
Chapter 2. Some simple cases 

1. Translational motion (free particles) 

2. Particle in a box 

3. The harmonic oscillator 



2.1 Free particles 

Classically, a particle moving in one dimension without external forces has constant 

momentum. Quantum mechanically we expect to be able to find states of definite momentum. 

If the motion is along the x axis we need to look for solutions of the eigenvalue equation 

 

That is, 

 

The solution to this equation is 

 

Remember that p is an eigenvalue — a constant with (in this case) dimensions of momentum. 
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The Hamiltonian for a free particle contains only the kinetic energy term: 

 

 

The wavefunction ψp is an eigenfunction of this operator too: 

 

 

Its energy is 𝑝2/2𝑚, just as we would expect for a particle with momentum p. 

Notice that a particle with momentum −p — i.e. with wavefunction 

𝜓−𝑝 = exp⁡(−𝑖𝑝𝑥/ℏ)⁡— has the same energy 𝑝2/2𝑚.  
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The time-independent Schrödinger equation is 

 

and the general solution of this is 

 

where 𝑘 = 2𝑚𝐸/ℏ.⁡If 𝐸 = 𝑝2/2𝑚, then 𝑘 = 𝑝/ℏ⁡and we arrive at the result 

 

This superposition or linear combination of two wavefunctions, both with energy 𝒑𝟐/𝟐𝒎, 

is also an eigenfunction of H with energy 𝒑𝟐/𝟐𝒎, for any values of the constants a and b. 

However it is not an eigenfunction of the operator px, unless a = 0 or b = 0, so it doesn’t have a 

definite momentum. We can write the same wavefunction in the form 
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2.2 Particle in a box 

Consider a ‘particle in a box’: suppose that the potential is zero for 0 < x < a and infinite 

outside this range. The Schrödinger equation is 

 

 

Outside the box, where V is infinite, the only solution is ψ = 0. Inside the box, possible 

solutions are exp⁡(𝑖𝑝𝑥/ℏ)⁡and exp⁡(−𝑖𝑝𝑥/ℏ)⁡both with energy 𝐸 = 𝑝2/2𝑚. 

However the wavefunction has to be continuous, so it must be zero at both ends of the box. 

We can achieve this by using the wavefunction 𝐴𝑠𝑖𝑛(𝑝𝑥/ℏ) + 𝐵𝑐𝑜𝑠(𝑝𝑥/ℏ). 

If the wavefunction is to be zero when x = 0, then B = 0. If it is to be zero when x = a, then 
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II: V=0 
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Boundary condition and continuous condition: (0)=0,  (a)=0 

Hence, (0) =Acos0 + Bsin0 

A=0, B≠0    =Bsinx  

 (a) =Bsin  x =Bsin a=0,     Thus, a=n,  =n/a 
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2. The properties of the solutions 

1. The particle can exist in many states 

2. quantization energy 

3. The minimum energy (h2/8ma2) 
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Boundary conditions and quantization 

So the allowed wavefunctions for the particle in a box are 

 

 

for integer n > 0, and the corresponding energies are 

 

 

We see that the imposition of boundary conditions leads 

to quantization: only certain values of the energy are 

possible. 
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Wavefunctions for a particle in a box  

Conventionally wavefunctions are displayed, as here, on a 

diagram showing the potential energy function, with the 

zero for each wavefunction at the level of its energy. 

1. Note that the lowest-energy wavefunction has no 

 nodes (points where the wavefunction is zero) except at the 

ends of the box where the zero is required by the boundary 

condition. The next wave function has 1 node, the next has 2, 

and so on, each wavefunction having one more node than 

the previous one. 

2. even function (ground state) 

    odd function (the first excited state) 

    even (the second) 

    odd (the third) 

    … 



3. A general property (proved later) of the set of eigenfunctions of an operator like the 

Hamiltonian is that they are orthogonal; that is, 

 

In the present case, the orthogonality is easily demonstrated: 

 

It is now easy to show that the result is zero unless m = n. 

If the wavefunctions are normalised, so that  𝜓𝑚
∗𝜓𝑚d𝑥 = 1⁡for all m, then 

                                                                            (Kronecker delta) 

and the set is said to be orthonormal. 
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Expansion in eigenfunctions 

4. Another important property is that any function of the same variables with the same 

boundary conditions can be expressed as a linear combination of the 𝝍𝒏⁡: 

 

To find the coefficients we just multiply the above equation by 𝜓𝑚
∗
 and integrate: 

 

 

 

since all other terms in the sum on the right vanish because of the orthogonality. 

If the 𝜓𝑚 are normalized this just reduces 
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Quantum-classical correspondence principle 

Somewhere along the continuum from quantum to classical, the two descriptions must merge. 

Starting from the quantum end and noting that energies depend upon some quantum number, 

one would anticipate that for high enough quantum numbers, the quantum treatment should 

merge with the classical.  

BTW, Planck’s constant h goes to zero… 



More on measurement 

The wavefunction 𝜓𝑛 for the particle in a box can be expressed in terms of the eigenfunctions 

of  𝑝 𝑥: 

 

 

where 𝜓𝑝 = 1/𝑎exp(𝑖𝑝𝑥/ℏ)⁡is the normalised wavefunction with momentum 

𝑝 = 𝑛𝜋ℏ/𝑎 = 𝑛ℎ/2𝑎.  

Now a measurement of the energy will definitely give the value 𝐸𝑛 = 𝑛2ℎ2/8𝑚𝑎2 = 𝑝2/2𝑚. 

A measurement of  𝑝 𝑥 must give a result consistent with this, i.e., ±p. Moreover 

 

so values of +p and −p must be equally probable; and since one or the other must occur, the 

probability of each is 1/2. 
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Prediction of measurements 

Any normalized wavefunction 𝜓 of the same variables and satisfying the same boundary 

conditions can be expressed in terms of normalized eigenfunctions 𝜓𝑘 of 𝑄 , so that 

 

Here 𝑄 𝜓𝑘= 𝑞𝑘𝜓𝑘, and the 𝑐𝑘 are numerical coefficients, possibly complex. Then for a state 

with this wavefunction, 

• If a measurement of Q yields the result q, then immediately after the measurement the 

system is in a state for which Q definitely has the value q. Consequently a measurement of 

Q will definitely yield one of the eigenvalues 𝑞𝑘. 

• We cannot predict in advance which value will occur, but the probability of 

observing 𝑞𝑘 ⁡is 𝑐𝑘
2. 
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Example: Stern–Gerlach experiment 

If a sodium atom travelling in a vacuum passes through a suitable inhomogeneous magnetic 

field, it is deflected in one direction (say up) if the unpaired electron has spin up, and in the 

other direction (down) if it has spin down. This setup is then a device for measuring the spin 

direction. In a beam of sodium atoms, the spins are oriented randomly, but the measurement 

forces them into one or other spin state. A measurement on either deflected beam shows that 

the spin-up beam is again deflected up, while the spin-down beam is again deflected down. 



The general steps in the quantum mechanical treatment: 

a. Obtain the potential energy functions followed by deriving the Hamiltonian operator 

and Schrödinger equation. 

b. Solve the Schrödinger equation. (obtain n and En) 

c. Study the characteristics of the distributions of n. 

d. Deduce the values of the various physical quantities of each corresponding state. 



Example 1: The adsorption spectrum of cyanines 

R2N-(CH=CH-)mCH=NR2 

+ .. 
The general formula of the cyanine dye: 

Total  electrons: 2m+4 

In the ground state, these electrons occupy m+2 molecular orbitals 

E 

n=1 
n=2 

n=m+2 
n=m+3 

The adsorption spectrum correspond to excitation of electrons from the 

highest occupied (m+2) orbital to the lowest unoccupied (m+3) orbital. 
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Table 1. The absorption spectrum of the cyanine dye 



Example 2: The delocalization effect of 1,3-butadiene 

Four  electron form two 

 localized bonds 

Four  electron form a 4
4 

delocalized bonds 

＞ E=2×2 ×h2/8ml2=4E1 
E=2×h2/8m(3l )2+                 

2×22 × h2/8m(3l )2 =(10/9)E1   
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2.3 Quantum leaks --- tunneling 
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Quantum tunneling is an effect where a particle can pass through a barrier it would not 

normally have the energy to overcome. 



CLASSICAL MECHANICS 

QUANTUM MECHANICS 



Tunneling in the “real world” 

• Tunneling is used: 

- for the operation of many microelectronic devices (tunneling diodes, flash memory, …) 

- for advanced analytical techniques (scanning tunneling microscope, STM) 

• Responsible for radioactivity (e.g. alpha particles) 

proton transfer a double-well potential 



2.4 Particle in a 3-D box of dimensions a, b, c 

  Out of the box,  V(x, y, z) = ∞;   In the box, V(x, y, z) =0 
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Let   = (x, y, z)= X (x) Y (y) Z (z) (separation of variables) Substituting into 3-D 

Schroedinger equation  
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Multiply degenerate energy level when the box is cubic  (a = b = c) 
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The wave-functions are called degenerate 
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2.5 The Harmonic Oscillator  

The Hamiltonian is 

 

The ground state wavefunction 

• should have no nodes, and 

• should go to zero as x → ±∞. 

The wavefunction in ground state is 
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Harmonic Oscillator can model many different systems around their equilibrium point 



Nuclear Motion in Diatomic Molecules 
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The accurate solution of the electronic Schrödinger equation is hard. 

expand U(R) in a Taylor series about Re  
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The second term is zero and the fourth term can be neglected. (Why?) 

Defining the equilibrium force constant: 
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Phonon 

A unit of vibrational energy that arises from oscillating atoms within a crystal. Any solid 

crystal, consists of atoms bound into a specific repeating three-dimensional spatial 

pattern called a lattice.  



https://chem.xmu.edu.cn/info/1188/1301.htm 

赵仪 



Zero-point energy and uncertainty 

We have evaluated ∆𝑥⁡for the harmonic oscillator ground state 𝜓0 : it is ℏ2/4𝑘𝑚 1/4.  

To evaluate ∆𝑝𝑥we proceed as follows. We know that 𝑥2 =
1

2
ℏ/ 𝑘𝑚, so the mean potential 

energy is 𝑉 =
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2
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Therefore ∆𝑝𝑥 ⁡= ℏ2𝑘𝑚/4 1/4, and ∆𝑥∆𝑝𝑥 = 
1

2
ℏ. 

The ground state energy of the harmonic oscillator is as low as it can be without violating the 

uncertainty principle. 

where ω is the angular frequency 𝑘/𝑚 



Other Harmonic Oscillator Wavefunctions 

To find solutions, one procedure is to try 𝜓 = 𝐻(𝑞)exp⁡(−𝑞2/2). 

Substituting into 𝐻𝜓 = 𝐸𝜓⁡yields a differential equation for H(q); it is a standard differential 

equation called Hermite’s equation. Imposing the boundary condition that the wavefunction 

goes to zero as 𝑞 → ±∞⁡leads to the conclusion that H(q) must be one of the Hermite 

polynomials Hv(q), and the corresponding eigenvalue is (𝑣 +
1

2
)ℏ𝜔. 

The first few Hermite polynomials are 

 

 

and generally 
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Compare the harmonic oscillator wavefunctions with those for the particle in a box. Note that 

• The nodal structure is the same. 

• The energies are now equally spaced. 

• The wavefunction (and so the probability density) continues past the point where V = Ev, 

and thus enters the classically forbidden region, where T<0. 

This is the mysterious phenomenon known as quantum tunnelling. 



High vibrational levels 

Features of high vibrational levels: 

• The probability distribution |𝜓0|2⁡approaches the classical distribution for large v, 

except for the quantum oscillations, and has a large peak near the classical turning-point. 

• The probability of tunnelling outside the classical turning-point becomes smaller as v 

increases.  



The Morse Oscillator 

For a real diatomic molecule, the energy does not become infinite as the bond-length is 

increased indefinitely, but instead reaches an asymptotic value, the dissociation energy De. A 

better approximation to this behaviour is provided by the Morse potential: 

 

where r is the bond-length of the diatomic and re its value at the equilibrium geometry. 
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A Morse potential (solid 

curve) compared with the 
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We can expand the Morse potential as a power series in 𝑡 = 𝛽(𝑟⁡ − 𝑟𝑒): 

 

 

 

so the force constant is 𝑘 = 2𝛽2𝐷𝑒. 

The Schrödinger equation for the Morse potential can be solved exactly, but the 

wavefunctions are much more complicated than for the harmonic oscillator. The energy 

levels, however, take a relatively simple form: 

 

where ω = 𝑘/𝑚⁡as usual and 𝑥𝑒 = ℏ𝛽2/2𝑚𝜔 = ℏ𝜔/4𝐷𝑒⁡is the anharmonicity constant. 
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Real molecules follow this formula quite closely for small v 
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