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Abstract

The fundamental ideas on inorganic stereochemistry presented originally by Sidgwick and
Powell in 1940 and developed subsequently by Gillespie and Nyholm in 1957 have expanded
into a broad theoretical base for essentially all of coordination chemistry during the
subsequent four decades. A key aspect of this work has been a detailed understanding of the
topology, shape, and symmetry of all of the actual and plausible polyhedra found in
coordination chemistry and the relationship of such properties of the relevant polyhedra to
those of the available atomic orbitals of the central metal atom. This paper reviews the
polyhedra for coordination numbers four through nine for the spherical nine-orbital sp3d5

manifold commonly used in transition metal coordination chemistry as well as possibilities in
coordination complexes having other spherical manifolds for the central atom including the
four-orbital sp3 manifold used by elements without energetically accessible d orbitals, the
six-orbital sd5 manifold used in some early transition metal alkyls and hydrides, and the
thirteen-orbital sd5f7 manifold used in actinide complexes. © 2000 Elsevier Science S.A. All
rights reserved.

Keywords: Atomic orbitals; Symmetry; Coordination polyhedra

1. Introduction

One of the important objectives of theoretical chemistry is understanding the
factors affecting the shapes of molecules. In the specific area of coordination
chemistry this often corresponds to understanding the coordination polyhedra
favored for particular metals, oxidation states, and ligand sets. In this connection a
seminal paper was the 1940 Bakerian Lecture of Sidgwick and Powell [1] on
stereochemical types and valency groups. This paper was the first to develop the
idea of the relation between the number of valence electrons, number of ligands,
and the shape of the molecule and led to the so-called Sidgwick–Powell theory of
electron pair repulsions. By the 1940 publication date of this paper, enough
experimental structural data had been accumulated on key coordination com-
pounds and other inorganic molecules using X-ray diffraction as well as absorption
spectra and Raman spectra so that an adequate experimental data base throughout
the periodic table had become available to test these ideas.

The next key paper in this area was a review on inorganic stereochemistry by
Gillespie and Nyholm [2] which introduced the idea that the pairs of electrons in a
valency shell, irrespective of whether they are shared (i.e., bonding) pairs or
unshared (i.e., non-bonding) pairs, are always arranged in the same way which
depends only on their number. Thus two pairs are arranged linearly, three pairs in
the form of a plane triangle, four pairs tetrahedrally, five pairs in the form of a
trigonal bipyramid, six pairs octahedrally, etc. These ideas were subsequently
developed in more detail in a 1972 book by Gillespie [3] and led to the so-called
6alence-shell electron pair repulsion (VSEPR) theory. This theory has proven
particularly useful over the years in understanding the shapes of hypervalent main
group element molecules such as SF4, ClF3, etc.
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During the period that these theoretical ideas were developing, additional exper-
imental information also accumulated, aided by the growing availability of X-ray
diffraction methods to elucidate unambiguously the structures of diverse inorganic
and organometallic compounds. In the late 1960s, I became interested in exploring
the extent to which elementary concepts from the mathematical discipline of
topology could account for the specific coordination polyhedra that were being
discovered in inorganic compounds and I summarized my initial observations in a
1969 paper [4]. In the three decades since publication of this original paper I have
introduced a number of additional ideas relating to coordination polyhedra, so that
the approach of the original 1969 paper now appears very crude. Ideas which have
proven to be useful over the years include the concept of coordination polyhedra
which are symmetry-forbidden for a given atomic orbital manifold [5] as well as the
relationship of the magnetic quantum number of the atomic orbitals involved in the
hybridization to the shape of the resulting coordination polyhedron [6]. This paper
summarizes the interplay between these ideas and how they relate to the experimen-
tally observed shapes of coordination compounds.

2. Properties of atomic orbitals

2.1. Atomic orbitals from spherical harmonics

The shapes of the atomic orbitals of the central atom determine the stereochem-
istry of the bonding of the central atom to its surrounding ligands, which is based
on the hybrid orbitals formed by various linear combinations of the available
atomic orbitals. These atomic orbitals arise from the one-particle wave functions C,
obtained as spherical harmonics by solution of the following second order differen-
tial equation in which the potential energy V is spherically symmetric:

(2C
(x2 +

(2C
(y2 +

(2C
(z2 +

8p2m
h2 (E−V)C=92C+

8p2m
h2 (E−V)C=0 (1)

These spherical harmonics C are functions of either the three spatial coordinates
x, y, and z or the corresponding spherical polar coordinates r, u, and f defined by
the equations

x=r sin u cos f (2a)

y=r sin u sin f (2b)

z=r cos u (2c)

Furthermore, a set of linearly independent wave functions can be found such that
C can be factored into the following product:

C(r, u, f)=R(r)·U(u)·F(f) (3)

in which the factors R, U, and F are functions solely of r, u, and f, respectively.
Since the value of the radial component R(r) of C is completely independent of the
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angular coordinates u and f, it is independent of direction (i.e., isotropic) and
therefore remains unaltered by any symmetry operations. For this reason all of the
symmetry properties of a spherical harmonic C, and thus of the corresponding
wave function or atomic orbital, are contained in its angular component
U(u)·F(f). Furthermore, each of the three factors of C (Eq. (3)) generates a
quantum number. Thus the factors R(r), U(u), and F(f) generate the quantum
numbers n, l, and ml (or simply m), respectively. The principal quantum number n,
derived from the radial component R(r), relates to the distance from the center of
the sphere (i.e., the nucleus in the case of atomic orbitals). The azimuthal quantum
number l, derived from the factor U(u) in Eq. (3), relates to the number of nodes
in the angular component U(u)·F(f), where a node is a plane corresponding to a
zero value of U(u)·F(f) or C, i.e., where the sign of U(u)·F(f) changes from
positive to negative. Atomic orbitals for which l=0, 1, 2, and 3 have 0, 1, 2, and 3
nodes, respectively, and are conventionally designated as s, p, d, and f orbitals,
respectively. For a given value of the azimuthal quantum number l, the magnetic
quantum number ml or m, derived from the factor F(f) in Eq. (3), may take on all
2l+1 different values from + l to − l. There are therefore necessarily 2l+1
distinct orthogonal orbitals for a given value of l corresponding to 1, 3, 5, and 7
distinct s, p, d, and f orbitals, respectively.

The magnetic quantum number, m, can be related to the distribution of the
electron density of the atomic orbital relative to the z axis. Thus if the nucleus is in
the center of a sphere in which the z axis is the polar axis passing through the north
and south poles, an atomic orbital with m=0 has its electron density oriented
towards the north and south poles of the sphere whereas an atomic orbital with the
maximum possible value of �m �, i.e., 9 l, has its maximum electron density in the
equator of the sphere. In this way the angular momentum of the atomic orbitals
involved in the hybridization for a given coordination polyhedron can relate to the
moment of inertia of that coordination polyhedron.

A convenient way of depicting the shape of an orbital, particularly complicated
orbitals with large numbers of lobes, is by the use of an orbital graph [7]. In such
an orbital graph the vertices correspond to the lobes of the atomic orbitals and the
edges to nodes between adjacent lobes of opposite sign. Such an orbital graph is
necessarily a bipartite graph in which each vertex is labeled with the sign of the
corresponding lobe and only vertices of opposite sign can be connected by an edge.

Table 1 illustrates some of the important properties of s, p, and d orbitals.
Similarly Table 2 lists some of the important properties of two different sets of
seven f orbitals. The cubic set of f orbitals is used for structures of sufficiently high
symmetry (e.g., Oh and Ih) to have sets of triply degenerate f orbitals whereas the
general set of f orbitals are used for structures of lower symmetry without sets of
f orbitals having degeneracies 3 or higher. The g and h orbitals are analogously
depicted elsewhere [8]; they are not relevant to the discussion of coordination
polyhedra in this paper.

The conventionally used set of five orthogonal d orbitals contains two types of
orbitals, namely the xy, xz, yz, and x2–y2 orbitals each with four major lobes and
the z2 orbital with only two major lobes (Table 1). All possible shapes of d orbitals
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can be expressed as linear combinations of these two types of d orbitals by the
following equation [9,10]:

d=afz 2+ (1−a2)1/2fx 2−y 2


3
2

=0.8660255a51 (4)

In Eq. (4), fz 2 refers to the wave function of the dz 2 atomic orbital and fx 2−y 2

refers to the function of the dx 2−y 2 atomic orbital, taken as a representative of one
of the four d orbitals with four major lobes. Two different sets of five orthogonal
equi6alent d orbitals can be constructed by choosing five orthogonal linear combi-
nations of the dz 2 and dx 2−y 2 orbitals using Eq. (4) [9,10] These are called the oblate
and prolate sets of five equivalent d orbitals since they are oriented towards the
vertices of an oblate and prolate pentagonal antiprism, respectively. The five-fold
symmetry of these equivalent sets of five d orbitals makes them inconvenient to use
since relatively few molecules have the matching five-fold symmetry.

2.2. Valence manifolds of atomic orbitals

Valence manifolds of atomic orbitals are the sets of atomic orbitals having
suitable energies to participate in chemical bonding. The geometry of such valence
manifolds of atomic orbitals relates to contours of the sum � c2 over all orbitals in
the manifold. Spherical atomic orbital manifolds are valence manifolds of atomic
orbitals containing entire sets of atomic orbitals having a given value of the
azimuthal quantum number, l, and are isotropic, i.e., they extend equally in all

Table 1
Properties of s, p, and d atomic orbitals

PolynomialNodes Appearance and orbital�m �Type ShapeAngular
graphfunction

0 Spherically symmetrical Points Independent of0
u, f

p 1 1 x sin u cos f Linear
1 1p y sin u sin f

p cos uz10

d 2 2 xy sin2 u sin 2f Square
2 2 x2−y2d sin2 u cos 2f

d 1 2 xz sin u cos u cos f

sin u cos u sin fyz21d

0 (3 cos2 u−1)d 2z2−r22 Linear
(abbreviated as
z2)



146 R.B. King / Coordination Chemistry Re6iews 197 (2000) 141–168

Table 2
Properties of the f atomic orbitals

Lobes Shape Orbital graph General set Cubic set�m �

Hexagon x(x2−3y2)63 none
y(3x2−y2)

82 xyz xyzCube
x(z2−y2),z(x2−y2)
y(z2−x2), z(x2−y2)

1 none6 Double square x(5z2−r2)
y(5z2−r2)

4 Linear z(5z2−r2) x30
y3

z3

directions similar to a sphere. The following spherical atomic orbital manifolds
(Table 3) are of chemical interest [11]:
1. The four-orbital sp3 manifold (l=0 and 1) involved in the chemistry of main

group elements including their hypervalent compounds through three-center
four-electron bonding;

2. The six-orbital sd5 manifold (l=0 and 2) involved in the chemistry of early
transition metal hydrides and alkyls since the p orbitals in such systems may
have energies too high to participate in chemical bonding;

3. The nine-orbital sp3d5 manifold (l=0, 1, and 2) involved in most of the
chemistry of the d-block transition metals;

4. The 13-orbital sd5f7 manifold (l=0, 2, and 3) involved in the chemistry of the
actinides.

These spherical atomic orbital manifolds are characterized by two numbers
(Table 3):
1. The total number of atomic orbitals in the manifold designated as x which

corresponds to the maximum possible coordination number using only two-elec-
tron two-center bonding;
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Table 3
Spherical atomic orbital manifolds

Elements MaximumManifold Maximum coordination
involved number with ancoordination

number (x)a inversion center (y)a

sp3 4 2Main group
sd5 06Early transition metals
sp3d5 6Transition metals 9

Actinidessd5f7 13 12

a Considers only two-center two-electron metal–ligand bonding.

2. The maximum number of atomic orbitals in a submanifold consisting of equal
numbers of gerade and ungerade orbitals designated as y which corresponds to
the maximum possible coordination number for a polyhedron with a center of
symmetry or a unique reflection plane containing no vertices. For a given
manifold, such polyhedra with 6 vertices where yB65x are symmetry forbid-
den coordination polyhedra.

A specific feature of the chemical bonding in some systems containing the late
transition and early post-transition metals observed by Nyholm [12] as early as
1961 is the shifting of one or two of the outer p orbitals to such high energies that
they no longer participate in the chemical bonding and the accessible spd valence
orbital manifold is no longer spherical (isotropic). If one p orbital is so shifted to
become antibonding, then the accessible spd orbital manifold contains only eight
orbitals (sp2d5) and has the geometry of a torus or doughnut (Fig. 1(a)). The
‘missing’ p orbital is responsible for the hole in the doughnut. This toroidal sp2d5

manifold can bond only in the two dimensions of the plane of the ring of the torus
thereby leading only to planar coordination arrangements. Filling this sp2d5 mani-
fold of eight orbitals with electrons leads to the 16-electron configuration found in

Fig. 1. (a) The toroidal (sp2d5) and cylindrical (spd5) manifolds; (b) Trigonal planar and pentagonal
planar coordination for the toroidal manifold.



148 R.B. King / Coordination Chemistry Re6iews 197 (2000) 141–168

square planar complexes of the d8 transition metals such as Rh(I), Ir(I), Ni(II), Pd(II),
Pt(II), and Au(III). The locations of the four ligands in these square planar complexes
can be considered to be points on the surface of the torus corresponding to the sp2d5

manifold. The toroidal sp2d5 manifold can also lead to trigonal planar and pentagonal
planar coordination for three- and five-coordinate complexes, respectively (Fig. 1(b)).
The x, y, and z axes for a toroidal sp2d5 manifold are conventionally chosen so that
the missing p orbital is the pz orbital.

In some structures containing the late transition and post-transition metals,
particularly the 5d metals Pt, Au, Hg, and Tl, two of the outer p orbitals are raised
to antibonding energy levels. This leaves only one p orbital in the accessible spd orbital
manifold, which now contains seven orbitals (spd5) and has cylindrical geometry
extending in one axial dimension much further than in the remaining two dimensions
(Fig. 1(a)). Filling this seven-orbital spd5 manifold with electrons leads to the
14-electron configuration found in two-coordinate linear complexes of d10 metals such
as Pt(0), Cu(I), Ag(I), Au(I), Hg(II), and Tl(III). The raising of one or particularly
two outer p orbitals to antibonding levels has been attributed to relativistic effects.

The p orbitals which are raised to antibonding levels as noted above can participate
in ds�ps* or dp�pp* bonding in complexes of metals with toroidal sp2d5 and
cylindrical spd5 manifolds depending on the symmetry of the overlap (Fig. 2). Such
bonding was suggested by Dedieu and Hoffmann [13] in 1978 for Pt(0)–Pt(0) dimers
on the basis of extended Hückel calculations and is discussed in detail in a recent
review by Pyykkö [14]. This type of surface bonding like, for example, the dp�pp*
backbonding in metal carbonyls, does not affect the electron bookkeeping in the late
transition and post-transition metal clusters but accounts for the bonding rather than
non-bonding distances between adjacent metal vertices in certain compounds of the
coinage metals, particularly gold, as well as other late and post-transition metals.

Fig. 2. Examples of ds�ps and dp�pp bonding to the otherwise empty p orbitals in complexes of
metals with toroidal (sp2d5) and cylindrical (spd5) manifolds.
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2.3. Hybridization of atomic orbitals

Consider a metal complex of the general type MLn in which M is the central
metal atom, Ln refers to n ligands surrounding M, and each ligand L is attached to
M through a single atom of L. The combined strengths of the n chemical bonds
formed by M to the n ligands L are maximized if the metal valence atomic orbitals
overlap to the maximum extent with the atomic orbitals of the ligands L. The
available metal valence orbitals may be combined or hybridized in such a way to
maximize this overlap.

Consider a ‘light’ element of the first row of eight of the periodic table Li�F
such as, for example, boron or carbon. The valence orbital manifold of such
elements consists of a single s orbital and the three p orbitals, namely px, py, and
pz. In the example of methane, CH4, the four hydrogen atoms are located at the
vertices of a regular tetrahedron surrounding the central carbon atom. The
strengths of the four C–H bonds directed towards the vertices of a regular
tetrahedron can be maximized if the following linear combinations of the wave
functions of the atomic orbitals in the sp3 manifold are used:

C1=
1
2
fs+

1
2
fx+

1
2
fy+

1
2
fz (5a)

C2=
1
2
fs−

1
2
fx−

1
2
fy+

1
2
fz (5b)

C3=
1
2
fs+

1
2
fx−

1
2
fy−

1
2
fz (5c)

C4=
1
2
fs−

1
2
fx+

1
2
fy−

1
2
fz (5d)

In Eqs. (5a)–(5d) the px, py, and pz orbitals are abbreviated as x, y, and z,
respectively, and the hybrid wave functions are represented by c and the compo-
nent atomic orbitals are represented by f.

The process of determining the coefficients in equations such as those above is
beyond the scope of this article and can become complicated when the degrees of
freedom are increased by lowering the symmetry of the coordination polyhedron or
by increasing the size of the valence orbital manifold to include d orbitals, as is of
interest for the transition metal chemistry discussed in this article. However,
elementary symmetry considerations, as outlined in group-theory texts [15], can be
used to determine which atomic orbitals have the necessary symmetry properties to
form a hybrid corresponding to a given coordination polyhedron. For example, the
four atomic orbitals of an sp3 manifold can form four hybrid orbitals pointing
towards the vertices of a tetrahedron as outlined above. However, the four atomic
orbitals of an sp3 manifold are excluded by symmetry considerations from forming
four hybrid orbitals pointing towards the vertices of a planar square or rectangle.
Thus if the plane of the square or rectangle is the xy plane, the pz orbital is seen to
have no electron density in this plane (i.e., the xy plane is a node for the pz orbital)
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and thus cannot participate in the bonding to atoms in the plane. In the case of
coordination polyhedra with larger numbers of vertices, particularly those of
relatively high symmetry such as the cube and hexagonal bipyramid for eight-coor-
dination, the inability of certain combinations of atomic orbitals to form the
required hybrid orbitals is not as obvious and more sophisticated group-theoretical
methods are required. Such methods are discussed in Section 3.3.

3. The properties of coordination polyhedra

3.1. Topology of coordination polyhedra

A key aspect of the topology of coordination polyhedra is Euler’s relationship
between the numbers of vertices (6), edges (e), and faces ( f ), i.e.,

6−e+ f=2 (6)

This arises from the properties of ordinary three-dimensional space.
In addition the following relationships must be satisfied by any polyhedron:

(1) Relationship between the edges and faces: %
6−1

i=3

ifi=2e (7)

In Eq. (7), fi is the number of faces with i edges (i.e., f3 is the number of
triangular faces, f4 is the number of quadrilateral faces, etc.). This relationship
arises from the fact that each edge of the polyhedron is shared by exactly two faces.
Since no face can have fewer edges than the three of a triangle, the following
inequality must hold in all cases:

3f52e (8)

(2) Relationship between the edges and vertices: %
6−1

i=3

i6i=2e (9)

In Eq. (9), 6i is the number of vertices of degree i (i.e., having i edges meeting at
the vertex). This relationship arises from the fact that each edge of the polyhedron
connects exactly two vertices. Since no vertex of a polyhedron can have a degree
less than three, the following inequality must hold in all cases:

3652e (10)

(3) Totality of faces: %
6−1

i=3

fi= f (11)

(4) Totality of vertices: %
6−1

i=3

6i=6 (12)

Eq. (11) relates the fis to f and Eq. (12) relates the 6is to 6.
In generating actual polyhedra, the operations of capping and dualization are

often important. Capping a polyhedron P1 consists of adding a new vertex above
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Fig. 3. (a) Capping of a triangular face of a tetrahedron to give a trigonal bipyramid; (b) capping of a
square face of a square antiprism to give a capped square antiprism.

the center of one of its faces F1 followed by adding edges to connect the new vertex
with each vertex of F1. This capping process gives a new polyhedron P2 having
one more vertex than P1. If a triangular face is capped, the following relationships
will be satisfied in which the subscripts 1 and 2 refer to P1 and P2, respectively:

62=61+1; e2=e1+3; f2= f1+2 (13)

Such a capping of a triangular face is found in the capping of a tetrahedron to
form a trigonal bipyramid (Fig. 3(a)). In general, if a face with k edges is capped,
the following relationships will be satisfied:

62=61+1; e2=e1+k ; f2= f1+k−1 (14)

An example of such a capping process converts a square antiprism into a capped
square antiprism (Fig. 3(b)).

Another process of interest in polyhedral topology is the dualization of polyhe-
dra. A given polyhedron P can be converted into its dual P* by locating the
centers of the faces of P* at the vertices of P and the vertices of P* above the
centers of the faces of P. Two vertices in the dual P* are connected by an edge
when the corresponding faces in P share an edge. An example of the process of
dualization is the conversion of trigonal bipyramid into a trigonal prism or an
octahedron into a cube (Fig. 4). The process of dualization has the following
properties:
1. The numbers of vertices and edges in a pair of dual polyhedra P and P* satisfy

the relationships 6*= f, e*=e, f *=6, in which the starred variables refer to the
dual polyhedron P*. Thus in the case of the trigonal bipyramid (P)/trigonal
prism(P*) dual pair (Fig. 4(a)) 6*= f=6, e*=e=9, f *=6=5.

2. Dual polyhedra have the same symmetry elements and thus belong to the same
symmetry point group. For example, above both the trigonal bipyramid and the
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trigonal prism have the D3h symmetry point group (Fig. 4(a)) and both the
octahedron and the cube have the Oh symmetry point group (Fig. 4(b)).

3. Dualization of the dual of the polyhedron leads to the original polyhedron.
4. The degrees of the vertices of a polyhedron correspond to the number of edges

in the corresponding face polygons in its dual.
The problem of the classification and enumeration of polyhedra is a complicated

one. Thus there appear to be no formulas, direct or recursive, for which the number
of combinatorially distinct polyhedra having a given number of vertices, edges,
faces, or any given combination of these elements can be calculated [16,17].
Duijvestijn and Federico have enumerated by computer the polyhedra having up to
22 edges according to the numbers of vertices, edges, and faces and their symmetry
groups and present a summary of their methods, results, and literature references to
previous work [18]. Their work shows that there are 1, 2, 7, 34, 257, 2606, and
32,300 topologically distinct polyhedra having 4, 5, 6, 7, 8, 9, and 10 faces or
vertices, respectively. Tabulations are available for all 301(=1+2+7+34+257)
topologically distinct polyhedra having eight or fewer faces [19] or eight or fewer
vertices [20]. These two tabulations are essentially equivalent by the dualization
relationship discussed above.

3.2. The shapes of coordination polyhedra

The shape of a coordination polyhedron can be defined by its moments of inertia
and the shape of the corresponding momental ellipsoid (Fig. 5, [21]). Thus, consider
a rigidly oriented collection of n particles such as a set of n ligands located at the
vertices of a coordination polyhedron. The moment of inertia of this collection of
particles about any axis passing through its center of mass is defined as

Fig. 4. (a) Dualization of a trigonal bipyramid to give a trigonal prism; (b) dualization of an octahedron
to give a cube.
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Fig. 5. A sphere, prolate ellipsoid, and oblate ellipsoid as examples of momental ellipsoids indicating the
positions of the poles and the equator.

I= %
n

i=1

mir i
2 (15)

in which mi is the mass of particle i and r is the perpendicular distance of particle
i from the axis in question. The locus of points at a distance 
I radially from the
center of mass in the direction of the axis of rotation defines the surface of the
momental ellipsoid, whose three mutually perpendicular axes coincide with the
three principal axes of inertia of the molecule. In idealized coordination polyhedra
with maximum possible symmetry and equal metal–ligand bond distances the
principal axes of the momental ellipsoid correspond to the symmetry axes.

Let a, b, and c be the lengths of the three axes of this ellipsoid ordered so that
a]b]c and let the z axis be a rotation axis of the highest order present. If
a=b=c the momental ellipsoid is a sphere and the moment of inertia is the same
about any axis through the center of mass (Fig. 5). The momental ellipsoids of the
regular polyhedra, namely the tetrahedron, octahedron, cube, icosahedron, and Ih

dodecahedron, are all spheres. Such regular polyhedra can therefore be called
spherical polyhedra. If a\b=c the momental ellipsoid is an elongated or prolate
symmetric top with more density in the polar regions than the equatorial region and
the corresponding polyhedra can be called prolate polyhedra. The atomic orbitals
forming the hybrids for prolate polyhedra have relatively low �m � values, i.e., are
concentrated towards the z axis. Such atomic orbitals can be called prolate orbitals.
On the other hand if a=b\c the momental ellipsoid is a flattened or oblate
symmetric top with more density in the equatorial region rather than the polar
regions and the corresponding polyhedra can be called oblate polyhedra. The atomic
orbitals forming the hybrids for oblate polyhedra have relatively high �m � values,
i.e., are concentrated in the equatorial plane. Such atomic orbitals can be called
oblate orbitals. If all three axes of the momental ellipsoid are unequal (a\b\c),
the momental ellipsoid is an asymmetric top. Coordination polyhedra containing at
least one three-fold rotation axis, proper or improper, have momental ellipsoids
which are symmetrical tops or spheres. However, a polyhedron of sufficiently low
symmetry, even one with a C3 axis such as the C36 capped octahedron, can have
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sufficient degrees of freedom of vertex (ligand) movement without destroying its
symmetry that it can be oblate, prolate, or even accidentally spherical.

3.3. Symmetry forbidden coordination polyhedra

Group-theoretical arguments can be used to exclude certain coordination polyhe-
dra for a given manifold of valence atomic orbitals, at least if the presence of only
two-electron two-center metal–ligand bonds is assumed [5]. The most conspicuous
example is the exclusion of cubic coordination for the spherical sp3d5 manifold
involved in most of transition metal coordination chemistry. Coordination polyhe-
dra excluded by such symmetry considerations are conveniently called symmetry
forbidden coordination polyhedra.

The group-theoretical demonstration that certain polyhedra are symmetry forbid-
den for a given manifold of valence atomic orbitals relates to the properties of these
point groups of relatively high symmetry that can be considered as direct products
of point groups of lower symmetry. This if the relevant groups of lower symmetry
are designated as G with m operations E, g2,…,gm and H with n operations E,
h2,…hn in which the operations of G and H are independent except for the identity,
then the direct product G×H contains mn paired operations of the type EE,
g2E,…,gmE, Eh2, g2h2,…gmh2, Eh3,…,gm−1hn, gmhn where EE is the identity of
G×H and where because of the independence of the operations of G and H, the
order of the paired operations in G×H is immaterial [22]. The direct product
G×H has the following properties:
1. If G has the r conjugacy classes K1=E, K2,…,Kr and H has the s conju-

gacy classes L1=E, L2,…,Ls, then the direct product G×H has the rs con-
jugacy classes K1L1=E, K2L1,…,KrL1, K1L2, K2L2,…, KrL2, K1L3,…,Kr–1Ls,
KrLs. The irreducible representations and their characters has a similar product
structure.

2. The groups G and H are both normal subgroups of their direct product G×H,
where a normal subgroup is a subgroup consisting only of entire conjugacy
classes.

Now consider the direct product structure of the symmetry point groups. In this
connection a number of point groups can be expressed as direct products of the
type R×Cs% where the factor group Cs% is either Cs (E�s) or Ci (E� i ) and R is
a group consisting of only the identity and proper rotations, e.g., C26=C2×Cs ;
C2nh=C2n×Ci=C2n×Cs ; C(2n+1)h=C2n+1×Cs ; D2nh=D2n×Ci=D2n×Cs ;
D(2n+1)h=D2n+1×Cs; D(2n+1)d=D2n+1×Ci : S4n+2=C2n+1×Ci ; Th=T×Ci ;
Oh=O×Ci ; Ih=I×Ci. Because of the direct product structure of these point
groups, the non-identity element in the Ci or Cs factor group, conveniently called
the primary in6olution, is in a class by itself. The character tables of these direct
product point groups are 2r×2r matrices of the following type in which r is the
number of classes in R and X is an r×r matrix corresponding to the character table
of R :
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�X
X−

X
X
�

(16)

In the character table (16) half of the characters for the primary involution are
equal to the corresponding characters of the identity. The corresponding irre-
ducible representations may be called the even or symmetrical irreducible repre-
sentations since if the primary involution is an inversion, these irreducible
representations are usually designated in character tables with a ‘g’ for ‘gerade’.
The remaining half of the characters in (16) for the primary involution are the
negative of the corresponding characters of the identity. The corresponding irre-
ducible representations may be called the odd or antisymmetrical irreducible
representations since if the primary involution is an inversion, these irreducible
representations are normally designated in a character table with a ‘u’ for ‘unger-
ade.’ A conclusion from these observations is that a reducible representation
having a zero character for the primary involution must be the sum of an equal
number of even and odd irreducible representations. More generally, let d+ and
d− be the sums of the dimensions of the even and odd irreducible representations,
respectively, forming the reducible representation having a character x(S¦) for the
primary involution, S %, so that

x(S %)=d+−d− (17)

Let us apply these ideas to the spherical orbital manifolds of interest. For the
nine-orbital sp3d5 manifold involved in most transition metal coordination chem-
istry, the s and d orbitals are even orbitals and the p orbitals are odd orbitals so
that six of the nine orbitals are even and only the remaining three orbitals are
odd. For an 8-vertex polyhedron whose symmetry point group is a direct product
R×Cs%, the character of the primary involution of the reducible representation
corresponding to the vertex permutations under the symmetry point group is
equal to the number of vertices which remain fixed when the primary involution is
applied. If the primary involution is an inversion, as is the case for the full
octahedral group Oh, its character is necessarily zero since no vertices of a
polyhedron remain fixed when an inversion is applied since polyhedra do not have
vertices at their inversion centers. Therefore, the reducible representation of an
8-vertex polyhedron with an inversion center contains equal numbers of even and
odd irreducible representations. This corresponds to a hybridization using four
symmetrical and four antisymmetrical atomic orbitals. Since only three orbitals of
the sp3d5 manifold, namely the three p orbitals, are antisymmetrical, an 8-vertex
polyhedron with an inversion center, such as the cube or hexagonal bipyramid,
cannot be formed using only s, p, and d orbitals. Cubic and hexagonal bipyrami-
dal coordination in discrete ML8 complexes are thus only found in actinide
coordination complexes using a valence orbital manifold containing f orbitals.

Related arguments can be applied to early transition metal hydrides and alkyls
using the six-orbital sd5 manifold where the s orbitals and all five d orbitals are
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gerade orbitals. Since the sd5 manifold has no ungerade orbitals, any coordination
polyhedra with an inversion center, including the regular octahedron, are symme-
try-forbidden in this manifold. This argument can be used to rationalize the
nonoctahedral geometries of d0 early transition metal alkyls such as W(CH3)6 (Ref.
[23]) and Zr(CH3)6

2− (Ref. [24]).

4. Coordination polyhedra for the spherical sp3d5 nine-orbital manifold

4.1. The description of metal coordination by polyhedra

The choice of favored coordination polyhedra or even the assignment of a
coordination polyhedron to a given chemical structure, would appear to be very
complicated in view of the large number of topologically distinct polyhedra with
even as few as seven vertices (Section 3.1). However, the properties of atomic
orbitals coupled with an assumption of maximum symmetry for a given hybrid of
atomic orbitals makes this problem both tractable and interesting. In my original
work published in 1969, I selected coordination polyhedra with obviously high
symmetry for various coordination numbers up to 9 and then used group theory
methods to determine hybrids of atomic orbitals capable of forming the polyhedra
in question [4]. In subsequent work, published 25 years later [7], I have studied the
problem in the opposite manner, namely seeking the maximum symmetry polyhe-
dron for a given hybrid of atomic orbitals. In the study of the spherical sp3d5

atomic orbital manifold important for transition metal coordination chemistry, this
approach takes the following form:
1. Addition of one or two d orbitals to a four-orbital spherical sp3 manifold to give

five- and six-coordinate polyhedra, respectively;
2. Subtraction of one or two d orbitals from a nine-orbital spherical sp3d5

manifold to give eight- and seven-coordinate polyhedra, respectively.
The irreducible representations for the hybrid orbitals forming polyhedra of

interest in transition metal coordination chemistry are listed in Table 4, where G
refers to the symmetry point group; 6, e, and f to the numbers of vertices, edges,
and faces, respectively; and Gs to the irreducible representations and the corre-
sponding atomic orbitals for the corresponding hybridization of the central metal
atom.

4.2. Coordination number four

The only possible true polyhedron for coordination number four using all three
p orbitals of the sp3 manifold is the tetrahedron. Square planar four-coordination
(e.g., in the xy plane) uses only two of the three p orbitals leading to sp2d(x2−y2)
hybridization not involving the pz orbital orthogonal to the xy plane. Square planar
coordination is thus an extreme example of oblate coordination with all ligands in
a single plane.
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4.3. Coordination number fi6e

The two possible polyhedra for coordination number five are the trigonal
bipyramid for which the sp3 manifold is supplemented by the prolate d(z2) orbital
with two opposite major lobes and the square pyramid for which the sp3 manifold
is supplemented by the oblate d(x2−y2) orbital with four coplanar major lobes.
Both of these coordination polyhedra are found in five-coordinate ML5 metal
complexes [25]. The possibility of a continuous transformation of a trigonal
bipyramid sp3d(z2) hybrid to a square pyramid sp3d(x2−y2) hybrid through linear
combinations of z2 and x2−y2 orbitals can relate to the stereochemical non-rigid-
ity of five-coordinate complexes by Berry pseudorotation processes [26–29]. In
addition, the locations of the major lobes in a z2 or an x2−y2 orbital is related to
the geometry of the five-coordinate polyhedron arising when these d orbitals are
added to the sp3 hybrid of a tetrahedron. A tetrahedron has no more than three
coplanar vertices and no pair of ‘opposite’ vertices, i.e., a pair of vertices connected
by a straight line through the center so that the corresponding X–M–X angle is
180°. However, adding a z2 orbital, which has two major lobes opposite each other,
to an sp3 hybrid generates the trigonal bipyramid in which there is a pair of
opposite vertices, namely the two axial vertices. The trigonal bipyramid is a prolate
polyhedron arising from the prolate z2 orbital (m=0) added to the sp3 manifold.
Addition of an x2−y2 orbital with four coplanar major lobes to an sp3 manifold
generates the square pyramid, which has four coplanar vertices, namely the four
basal vertices. The square pyramid is an oblate polyhedron arising from the oblate
x2−y2 orbital added to the sp3 manifold. Formation of a trigonal bipyramid or a
square pyramid by addition of a z2 or x2−y2 orbital, respectively, to an sp3

Table 4
The irreducible representations for the hybrid orbitals corresponding to coordination polyhedra

fe6GPolyhedron Gs

Tetrahedron A1(s)+T2(x,y,z)464Td

2A1(s,z,z2)+B1(x2−y2)+E(x,y,xz,yz)5 8Square pyramid 5C46

2A1% (s,z2)+E%(x,y,x2−y2,xy)+A2¦(z)5 9Trigonal bipyramid 6D3h

A1% (s,z2)+E%(x,y,x2−y2,xy)+A2¦(z)+E%%(xz,yz)59Trigonal prism 6D3h

2A1(s,z,z2)+E1(x,y,xz,yz)+E2(x2−y2,xy)6 10Pentagonal pyramid 6C56

Oh 6Octahedron 12 8 A1g(s)+Eg(z2,x2−y2)+T1u(x,y,z)
3A1(s,z,z2)+2E(x,y,x2−y2,xy,xz,yz)1015Capped octahedron 7C36

D5h 7Pentagonal bipyramid 15 10 2A1% (s,z2)+E1% (x,y)+E2% (x
2−y2,xy)+A2¦(z)

3A1(s,z,z2,x2−y2)+A2(xy)+2B1(x,xz)+B2(y,yz)74-Capped trigonal prism 13C26 8
Oh 8Cube 12 6 A1g(s)+T2g(xy,xz,yz)+A2u(no s,p,d!)+T1u(x,y,z)

3,3-Bicapped trigonal prism D3h 8 15 9 2A1% (s,z2)+E%(x,y,x2−y2,xy)+2A2¦(z)+E%%(xz,yz)
8D4dSquare antiprism A1(s,z2)+B2(z)+E1(x,y)+E2(x2−y2,xy)+E3(xz,yz)1016

2A1(s,z2)+2B2(z,xy)+2E(x,y,xz,yz)12188D2dBisdisphenoid
‘D2d dodecahedron’)

2A1% (s,z2)+2E%(x,y,x2−y2,xy)+A2¦(z)+E%%(xz,yz)1421Tricapped trigonal prism 9D3h

13209C46Capped square antiprism 3A1(s,z,z2)+B1(x2−y2)+B2(xy)+2E(x,y,xz,yz)
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manifold is a consequence of maximizing the overlap of the hybrid orbitals with the
ligand orbitals at the vertices of these polyhedra.

Pentagonal planar coordination is a conceivable alternative to the trigonal
bipyramid and square pyramid for coordination number five and is actually found,
albeit with some distortion, in a few tellurium complexes of sulfur ligands such as
the xanthato complex [Te(S2COEt)3]− with one monodentate and two bidentate
xanthato ligands [30]. Pentagonal planar coordination, like square planar coordina-
tion, can only use the two p orbitals that lie in the plane of the pentagon leading
to sp2d2(x2−y2,xy) hybridization using the two d orbitals that have their major
lobes in the plane of the pentagon. Pentagonal planar coordination is thus another
extreme example of oblate coordination.

4.4. Coordination number six

There are four clearly distinguishable pairs of d orbitals that can be added to an
sp3 hybrid to give a six-coordinate polyhedron, namely the pairs (x2−y2,z2), (xz,
z2), (xy,x2−y2), and (xy,xz). Fig. 6 summarizes these pairs and the six-coordinate
polyhedra that result from them.

The very symmetrical (Oh point group) regular octahedron is overwhelmingly
favored for coordination number 6; it corresponds to the hybrid sp3d2(x2−y2,z2)
formed by adding the (x2−y2,z2) pair of d orbitals to the sp3 hybrid. Note that the
major lobes of the d orbitals involved in the octahedral hybrids are directed
towards the vertices of the octahedron. Furthermore, the prolate z2 orbital (m=0)

Fig. 6. The four distinguishable pairs of d orbitals that can be added to an sp3 manifold to give
six-coordinate polyhedra.
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exactly balances the oblate x2−y2 orbital (m=2) so that the octahedron is a
spherical polyhedron consistent with its high symmetry with multiple C3 and C4

axes. The D3h trigonal prism corresponding to sp3d2(xz,yz) hybridization is found
for tris(ethylenedithiolate) derivatives of early and middle transition metals [31].
The major lobes of the two d orbitals participating in trigonal prismatic hybridiza-
tion are pointed towards the vertices although not as directly as in the case of the
octahedron. A distorted pentagonal pyramid corresponding to sp3d2(xy,x2−y2)
hybridization is found for certain complexes of post-transition elements such as
tellurium(IV) and antimony(III). The pentagonal pyramid is the only six-vertex
polyhedron in which five of the vertices are coplanar; it is therefore not surprising
that it is formed using the only pair of coplanar d orbitals which together have a
total of eight coplanar major lobes. Since both the x2−y2 and xy orbitals are
oblate (m=2 in both cases), the pentagonal pyramid is strongly oblate.

The final distinctive pair of d orbitals that can be added to an sp3 manifold for
a six-coordinate polyhedron is the (z2,xz) pair corresponding to a bicapped
tetrahedron similar to that found in the metal cluster Os6(CO)18 (Ref. [32]). This
polyhedron as depicted is not favorable for a coordination polyhedron since the
two capping vertices are further from the central metal atom than the remaining
four vertices. However, the distortion of a regular H2M(CO)2L2 octahedron to-
wards an M(CO)2L2 tetrahedron in metal carbonyl dihydride derivatives of the type
H2Fe(CO)2L2 (L=CO [33] and PPh(OEt)2 [34]) is related to bicapped tetrahedral
stereochemistry. The momental ellipsoid of the bicapped tetrahedron is asymmetric
(a"b"c) in view of its relatively low symmetry (C26) and absence of a Cn or Sn

axis of three or higher order.

4.5. Coordination number se6en

The seven-coordinate polyhedron of maximum symmetry is the D5h pentagonal
bipyramid with sp3d3(xy,x2−y2,z2) hybridization. This polyhedron is commonly
found in seven-coordinate complexes [35]. Other polyhedra found in seven-coordi-
nate complexes include the capped octahedron with sp3d3(z2,xz,yz) or
sp3d3(z2,xy,x2−y2) hybridization and the 4-capped trigonal prism with
sp3d3(z2,xy,xz) or sp3d3(x2−y2,xy,xz) hybridization. Note that the choice of d
orbitals again affects the resulting coordination polyhedron (Fig. 7).

The orbital complement of the octahedron with sp3d2(z2,x2−y2) hybridization is
a seven-vertex polyhedron with sp3d3(xy,xz,yz) hybridization. However, there are
no seven-vertex polyhedra with more than two symmetry elements which can be
formed by sp3d3(xy,xz,yz) hybrids. Nevertheless, the seven-orbital sp3d3(xy,xz,yz)
hybrid is of significance in being the unique sp3d3 manifold to which the f(xyz)
orbital (see Table 2) is added to form eight hybrid orbitals at the vertices of a cube
(Fig. 8). In this sense, the octahedron is the orbital complement as well as the
polyhedral dual of the cube. Note that the maximum electron density of an
octahedron but the minimum electron density of the cube are located along the x,
y, and z axes.
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4.6. Coordination number eight

The common coordination polyhedra for coordination number eight [36–38] are
the bisdisphenoid or ‘D2d dodecahedron’ corresponding to sp3d4(z2,xy,xz,yz) hy-
bridization and the square antiprism corresponding to sp3d4(x2−y2,xy,xz,yz)
hybridization (Fig. 8(a)). An oblate x2−y2 orbital with four major lobes is
removed from the sp3d5 manifold to form the prolate bisdisphenoid. A prolate z2

orbital with only two major lobes is removed from the sp3d5 manifold to form the
oblate square antiprism. Removal of the prolate z2 orbital from the sp3d5 manifold
to form the oblate square antiprism sp3d4(x2−y2,xy,xz,yz) hybrid corresponds to
removal of electron density from the midpoints of the square faces of the square
antiprism through which the polar C4/S8 axis passes. Conversely removal of the
oblate x2−y2 orbital from the sp3d5 manifold to form the prolate bisdisphenoid
sp3d4(z2,xy,xz,yz) hybrid corresponds to removal of electron density from the
equatorial regions. Note that although the D2d bisdisphenoid has no Cn axis where
n\2, it has an S4 axis leading to a symmetric rather than an asymmetric top for
a momental ellipsoid. As in the case of five-coordinate complexes, the possibility of
a continuous transformation of a bisdisphenoid sp3d4(z2,xy,xz,yz) hybrid into a
square antiprism sp3d4(x2−y2,xy,xz,yz) hybrid through linear combinations of
‘missing’ z2 and x2−y2 orbitals can relate to the stereochemical non-rigidity of
eight-coordinate complexes [39].

Similar ideas can be applied to the so-called ‘forbidden’ eight-coordinate polyhe-
dra which cannot be formed by sp3d4 hybrids but which require sp3d3f hybrids,
namely the cube, hexagonal bipyramid, and 3,3-bicapped trigonal prism (Fig. 9)
[40]. The f orbitals required in the hybridization of these forbidden polyhedra relate
to their shapes. For example, the f(xyz) orbital, with eight major lobes pointed

Fig. 7. The four distinguishable pairs of d orbitals that can be subtracted from an sp3d5 manifold to give
seven-coordinate polyhedra.
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Fig. 8. (a) Eight-coordinate polyhedra which can be formed from sp3d4 hybrids; (b) nine-coordinate
polyhedra that can be formed from sp3d5 hybrids; (c) Two highly symmetrical 12-coordinate polyhedra.

towards the vertices of a cube (Table 2), is used to form the sp3d3f hybrids of a
cube, which is a spherical polyhedron in accord with its high symmetry and the
exclusive use of d and f orbitals with m=1 in its hybridization. An oblate
f(x(x2−3y2) orbital (m=3) with six major lobes pointed towards the vertices of a
regular hexagon is used for hexagonal bipyramidal hybridization, which is strongly
oblate since six of its eight vertices are located in the equatorial plane. A prolate
f(z3) orbital (m=0) with its two major lobes along the z axis towards the two
capping vertices (Table 2) is used to form the sp3d3f hybrids of a 3,3-bicapped
trigonal prism, which is strongly prolate since two of its vertices are located at the
poles and no vertices are located in the equatorial plane.

4.7. Coordination number nine

The deltahedron of maximum symmetry is the D3h tricapped trigonal prism (Fig.
8(b)). Either this nine-vertex polyhedron or the nine-vertex capped square antiprism
(Fig. 8(b)) can be formed using only a nine-orbital sp3d5 manifold and thus are
feasible nine-vertex coordination polyhedra. The small number of nine-coordinate
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complexes including the hydrides [41,42] ReH9
2− and TcH9

2− generally use the
tricapped trigonal prism.

5. Coordination polyhedra for other spherical manifolds of atomic orbitals

5.1. Coordination polyhedra for the four-orbital sp3 manifold

The four-orbital sp3 manifold (Table 3) is necessarily used by atoms below
atomic number 10, since such atoms do not have energetically accessible d orbitals.
In addition, the role of d orbitals in the chemical bonding of the heavier main
group elements (post-transition elements) is questionable [43–45] since the nd
orbitals are of significantly higher energy than the corresponding ns and np
orbitals. For this reason the chemistry of post-transition elements may be rational-
ized using only a four-orbital sp3 bonding manifold without d orbital participation.
Coordination numbers 2, 3, and 4 for an sp3 manifold necessarily exhibit linear,
trigonal planar, and tetrahedral geometries, respectively, in the absence of stereo-
chemically active lone pairs for coordination numbers 2 and 3. In the presence of
stereochemically active lone pairs bent and pyramidal geometries are possible for
coordination numbers 2 and 3, respectively. The only possible coordination geome-
try with an inversion center but without any multicenter bonding for an sp3

manifold is linear two-coordination.
Coordination numbers five and six are possible for a four-orbital sp3 manifold in

so-called hypervalent compounds if three-center four-electron (3c–4e) bonds are
used (Fig. 10, [43–45]). In such hypervalent compounds a single p orbital can form

Fig. 9. Eight-coordinate polyhedra which cannot be formed from sp3d4 hybrids but which require sp3d4f
hybridization indicating the shape of the required f orbital.
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Fig. 10. The three-center four-electron bond.

a 3c–4e bond to two opposite ligands leading directly to two-coordinate linear
complexes, four-coordinate square planar complexes, or six-coordinate octahedral
complexes by involvement of one, two, or three p orbitals, respectively (Fig. 10).
The involvement of d orbitals can be avoided in trigonal bipyramidal main group
element compounds (e.g., PF5) by forming the three equatorial bonds through
sp2(x,y) hybrids and using the p(z) orbital for a 3c–4e bond to the two axial
ligands (Fig. 10). Coordination numbers higher than six are not feasible for a
four-orbital sp3 manifold even if 3c–4e bonds are used.
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5.2. Coordination polyhedra for the six-orbital sd5 manifold

The six-orbital sd5 manifold (Table 3) may be found in simple homoleptic
hydrides and alkyls of the early transition metals when the np orbitals are of
significantly higher energy than the ns and (n−1)d orbitals [46]. The following
bonding concepts have been proposed for such compounds:
1. Only s and d orbitals are used to form hybrid bond orbitals;
2. The hybrid orbitals have maximal s character (or sdn−1 hybridization when

making n bonds);
3. Lone pairs are placed in pure d orbitals;
4. Three-center four-electron bonds similar to those in Fig. 10 are used when the

central metal atom has more than 12 valence electrons.
Table 5 summarizes the possible shapes and corresponding hybridizations for the

six-orbital sd5 manifold up to the maximum coordination number of six. Some of
the shapes of the resulting complexes are depicted in Fig. 11. Of particular interest
is the fact that since the s orbital and all five d orbitals are gerade orbitals, an
inversion center is not possible for coordination polyhedra using an sd5 manifold
with only two-electron two-center bonds. This has the following interesting
consequences:
1. The octahedron and the trigonal prism both have inversion centers and are thus

symmetry forbidden polyhedra for six-coordinate sd5 metal complexes in the
absence of multicenter bonding. This can rationalize the non-octahedral ge-
ometries of d0 early transition metal alkyls such as W(CH3)6 (Ref. [23]) and
Zr(CH3)6

2− (Ref. [24]). The observed geometry for such structures as well as the

Table 5
The irreducible representations for the hybrid orbitals corresponding to configurations for coordina-
tion numbers three to six based on an sd5 six-orbital manifold

6GConfiguration Gs
a

D3hTrigonal Planar 3 A1(s,z2)+E’(x2−y2,xy)
A1(s,z2)+E(x2−y2,xy ;xz,yz)3C3vTrigonal Pyramidal

Td 4Tetrahedral A1(s)+T2(xy,xz,yz)
C3v 4Pyramidal 2A1(s,z2)+ E(x2−y2,xy ;xz,yz)

A1(s,z2)+B1(x2−y2)+E(xz,yz)4Square Pyramid Base C4v

A1g(s,z2)+B1g(x2−y2)+Eu(x,y)D4hSquare Planar 4

Square Pyramid 2A1(s,z2)+B1(x2−y2)+E(xz,yz)5C4v

C5v 5Pentagonal Pyramid Base A1(s,z2)+E1(xz,yz)+E2(x2−y2,xy)
D3h 5 2A1% (s,z2) +E’(x2−y2,xy)+A2¦(z)Trigonal Bipyramid

C5v 6 2A1(s,z2)+E1(xz,yz)+E2(x2−y2,xy)Pentagonal Pyramid
C3vDistorted Trigonal Prism 6 2A1(s,z2)+2E(x2−y2,xy ;xz,yz)
D3h A1(s,z2)+E%(x2−y2,xy)+A2¦(z)+E¦(xz,yz)6Trigonal Prism
OhOctahedron 6 A1(s)+Eg(z2,x2−y2)+T1u(x,y,z)
C2v 6Bicapped Tetrahedron 3A1(s,x2−y2,z2)+B1(xz)+2B2(yz,y)

a Polyhedra listed in bold face require p orbitals in their hybridization. The required p orbitals are
placed in boxes.
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Fig. 11. Possible (i.e., symmetry allowed) shapes of early transition metal complexes using a six-orbital
sd5 manifold.

lowest energy calculated [47] structure for the hypothetical WH6 appears to be
a trigonal prism distorted from D3h to C36 symmetry in order to destroy its
inversion center.

2. The trigonal bipyramid, although it does not have an rigorous inversion center,
is symmetry forbidden for coordination number 5 using an sd5 manifold. This
may be a consequence of the fact that the two axial vertices of the trigonal
bipyramid are related by an inversion center. The square pyramid is a feasible
polyhedron for five-coordinate complexes using an sd5 manifold and has been
found experimentally [48,49] in Ta(CH3)5.

3. The planar square has an inversion center and thus is a forbidden geometry for
four-coordinate complexes using an sd5 manifold and only two-center bonding.
A tetrahedron has no inversion center and thus is a favorable geometry for
four-coordinate complexes using an sd5 manifold.
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5.3. Coordination polyhedra for the 13-orbital sd5f 7 manifold

The 5f orbitals (Table 2) are not only energetically accessible valence orbitals for
actinide chemistry [50,51] but are also of lower energy than the 7p orbitals so that
the covalent bonding in most actinide derivatives [52] can be rationalized in terms
of a thirteen-orbital sd5f7 manifold (Table 3). Table 6 summarizes possible hy-
bridizations for selected polyhedra using a thirteen-orbital sd5f7 manifold with
particular emphasis on polyhedra which cannot be formed using a nine-orbital
sp3d5 manifold. The eight- and 12-vertex polyhedra listed in Table 6 are depicted in
Figs. 8 and 9.

The following observations can be made concerning the information in Table 6:
1. Since the f orbitals are ungerade like the p orbitals all of the coordination

polyhedra that are possible for a nine-orbital sp3d5 manifold (Table 4) are also
possible for a thirteen-orbital sd5f7 manifold. In the hybridization schemes for
such polyhedra the {x3,y3,z3} set of f orbitals (Table 2) plays a role analogous
to the p orbitals. In addition, the cube and hexagonal pyramid (Fig. 9), which
both have inversion centers, are forbidden for the sp3d5 manifold but are
allowed for the sd5f7 manifold thereby rationalizing their occurrence in actinide
chemistry.

2. For the sd5f7 manifold the largest polyhedra with inversion centers that can be
formed have 12 vertices. These include the highly symmetrical icosahedron and
cuboctahedron (Fig. 8(c)).

6. Summary

In this article, I have provide some examples, admittedly biased in favor of my
own work, as to how some of the fundamental ideas on inorganic stereochemistry
presented originally by Sidgwick and Powell in 1940 and developed subsequently by
Gillespie and Nyholm in 1957 have evolved into a broad theoretical base for

Table 6
The irreducible representations for the hybrid orbitals corresponding to selected polyhedra for
coordination numbers four to twelve based on an sd5f7 thirteen-orbital manifold

fe6GPolyhedron Gs

4Tetrahedron 6 4 A1(s)+T2(xy,xz,yz ;x3,y3,z3)Td

8 A1g(s)+Eg(z2,x−y2)+T1u(x3,y3,z3)Octahedron Oh 6 12
Oh 12 6 A1g(s)+T2g(xy,xz,yz)+A2u(xyz)+T1u(x3,y3,z3)Cube 8
D6h 8 18 12 2Ag(s,z2)+E2g(xy,x2−y2)+A2u(z3)+B2u[x(x2−3y2)]Hexagonal

+E1u(xz2,yz2)Bipyramid
12 30 20 Ag(s)+Hg(xy,xz,yz,x2−y2,z2)+T1u(x3,y3,z3)IhIcosahedron

+T2u[x(z2−y2),y(z2−x2),z(x2−y2)]
Oh A1g(s)+Eg(z2,x2−y2)+T2g(xy,xz,yz)+T1u(x3,y3,z3)142412Cuboctahedron

+T2u[x(z2−y2),y(z2−x2),z(x2−y2)]
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essentially all of coordination chemistry during the subsequent four decades. A
variety of mathematical disciplines including group theory, graph theory, and
topology have played a key role in this development. An essential aspect of this
work has been a detailed understanding of the topology, shape, and symmetry of all
of the actual and plausible polyhedra found in coordination chemistry and the
relationship of such properties of the relevant polyhedra to those of the available
atomic orbitals of the central metal atom. The improved understanding of the
structure and bonding in coordination compounds arising from this theory is one of
the more chemically significant results from the emerging discipline of mathematical
inorganic chemistry [53–55].
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