Chapter 2. Some simple cases

1. Translational motion (free particles)
2. Particle in a box
3. The harmonic oscillator



2.1 Free particles

Classically, a particle moving in one dimension without external forces has constant
momentum. Quantum mechanically we expect to be able to find states of definite momentum.
If the motion is along the x axis we need to look for solutions of the eigenvalue equation
P (X)= py (X)
That Is, d
—1h—y = py
dx
The solution to this equation is
v, =exp(ipx/7)
Remember that p Is an eigenvalue — a constant with (in this case) dimensions of momentum.



The Hamiltonian for a free particle contains only the kinetic energy term:
. pZ hZ d2

The wavefunction v, Is an eigenfunction of this operator too:
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Its energy is p#/2m, just as we would expect for a particle with momentum p.
Notice that a particle with momentum —p — i.e. with wavefunction

Y_, = exp(—ipx/h) — has the same energy p*/2m.



The time-independent Schr&linger equation is
ne doy _

Ey
and the general solution of this is
W _ aeikx i be—ikx

where k = vV2mE /h. If E = p?/2m, then k = p/h and we arrive at the result

y=ay,+by
This superposition or linear combination of two wavefunctions, both with energy p?/2m,
is also an eigenfunction of H with energy p?/2m, for any values of the constants a and b.

However it is not an eigenfunction of the operator p,, unlessa =0 or b = 0, so it doesn’t have a
definite momentum. We can write the same wavefunction in the form

w = Asin( px/7)+ Bcos( px/h)



2.2 Particle in a box

Consider a ‘particle in a box’: suppose that the potential is zero for 0 < x < a and infinite
outside this range. The Schrdalinger equation Is
ne d’

Ht//:('f +\7)W=£— o B +le//: Ey

Outside the box, where V Is infinite, the only solution is y = 0. Inside the box, possible
solutions are exp(ipx/h) and exp(—ipx/h) both with energy E = p*/2m.

However the wavefunction has to be continuous, so it must be zero at both ends of the box.
We can achieve this by using the wavefunction Asin(px/h) + Bcos(px/h).

If the wavefunction is to be zero when x = 0, then B = 0. If it is to be zero when x = a, then
pa _
h
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Boundary condition and continuous condition: y(0)=0, w(a)=0
Hence, y(0) =Acos0 + Bsin0

A=0, B0 wy=Bsinpx

v (a) =Bsin B x =Bsin Ba=0, Thus, Ba=nr, 3 =nn/a

87°mE 2 n‘rz*
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2. The properties of the solutions
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1. The particle can exist in many states
2. quantization energy

3. The minimum energy (h%/8ma?)
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Boundary conditions and quantization

(2 /—\
So the allowed wavefunctions for the particle in abox are ~ '° N
\/E . Nz E/ 2
v = ,|—SIn—X h
d d 8ma?
for integer n > 0, and the corresponding energies are Z
2 212 : ~—
P n°h
En j— j— 2
2m 8ma "
We see that the imposition of boundary conditions leads 4 .
to quantization: only certain values of the energy are o
possible. 1
0 =]

Wavefunctions for a particle in a box



Conventionally wavefunctions are displayed, as here, on a

diagram showing the potential energy function, with the "

zero for each wavefunction at the level of its energy. 16 \//—\

1. Note that the lowest-energy wavefunction has no £/

nodes (points where the wavefunction Is zero) except at the émaz

ends of the box where the zero Is required by the boundary ¥s

condition. The next wave function has 1 node, the next has 2,  ° ~~—"

and so on, each wavefunction having one more node than

the previous one. . V2

2. even function (ground state) "
odd function (the first excited state) e ——
even (the second) 0 ¥

odd (the thi rd) Wavefunctions for a particle in a box



Sets of eigenfunctions

3. A general property (proved later) of the set of eigenfunctions of an operator like the
Hamiltonian is that they are orthogonal; that is,

[vovdx=0  ifm=n

In the present case, the orthogonality is easily demonstrated:
. MzX . NzX m-—n)zx m-+n)zx
_[ sin ism de_ joa cos( ) —cos( ) jdx

a a a
It IS now easy to show that the result is zero unless m = n.

If the wavefunctions are normalised, so that [ ,,, y,,dx = 1 for all m, then
_fy/m*wndx =0, (Kronecker delta)

and the set i1s said to be orthonormal.



Expansion in eigenfunctions

4. Another important property is that any function of the same variables with the same
boundary conditions can be expressed as a linear combination of the ¥, :

= CV,
To find the coefficients we just multiply the above equation by v,,,” and integrate:

[ wnwdx=3c,[ v, w0

=G [ W v, 0K

since all other terms in the sum on the right vanish because of the orthogonality.
If the v,,, are normalized this just reduces

Co = | W wix



Quantume-classical correspondence principle

Somewhere along the continuum from quantum to classical, the two descriptions must merge.
Starting from the quantum end and noting that energies depend upon some quantum number,
one would anticipate that for high enough quantum numbers, the quantum treatment should
merge with the classical.

n’h? (n —1)2 h?

AE=E —E =21 _
" " 8ma? 8ma’
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= > 0
E n

n

BTW, Planck’s constant h goes to zero...



More on measurement

The wavefunction v,, for the particle in a box can be expressed in terms of the eigenfunctions

of p,:
1

v _\/gsinnﬂx_ 1 eXpﬂiﬂX_ 1 eXp—niﬂX_ 1 v
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where 1y, = \/1/aexp(ipx/h) is the normalised wavefunction with momentum

p = nnh/a = nh/2a.
Now a measurement of the energy will definitely give the value E,, = n*h?/8ma* = p*/2m.

A measurement of p,. must give a result consistent with this, i.e., +p. Moreover

2ca . Nax, ... d . nzX
<pX>:g osmT(_lh)&Sdesz

so values of +p and —p must be equally probable; and since one or the other must occur, the
probability of each is 1/2.



Prediction of measurements

Any normalized wavefunction i of the same variables and satisfying the same boundary
conditions can be expressed in terms of normalized eigenfunctions i, of Q, so that

V= Zk:Cka
Here QY= g, and the ¢, are numerical coefficients, possibly complex. Then for a state
with this wavefunction,
* If a measurement of Q yields the result g, then immediately after the measurement the
system is in a state for which Q definitely has the value g. Consequently a measurement of
Q will definitely yield one of the eigenvalues gy.

* We cannot predict in advance which value will occur, but the probability of
observing gy is |c;|?.



Example: Stern—-Gerlach experiment

+ 1
NSt =] //
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If a sodium atom travelling in a vacuum passes through a suitable inhomogeneous magnetic
field, it is deflected in one direction (say up) if the unpaired electron has spin up, and in the
other direction (down) if it has spin down. This setup Is then a device for measuring the spin
direction. In a beam of sodium atoms, the spins are oriented randomly, but the measurement
forces them into one or other spin state. A measurement on either deflected beam shows that
the spin-up beam is again deflected up, while the spin-down beam is again deflected down.



The general steps in the quantum mechanical treatment:

Obtain the potential energy functions followed by deriving the Hamiltonian operator
and Schralinger equation.

. Solve the Schrdlinger equation. (obtain vy, and E,)
Study the characteristics of the distributions of v,

Deduce the values of the various physical quantities of each corresponding state.



Example 1: The adsorption spectrum of cyanines

. . 4 )
The general formula of the cyanine dye: R,N-(CH=CH-),,CH=NR, y E
Total = electrons: 2m+4 — n=m+3
In the ground state, these electrons occupy m+2 molecular orbitals o n=m+2
The adsorption spectrum correspond to excitation of electrons from the _
highest occupied (m+2) orbital to the lowest unoccupied (m+3) orbital. _ po
h? 2 2 h? — n=l
AE = m+3) —(M+2)°]= 2Mm+5
am.a’ [(Mm+3)" —(Mm+2)7] am.a’ ( ) % y
v AE _ h : (2M+5) Table 1. The absorption spectrum of the cyanine dye
h 8mea m Amax (calc) /nm Amax (expt) /nm
1 311.6 309.0

~ 8maa’c  3.30a°

= = m
h(Zm+5) 2m+5 (Pm) 2 412.8 409.0
3 514.6 511.0




Example 2: The delocalization effect of 1,3-butadiene

Four t electron form two

nt localized bonds

E=2X2 X h2/8ml2=4E,

E4/9

E1/9

Four & electron form a w,*
delocalized bonds

E=2 X h2/8m(31)2+
2 X 22 X h2/8m(31)2=(10/9)E,

1

1




2.3 Quantum leaks --- tunneling

Quantum tunneling is an effect where a particle can pass through a barrier it would not

normally have the energy to overcome.

— +Vy =E O<x<l
87°m 0°X v v ( )
h® o’y
— =E X<0,x>I
sem x| )

The probability of penertration is given by

P~4(E/V)[1-(E/V)]e "

2 [2m(V=E)l

When E<V
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Tunneling in the “real world”

 Tunneling Is used:

- for the operation of many microelectronic devices (tunneling diodes, flash memory, ..
- for advanced analytical techniques (scanning tunneling microscope, STM)

 Responsible for radioactivity (e.g. alpha particles)

a double-well potential

proton transfer

)



2.4 Particle in a 3-D box of dimensions a, b, ¢

Out of the box, V(X,V, z) =«; Inthe box, V(X, Y, z) =0

h? 82 @2 82 O<x<a
E

87zm(82X 82y a2 )W "4 O<y<b

O<z<z

Let v = y(X, ¥, 2)= X (X) Y (y) Z (z) (separation of variables) Substituting into 3-D
Schroedinger equation 2 2 2 2
h 0 0 8
- 87°m (82x 82y 0’1
2 2 2 2
= h2 (82 +82 +62)XYZ:EXYZ

8zr‘m 0°X 07y

ok (YZc’92X XZ0Y  XY0'Z
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v = Ey

) = EXYZ
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Multiply degenerate energy level when the box is cubic (a=Db =c¢)

h2 n2 n> np? h?
E=-E +E +E. = R ATt ) W n°+n2+n’

N[>X N

The ground state: n,=n,=n,=1 c_ 3h’
8ma”

The first excited state: n;=n,=1, n,=2 6h2

The wave-functions are called degenerate E = 8ma’

(triply degenerate)

N R R
N
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2.5 The Harmonic Oscillator

The Hamiltonian is 5

The ground state wavefunction
 should have no nodes, and
e should go to zero as X — 0.
The wavefunction in ground state Is

JKkm 1/4
w,=N exp — X2 and N = [W

1
Ev=<v+§>hw

Harmonic Oscillator can model many different systems around their equilibrium point



Nuclear Motion in Diatomic Molecules

h’ Ve _ h’

2m_ 2m,

The accurate solution of the electronic Schr&linger equation is hard.
expand U(R) in a Taylor series about R,

Vi, +U(R) |y = Ey,

U(R) =U(Re)+U'(Re)(R—Re)+%U"(Re)(R—Re)2+%U'“(Re)(R_Re)3+...

The second term is zero and the fourth term can be neglected. (Why?)
Defining the equilibrium force constant:

k., =U (Re)

U(R):U(Re)+%ke(R—Re)Z



Phonon

A unit of vibrational energy that arises from oscillating atoms within a crystal. Any solid
crystal, consists of atoms bound into a specific repeating three-dimensional spatial
pattern called a lattice.



Non-Condon effect on charge transport in dithiophene-tetrathiafulvalene

crystal

RAY

THE JOURNAL OF CHEMICAL PHYSICS 133, 024501 (2010)

WeiWei Zhang,' WanZhen Liang,"®* and Yi Zhao*®"®

Department of Chemical Physics, University of Science and Technology of China,

Hefei 230026, People’s Republic of China

Deparrment of Chemistry and State Key Laboratory for Physical Chemistry of Solid Surfaces,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005,
People’s Republic of China

are required. In this case, the total reorganization energy is

. 7 F
given by a sum over all modes as 0

A= 2)\ 22wAQ (2)

where AQ; represents the coordinate shift along the ith nor-
mal mode between the optimized geometries of the donor
(DA*) and acceptor (D*A) electronic states, and w; is the
corresponding frequency. Generally speaking, w; in the do-
nor and acceptor states are different for a given mode. The
reduced frequencies are commonly adopted in the calculation
of the reorganization energy from Eq. (2).”

https://chem.xmu.edu.cn/info/1188/1301.htm

THE JOURNAL OF CHEMICAL PHYSICS 135, 134110 (2011)

Charge carrier dynamics in phonon-induced fluctuation systems
from time-dependent wavepacket diffusion approach

Xinxin Zhong and Yi Zhao?

State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Lab of Theoretical and
Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering,
Xiamen University, Xiamen, 361005, People’s Republic of China

H = H,+ Hpj, + Ho_ph. (4)

Here, the molecular vibrational motions are explicitly in-
volved. H, represents the carrier Hamiltonian of the sites, and
it is given by constant part €;; in Eq. (1). The phonon Hamilto-
nian H,, is written as a collection of the harmonic oscillators
in mass weighted coordinates as follows:

y
g ZZ(Q‘L w,‘x,k)zzm,,,. (5)

i=1 k= =1

where N* o is the number of phonon modes in the ith site, x;;
and p;; are the position and momentum of the kth phonon
mode with a frequency of w;;. The electron-phonon interac-



Zero-point energy and uncertainty

We have evaluated Ax for the harmonic oscillator ground state v, : it is [A%/4km]/*.

To evaluate Ap, we proceed as follows. We know that (x?) = z n /v km, so the mean potential
2

energy is (V) = <% kx2> _1 A /k/‘m — ihw_ where w 1s the angular frequency / k/m

4
Consequently (T) = E; — (V) = ih,/k/m also.
ButT = p,%/2m, so (p,?) = 2m(T) = %h/\/km. Also (p,.) = 0.

Therefore Ap, = (h%km/4)Y/*, and AxAp, = %h.

The ground state energy of the harmonic oscillator is as low as it can be without violating the
uncertainty principle.



Other Harmonic Oscillator Wavefunctions

To find solutions, one procedure is to try ¥ = H(q)exp(—q?/2).

Substituting into HyY = E yields a differential equation for H(q); it is a standard differential
equation called Hermite’s equation. Imposing the boundary condition that the wavefunction
goes to zero as g — +oo leads to the conclusion that H(g) must be one of the Hermite

polynomials H,(q), and the corresponding eigenvalue is (v + %)hw. E, = (v + %) hw

The first few Hermite polynomials are

H,(q)=1
(d)=29
H,(q)=49°-2

and generall V
g y H,(0)=(-1) exp(a°) < exp(-a°)

I
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Compare the harmonic oscillator wavefunctions with those for the particle in a box. Note that
» The nodal structure is the same.

 The energies are now equally spaced.

 The wavefunction (and so the probability density) continues past the point where V = E,,
and thus enters the classically forbidden region, where T<0.

This is the mysterious phenomenon known as quantum tunnelling.



High vibrational levels

|P12]? F1o = 2hw

Kq—xﬁs

—6 e —2 0 2 B §)

Features of high vibrational levels:

« The probability distribution |, |? approaches the classical distribution for large v,
except for the quantum oscillations, and has a large peak near the classical turning-point.
» The probability of tunnelling outside the classical turning-point becomes smaller as v
Increases.



The Morse Oscillator

For a real diatomic molecule, the energy does not become infinite as the bond-length is
Increased indefinitely, but instead reaches an asymptotic value, the dissociation energy D.. A
better approximation to this behaviour is provided by the Morse potential:

VM (r) = De[l_exp(_ﬂ(r B re))]2

where r is the bond-length of the diatomic and r, its value at the equilibrium geometry.

A Morse potential (solid
curve) compared with the
harmonic oscillator potential
(dashed curve)




We can expand the Morse potential as a power seriesint = f(r —re):

\'N (r) =D, [1-exp(-t)]’ = De[l—(l—t-F%tZ —)

- De[t—%tz + P =D,t° —t*+-]

=D,[p°(r —r)" =B (r —1.)" +--]
so the force constant is k = 232D,
The Schrdalinger equation for the Morse potential can be solved exactly, but the
wavefunctions are much more complicated than for the harmonic oscillator. The energy

levels, however, take a relatively simple form:

2
E, :(v+£jha)—(v+lj hawX,
2 2

where w = \/k/mas usual and x, = h8?/2mw = hw/4De is the anharmonicity constant.

Real molecules follow this formula quite closely for small v



Esz = %hm— i—ghwxe
Eo = g-hw— %Ehmxe
E1= %—hw— %hwxe

Eg = %hm— %hwxe
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