 211, 220, 221, 300, 311, 222,

$$(h^2 + k^2 + l^2)$$
 3, 4, 8, 11, 12, 16, 19, 20 ...

Example for the indexing of cubic system and its applications

Sample: NaCl Condition: Cu K α , λ =1.5418 Å, R = 50 mm

- (1) Measure sample and relative intensity
- (2) Calculate the position of diffraction lines (usually 2θ in Ewald sphere)
- (3) Calculate θ
- (4) Calculate $\sin^2\theta$
- (5) Calculate $\sin^2\theta_1$: $\sin^2\theta_2$: $\sin^2\theta_3$: $\sin^2\theta_4$:...= 3:4:8:11:12:...
- (6) Identify Bravais lattice \rightarrow face-centered cubic
- (7) Indexing and calculate $h^2+k^2+l^2$, calculate d_{hkl} and a.

FCC: (hkl) 100, 110, 111, 200, 210, 211, 220, 221, 300, 311,222, (
$$h^2 + k^2 + l^2$$
) 3, 4, 8, 11, 12, 16, 19, 20 ...

(7) Index and calculate $h^2+k^2+l^2$

No.	I	2 θ	θ	sin ² θ	$h^2 + k^2 + l^2$	hkl
1	$oxed{\mathbf{W}}$	27.46	13.73	0.05631	3	111
2	S	31.80	15.90	0.07508	4	200
3	S	45.60	22.80	0.15016	8	220
4	$oxed{\mathbf{W}}$	54.06	27.03	0.20647	11	311
5	S	57.50	28.75	0.22524	12	222
6	S	66.44	33.22	0.30032	16	400
7	$oxed{\mathbf{W}}$	73.30	36.65	0.35663	19	331
8	S	77.56	38.78	0.37540	20	420
9	S	84.30	42.15	0.45045	24	422

Measured in Ewald sphere by x-ray diffraction

FCC Indexing

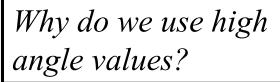
(8) Calculate lattice parameter

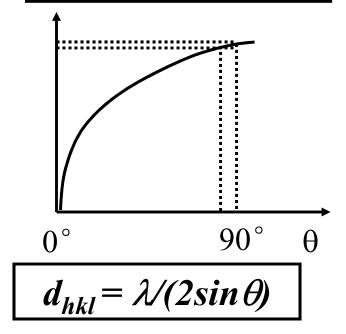
$$sin^{2}\theta = \frac{1.5418^{2}}{4a^{2}} \times (h^{2} + k^{2} + l^{2})$$

$$\therefore a = \frac{1.5418}{2 sin \theta} \times \sqrt{h^{2} + k^{2} + l^{2}}$$

Least-square method, plot method, or *high angle values*,...

(9) $\rho = 2.165 \text{ g/cm}^3 \text{ for NaCl}$





$$n = \frac{\rho V}{M/N_0} = \frac{2.165 \times (5.628 \times 10^{-8})^3}{[(23 + 35.5)/6.022 \times 10^{23}]} = 4$$

One unit cell contains 4 NaCl

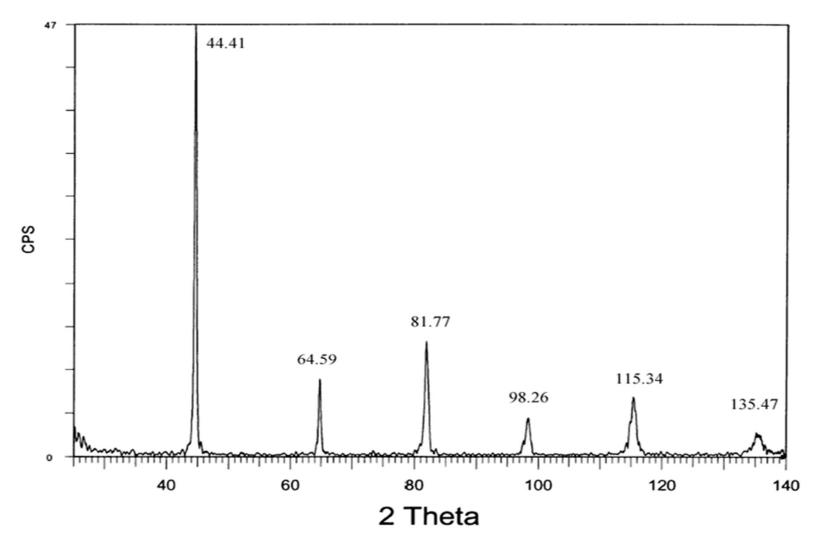
(i.e., each lattice point contains a NaCl.)

Example B. (x-ray λ =1.5418 Å)

Line	2 θ	θ	sin²θ	sin²θ _i /sin²θ ₁	h ² +k ² +l ²	hkl
1	40.26	20.13	0.1184	1	2	110
2	58.26	29.13	0.2370	2	4	200
3	73.20	36.60	0.3555	3	6	211
4	87.02	43.51	0.4740	4	8	220
5	100.64	50.32	0.5923	5	10	310
6	114.92	57.46	0.7109	6	12	222
7	131.16	65.58	0.8290	7	14	321
8	153.58	76.79	0.9470	8	16	400
As $\lambda=1.5418 \text{ Å}$,						indexing

$$a = \frac{\lambda}{2\sin\theta} \cdot \sqrt{h^2 + k^2 + l^2} = \frac{1.5418}{2\sin76.79} \times \sqrt{4^2 + 0^2 + 0^2} = 3.16A$$

b. Applications of powder diffractions



Peak Positions Peak Intensities Peak Shapes and Widths

b. Applications of powder diffractions

Information contained in a Diffraction Pattern

Peak Positions

Crystal system, cell parameters, qualitative phase identification

Peak Intensities

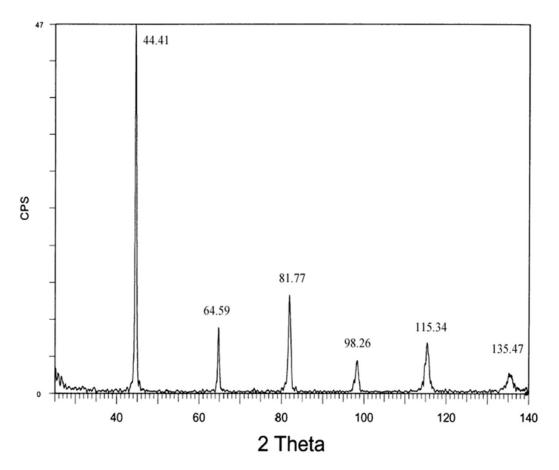
Unit cell contents, quantitative phase fractions

Peak Shapes and Widths

Crystallite size, Non-uniform microstrain

(i) Peak Positions and Intensities

- Qualitative Analysis:
 - a) One crystal phase correspond to a set of diffraction peaks. (being different from the spectroscopic analysis)
 - b) Phase analysis



• Quantitative Analysis:

The peak intensities are proportional to the weight percentage of the corresponding phase.

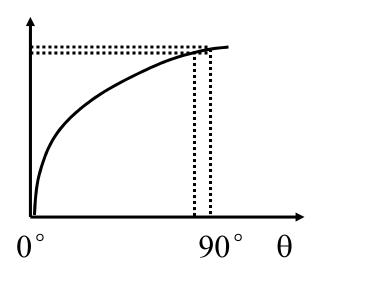
(ii) Changes of lattice parameters—Solid solution, doping Using high-angle diffraction data or applying least square method.

$$2d_{hkl}\sin\theta = \lambda$$

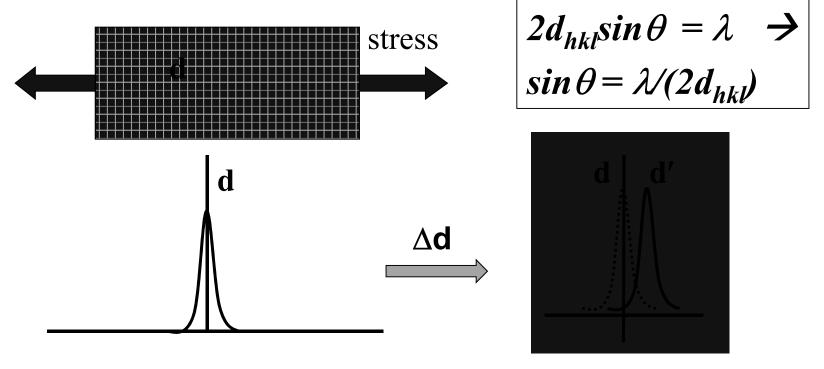
Maximal θ

 \rightarrow minimal $\Delta d/\Delta \theta$

Why use high angle values?

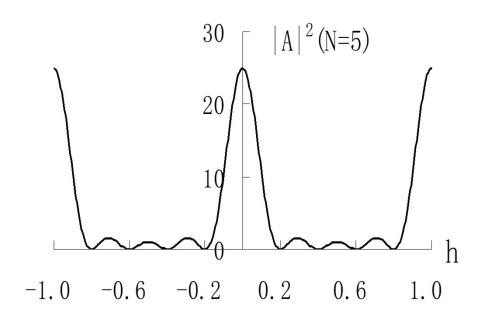


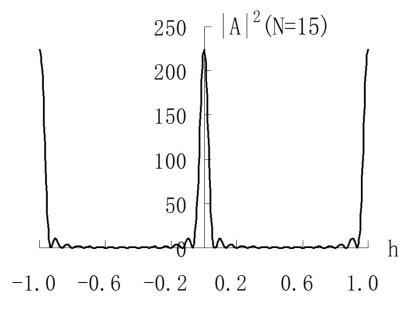
(ii) Changes of lattice spacing along specific directions—residue stress



- The residue stress in a specific direction increases the corresponding d-spacing of a crystal.
- Δd is proportional to the strength of crystal strain in the direction.

(iii) The width of diffraction peaks -- Crystallite size

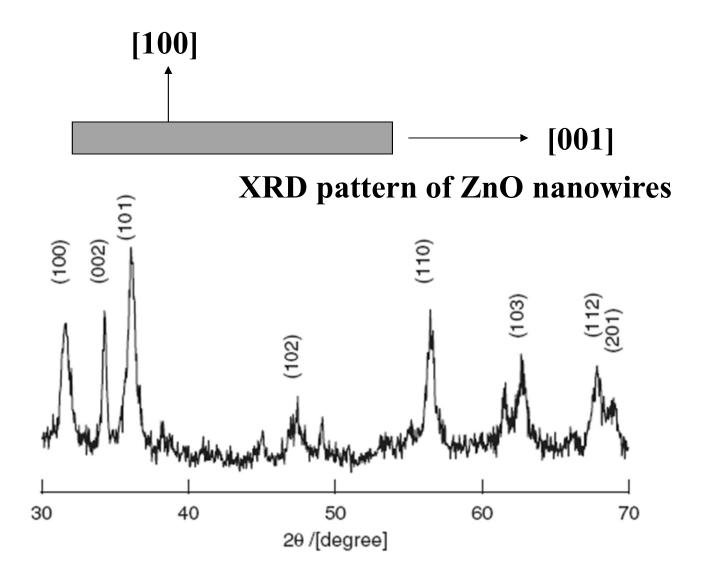




$$I \propto |F_{hkl}|^2 N_1^2 N_2^2 N_3^2 = |F_{hkl}|^2 |A|^2$$

N₁, N₂, N₃ periods along the lattice axes within a microcrystal

 The smaller N in a specific direction [hkl], the broader of the (hkl) diffraction peak.



The diffraction peaks arising from (100)-like planes are much more broad than those from (001)-like planes.

(iii) The width of diffraction peaks —— Crystallite

size

Widely exploited in the research of nanoparticles!

Scherrer formula: (size ~1nm to 100nm)

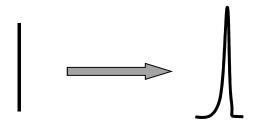
$$D_{hkl} = \frac{K \cdot \lambda}{\beta \cdot \cos \theta} = \frac{K \cdot \lambda}{(B - B_0) \cdot \cos \theta}$$
 (K = 0.9 or 1.0)
use small angle values!

Small-angle scattering – particle size

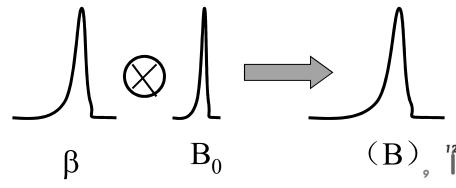
 \mathbf{D}_{hkl} average size along the direction perpendicular to (hkl) plane.

measured peak width

Instrumental width, using standard sample (e.g. α -SiO₂ with crystallite size of $25-44 \mu m$)

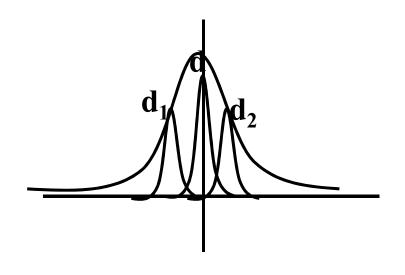


Instrumental width (B_0)



(iii) The width of diffraction peaks — Lattice Distortion

晶格的畸变(不均匀应变、微观应变、内应力)



$$\eta = \Delta d / d$$
 $2(d + \Delta d)\sin(\theta + \Delta \theta) = \lambda$
or $2d(1 + \eta)\sin(\theta + \Delta \theta) = \lambda$
 η and $\Delta \theta$ are very small,
and hence,
 $2\Delta \theta = -2\eta tg\theta$ or
 $\beta' = 2\eta tg\theta$

Separation of the effects of Crystallite size and Lattice Distortion

$$\beta = \beta_i + \beta_i' = \frac{K \cdot \lambda}{D \cdot \cos \theta} + 2\eta t g \theta$$

$$\frac{\beta \cos \theta}{\lambda} = 2\eta \frac{\sin \theta}{\lambda} + \frac{K}{D}$$

Measuring two or more diffraction peaks.

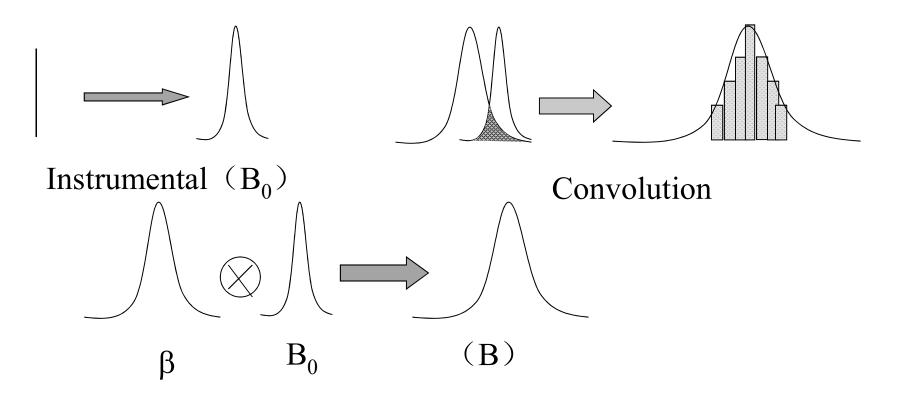
(iii) The profile of diffraction peaks —— Crystallite size distribution

$$I \propto \left|A_N\right|^2 = A_N A_N^* = rac{\sin^2\left(rac{\pi N}{\lambda}\mathbf{a} \cdot \mathbf{S}\right)}{\sin^2\left(rac{\pi}{\lambda}\mathbf{a} \cdot \mathbf{S}\right)}$$
 Derived from Bragg equation

$$f_p(s) = K \sum_{n=1}^{m} P(n) \frac{\sin^2(\pi n s)}{\sin^2(\pi s)}$$

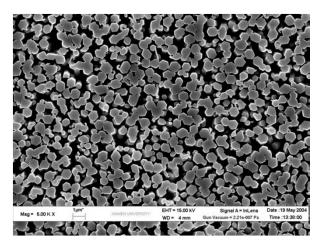
 $f_n(s)$ is the line profile of diffraction peak

P(n) is Crystallite size distribution function

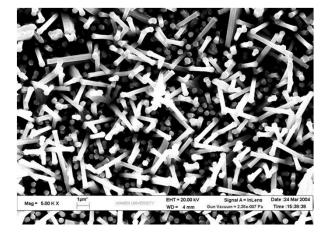


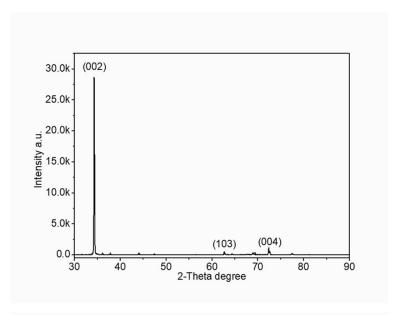
$$h(s) = \int_{-\infty}^{+\infty} g(t)f(s-t)dt \quad \text{or } h(s) = g(s) \otimes f(s)$$
$$F(h(s)) = F(g(s)) \times F(f(s))$$

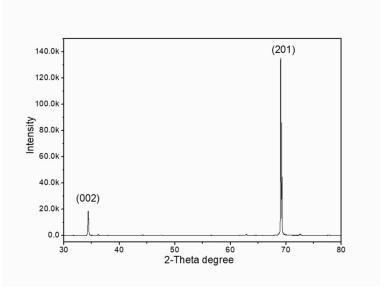
(vi) Texture



ZnO nano-arrays







b. Applications of powder diffractions Applications

Qualitative Analysis

Quantitative Analysis

Lattice Parameter Determination

Crystallite size / size distribution & Lattice Distortion Analysis (Non-uniform microstrain)

Crystallinity Analysis

Residue Stress Analysis

Texture analysis

Structure Solution and Refinement

Radical distribution function (for amorphous materials)

7.3.5 Electron Diffraction and Neutron Diffraction

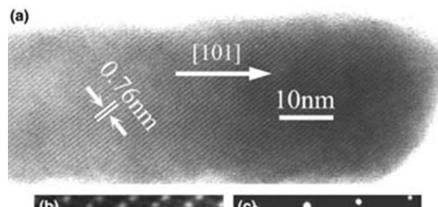
1. Electron Diffraction

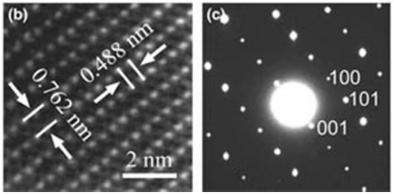
de Brogli wave length of electron in a field V:

$$\lambda = \frac{h}{\sqrt{2m_e eV}}$$

 $100 \text{ kV} ---- \lambda \sim 0.00370 \text{ nm}$

Atom-level resolution!





a) TEM image of the tip part of one TeO₂ nanorod. (b) Enlarged TEM image. (c) The corresponding electron diffraction pattern.

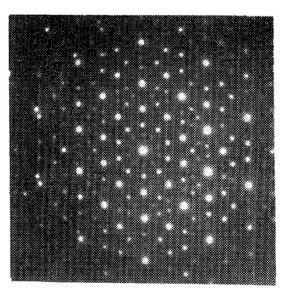
2. Neutron Diffraction

- ---- Scatterring of atomic nuclear
 - higher atomic resolution

7.4 Quasicrystal, liquid crystal and amorphous

Quasicrystal:

- quasiperiodic crystal
- 5-fold axis occurs in solid state, seemingly challenging the crystallographic theory.
- In 1984, Dan Shechtman et al. reported their finding that the Al-Mn(14 at.%) alloy adopts an icosahedral phase with 5-fold axis. (first observed in 1982.4.8, see Phys. Rev. Lett. 1984, 53, 1951).
- He won the Nobel Prize in Chemistry in 2011.



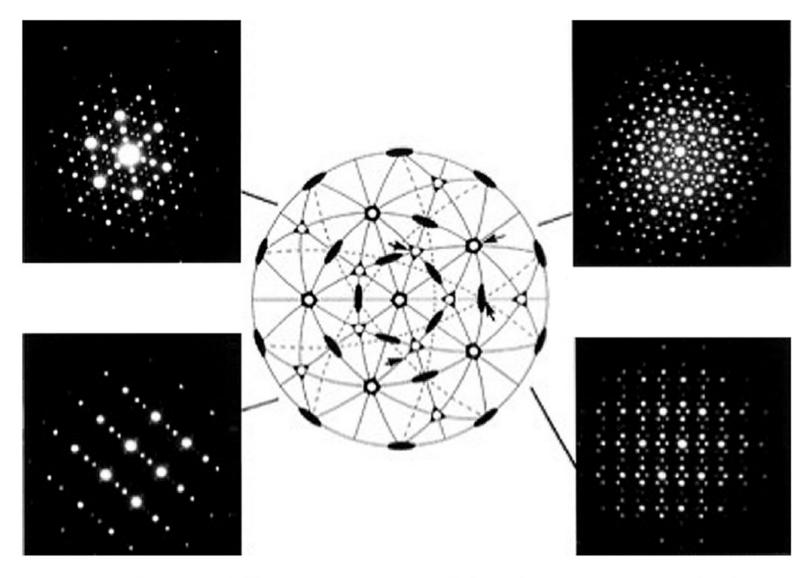


Figure 1. Electron diffraction patterns of the Al-Mn quasicrystal taken along different symmetry directions indicating icosahedral diffraction symmetry. Reprinted from Ref. [1].

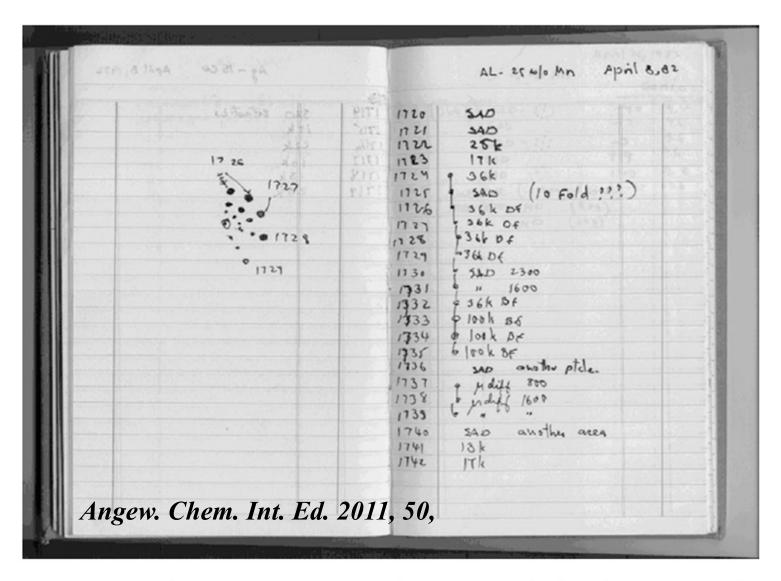


Figure 2. Shechtman's notes of April 8, 1982, with the observation of tenfold symmetry highlighted by three question marks.

Even his cooperator, J. W Cahn, thought that the pheonomenon was resulted from twinning of single crystals!

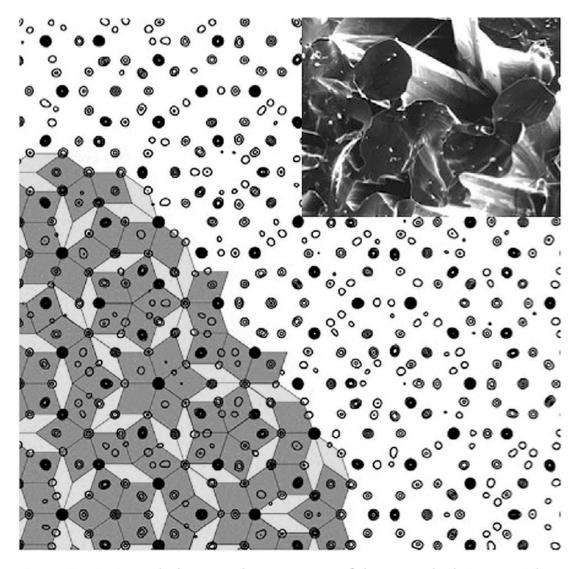


Figure 6. Projected electron density map of decagonal Al-Co-Ni with underlying Penrose tiling. In the insert (upper right), some intergrown decaprismatic quasicrystals are depicted.

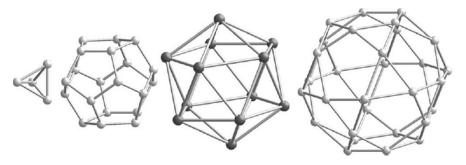
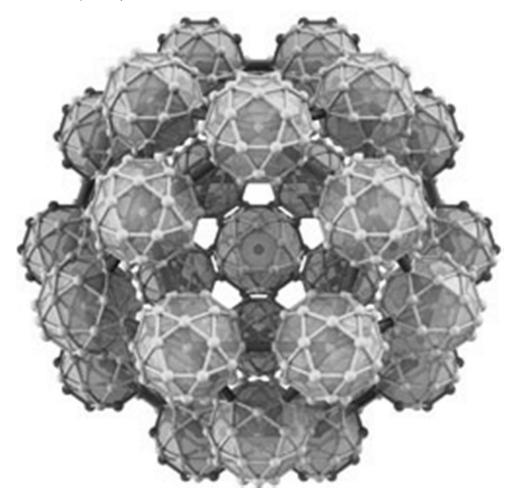


Figure 5. Shell structure of the $Cd_{54}Yb_{12}$ Tsai cluster (Cd light spheres, Yb dark spheres).



An icosahedral Yb-Cd quasicrystal is composed of an aperiodic ordered arrangement of YbCd clusters (yellow and blue spheres at the vertices of the polyhedra

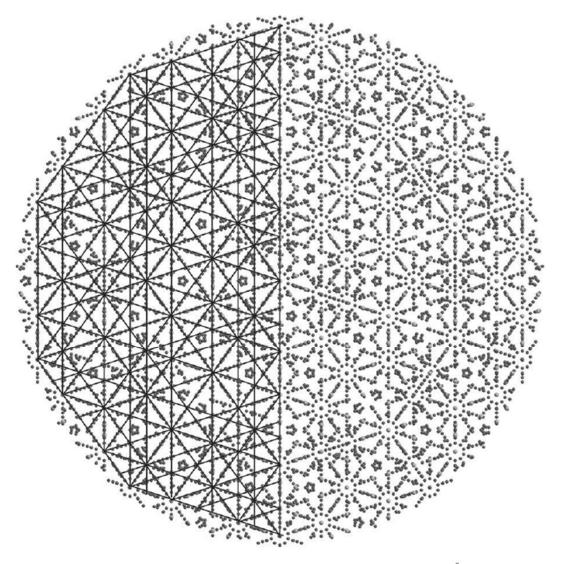
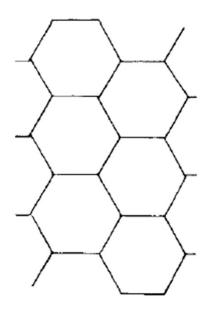


Figure 7. Projection of a spherical section (diameter 100 Å) of the structure of icosahedral Cd-Yb^[20] along a fivefold axis. Almost all atoms are arranged in flat atomic layers, forming a framework compatible with fivefold symmetry. The atomic layers interpenetrate each other in a way that is only possible in quasiperiodic structures.

Crystal



Translation symmetry, Long-range order, Directional.

Quasi-crystal

3D quasicrystal:

Icosahedral phase in Al-Mn, Ti₂Ni, Al-Li-Cu, Mg-Al-Zn alloys.

2D quasicrystal:

With 1D translation symmetry and 2D quasiperiodicity.

8-fold, 10-fold quasicrystals in some alloys.

No translation symmetry;

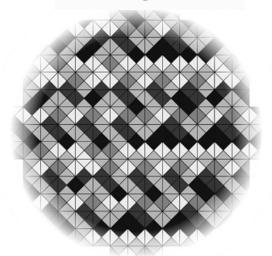
Long-range order, directional.

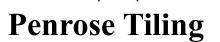
History of quasicrystal concept

(extracted from wikipedia)

- 1. Quasicrystal-like structures had been known well before the 20th-century, e.g., tiles in a medieval islamic mosque in Iran.
- 2. In 1961, Hao Wang proposed a mathematic problem related to the planar tiling.
- 3. In 1966, Wang's student, Robert Berger, constructed a set of some 20,000 square tiles (now called Wang tiles), which can tile the plane aperiodically.
- 4. In particular, in 1976, Roger Penrose propose a set of just two tiles, up to rotation, (referred to as Penrose tiles) that produced only non-periodic tilings of the plane.

Wang Tiles





- 5. In 1982, Alan Mackay showed experimentally that the diffraction pattern from the Penrose tiling had a two-dimensional Fourier transform consisting of sharp 'delta' peaks arranged in a fivefold symmetric pattern. (Physica A, 1982, 114, 609)
- 6. The history of quasicrystals begins with the 1984 paper "Metallic Phase with Long-Range Orientational Order and No Translational Symmetry" where Dan Shechtman *et al.* demonstrated a clear diffraction pattern with a fivefold symmetry.
- 7. The term *quasicrystal* was first used in print shortly after the announcement of Shechtman's discovery, in a paper by Steinhardt and Levine. (Phys. Rev. Lett. 1984, 53,2477)
- 8. At the end of the 1980s, the idea of quasicrystal became widely acceptable!

Liquid crystals

- Crystalline solid: anisotropic
- Liquid: isotropic
- Liquid crystal: anisotropic!
 Liquids with well-ordered, crystal-like structures.

More details of liquid crystals can be learnt in material science!

Chapter 7

Key points/concepts

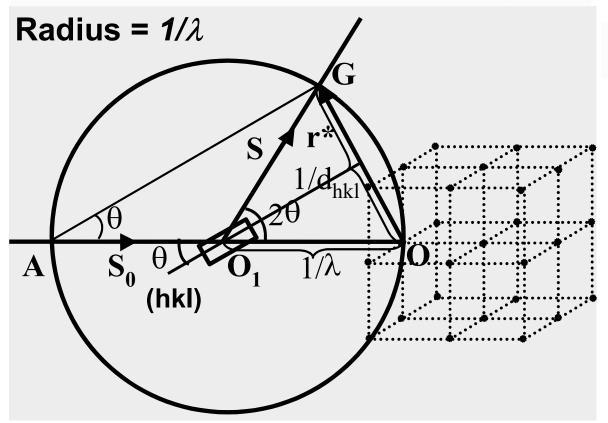
- Lattice of crystal structure: translation symmetry
 a lattice point = a structure motif -- unit cell
- 2. Crystal systems (7), Bravais Lattice (14)
- 3. Symmetry operations (point & translation), Crystallographic point groups(32), space groups (230), equivalent positions.
- 4. Miller index of crystal plane, d-spacing etc.
- 5. X-ray diffraction, Laue equation, Bragg's Law, reciprocal lattice, Ewald sphere, structural factor, system absence, general process of x-ray crystal structure determination.

X-ray diffraction, Bragg's Law, Ewald sphere

$$2d_{hkl}\sin\theta=\lambda$$
 Bragg's law

$$|OG| = 2|O_1O^*|\sin\theta = (2/\lambda)\sin\theta = 1/d_{hkl}$$

Directions of detected X-ray diffraction beams: {20}



 $\sin^2\theta_1:\sin^2\theta_2:...:\sin^2\theta_n$



• Structure factor & systematic absence

$$I_{hkl} = K |F_{hkl}|^2$$
 Structure factor:

$$F_{hkl} = \sum_{j=1}^{n} f_j e^{2\pi i (hx_j + ky_j + lz_j)}$$
Phase difference between the scattered and incident x-ray over atom j.

Sum over all atoms within a unit cell.

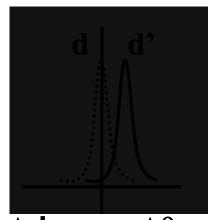
 $f_{j:}$ atomic scattering factor defined by atomic electron density distribution.

• some reflections/diffractions will be systematically absent $(F_{hkl} = 0 \rightarrow I_{hkl} = 0)$ in case a crystall lattice has centering, glide plane and screw axis.

Further applications of X-ray diffraction

a) Change of specific d-spacing

$$2d_{hkl}\sin\theta = \lambda$$



 Δd_{hkl} vs. $\Delta \theta_{hkl}$

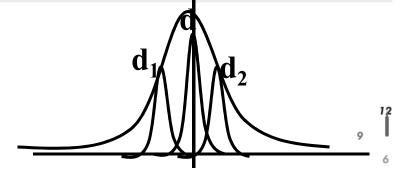
$$\left|I \propto \left|F_{hkl}\right|^2 N_1^2 N_2^2 N_3^2 = \left|F_{hkl}\right|^2 \left|A\right|^2 \right|$$

Scherrer formula

(size: 1-100nm)

$$D_{hkl} = \frac{K \cdot \lambda}{\beta \cdot \cos \theta_{hkl}} = \frac{K \cdot \lambda}{(B - B_0) \cdot \cos \theta_{hkl}}$$

c) Deformation of lattice—broadening of diffraction peaks



In the diffraction direction, the difference between the incident and the diffracted beam through any two lattice points must be an integral number of wavelengths.

The lattice vector from (000) to (mnp): $T_{mnp} = ma + nb + pc$ The differences in wavelengths for observed diffractions:

$$\Delta = T_{mnp} \cdot (S - S_0)$$

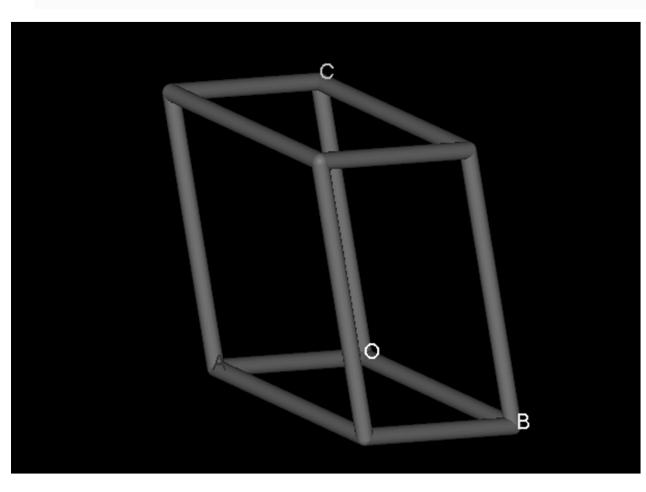
$$= (ma + nb + pc) \cdot (S - S_0)$$

$$= ma \cdot (S - S_0) + nb \cdot (S - S_0) + pc \cdot (S - S_0)$$

$$= mh\lambda + nk\lambda + pl\lambda$$

$$= (mh + nk + pl)\lambda$$

Crystal	Characteristic	Unit	cell	Choice	Lattic
systems	symmetry	parameters		of axis	Point
	elements				Group
Triclinic	Nil	a≠b≠c			C_i
		α≠β≠γ			



3 parellelograms

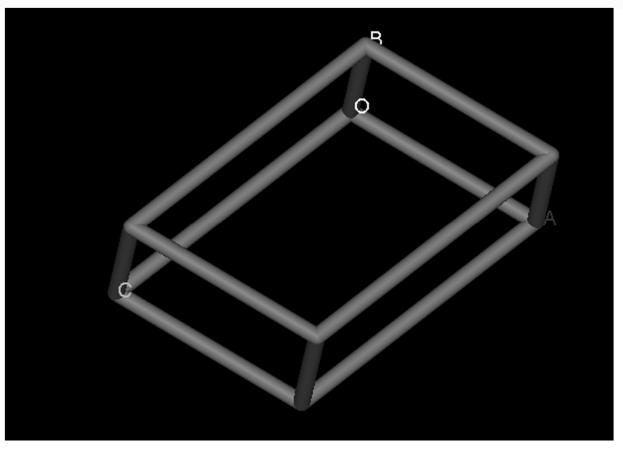
Inversion center:

(0,0,0); (1/2,1/2,1/2)

(0,0,1/2), (1/2,0,0), (0,1/2,0);

(1/2,1/2,0),(0,1/2,1/2), (1/2,0,1/2)

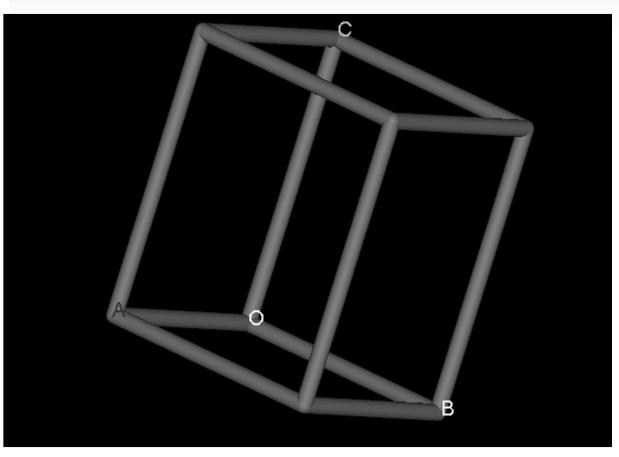
Crystal	Characteristic	Unit c	ell	Choice	of	Lattic
systems	symmetry	parameters		axis		Point
	elements					Group
Monoclinic	C_2 , \boldsymbol{i} , σ_h	a≠b≠c		b // C ₂		C_{2h}
		α=γ=90°≠	β	$ac//\sigma_h$		



1 parellelogram

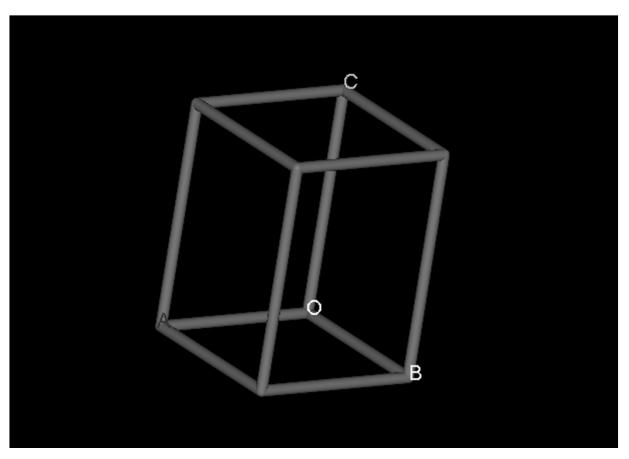
2 rectangles.

Crystal	Characteristic	Unit cel	l Choice of	Lattic
systems	symmetry	parameters	axis	Point
	elements			Group
Orthorhombic	$3C_2,3\sigma_h$	a≠b≠c	$a,b,c // 3C_2$	D_{2h}
		α=β=γ=90°		



2D lattices:3 rectangles.

Tetragonal	C_4	a=b≠c	c // C ₄	D_{4h}
		α=β=γ=90°		



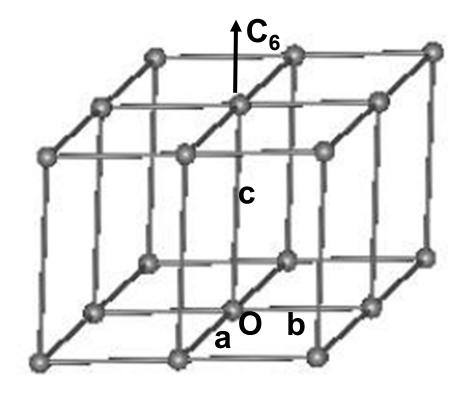
1 square

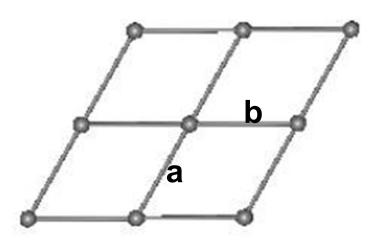
2 rectangles.

Cubic	4C ₃	a=b=c	Four C ₃ axes are parallel	$\overline{\mathrm{O_h}}$
		α=β=γ=90°	to the body diagonals	
		, ,	of the cube.	

3 squares

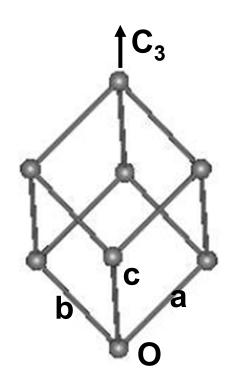
Hexagonal	C_6 , σ_h	a=b≠c	c // C ₆	D_{6h}
		α=β=90°		
		γ=120°		





1 hexagon + 2 rectangles.

Trigonal	C ₃	Rhombohedral		D_{3d}
		$a=b=c, \alpha=\beta=\gamma<120^{\circ}\neq90^{\circ}$		
		Hexagonal		D _{6h}
		$a=b\neq c, \alpha=\beta=90^{\circ}, \gamma=120^{\circ}$		



Rhombohedral