3.1 Operators in quantum mechanics

An operator is a rule that transforms a given function into another function. E.g. d/dx,
sin, log

Eigenfunctions and Eigenvalues Af(x) = kf(x)

Suppose that the effect of operating on some function f(x) with the operator A is simply to multiply f(x) by a
certain constant k. We then say that f(x) is an eigenfunction of A with eigenvalue k.

Eigen is a German word meaning characteristic.

Operators obey the associative law of multiplication:
A(BC) = (AB)C

A linear operator means

Ay, +v,) = Ay, + Ay,

Acy = cAy
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(A + B)f(X) = Af(X) + Bf(X) A

(A —B)f(x) = Af(x) — Bf(X)
ABf(x) = A[Bf(X)]




3.2 Hermiticity

Every operator Q has a Hermitian conjugate, conventionally denoted Q ' which has the
property that for any 1, and y, satisfying the boundary conditions for the problem,

[1 Gy dr=[(Qv,) ,dr
An operator that is equal to its Hermitian conjugate is said to be Hermitian.
Operators corresponding to physical observables must be Hermitian
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and d/dx is not a Hermitian operator. However id/dx is Hermitian
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Dirac notation

We sometimes use a notation due originally to Dirac. The idea is to reduce notational clutter
and give more prominence to the labels identifying the wavefunctions.

In this notation |n) is used for the wavefunction ¢, . |n) is called a ket.

(n] is a bra. The bra notation implies the complex conjugate "

A complete bracket expression, like (n|n) or (n Q|n), implies integration over all space.

Thus the notation (n|n) means the integral [ ,* ¥, dz, and (m|Q|n) means [ y,* Qy, dt.
Using this notation, the expectation value integral can be written more compactly as
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Hermiticity

Properties of Hermitian operators:
 Their eigenvalues are always real.
 Eigenfunctions corresponding to different eigenvalues are orthogonal.
In the proof of these properties we use Dirac’s angle-bracket notation. First note that if Q

IS Hermitian, then o .
(m|Q[n)" =([w, Qy,dr)

*

= :(me)*t//ndf)
= [v. Qu,dz
=(n|Q[m)

Note also that (m|n)* = ([ ,,* ¥, dt)* = [, P, dt = (n|m).




Hermiticity and orthogonality

Now consider two eigenfunctions |m) and |n) . We have
Q|m) =q, [m) S[n) =g, |n)
(n]@Im) =gy (nfm) Ao iy
(m|Q[n)=g,"(m[n)
where the last line on the left comes from taking the complex conjugate.
Subtracting, we find

QO>

0=(g,-d, )(m[n)
and from this we can deduce
(@) If m =n, then (m|n) = (m|m) # 0,s0q,, = q,, " and q,, Is real.
(b) If g, # q,, then since both are real, g, — gm "# 0 and (m|n) = 0.

Hermitian operator ensures that the eigenvalue of the operator is a real number




The eigenvalue of a Hermitian operator is a real number

Proof: .
Ay = ay

Iw*Awdr :IW(AW)*dT

afly fdr=a[ly [ dr
ly =0

Quantum mechanical operators have to have real eigenvalues



The eigenfunctions of Hermitian operators are orthogonal

Proof: j v, *w dx = &,
Consider these two eigen equations
Ay, =a,
Ay, = 8,0,

Multiply the left of eq 1 by y_* and integrate, then take the complex conjugate of eq 2,
multiply by y, and integrate Iw;Al//ndX _ anjw;%dx

[ Ayrdx = a, [ypmdx
Subtracting these two equations gives -
[vnAy,dx = [y, A*y dx = (a, -a;,) [waw,dx=0

If n =m, the integral = 1, by normalization, so a, = a,*
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If n=m, and the system iIs nondegenerate (i.e. different eigenfunctions do not have the
same eigenvalues, a, # a., ), then

(@, -a,) W, *w,dx =0 =P [y, *ydx =0

o /
/Eignefunctions of B that belong to a degenerate eigenvalue can always be chosen to be )
orthogonal. BF =sF, BG=sG

g,=F, 9,=G+cF

we want [ g g,dr =0

F*(G+cF)dr=[F'Gdr+c[F"Fdr=0
[F(G+cF)dr= J
_—jF*GdT

C Schmidt Orthogonalization

L ~ [FFde y

The eigenfunctions of Hermitian operators are orthogonal j v, *ydx=0;
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L Is triangular matrix: Schmidt
Orthogonalization

L =L": Léwdin Orthogonalization



3.3 Expansion in terms of eigenfunctions

Expansion of a funcition Using Particle-in-a-Box W.F.
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du,, ¥2 ......,0i......1s said to be a complete set if any well-behaved function f that
obeys the same boundary conditions as g; can be expanded as linear combination

of the g;.



We now postulate that the set of eigenfunctions of any Hermitonian Operator that
represent a physical quantity forms a complete set.
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Postulate: If y,, v,,... y, are the possible states of a microscopic system,
then the linear combination of these states is also a possible state of the
system.

W = Oy + G, + O O, = DG




3.4 Commutation

When two or more operators are applied to a wavefunction, the order matters.P Q1 is defined
to mean P(Qv), and it may be different from QPy = Q (Py).

Example: For any w(x),

but pkaz—ihdi(xw)z—ih W+xdd—‘/’j
X X
Subtracting the second of these from the first:
(Xp, — P X))y =ihy  oommm) XD, — P X=17
This is true for any wavefunction ), so we can extract the operator identity
We say that X and p, do not commute.

The expressionxp, — p,Xis called the commutator of X and p.., and there is a special notation
forit: [X,p,].



Commutation and eigenfunctions

The uncertainties in two observables P and Q satisfy
11/F ~ -
APaQ= 5 ([P.Q])

This Is Heisenberg s uncertainty principle in a more general form than before.

Since |X,p, ] = ih, we see that AxApx > %h,

If PQ = QP, P and Q are said to commute. A constant commutes with any operator: |k, P| = 0.

If P and Q commute, i.e., [P, Q| = 0, it is possible for both AP and AQ to be zero — that is,
we can find wavefunctions that are eigenfunctions of both.
In fact, in this case, a non-degenerate eigenfunction of P must also be an eigenfunction of Q

Commutation can tell us when will it be possible for ¥ to be simultaneously an eigenfunction
of two different operators.



Proof : Suppose that Py = py
and that there is no other wavefunction with this eigenvalue for P (except for numerical
multiples of v, which are essentially the same).
Now consider Qw. P and Q commute, so
P(Qy ) = QPy = Qpy = p(Qv)
So (Qy) is an eigenfunction of P with eigenvalue p.
But y, or a multiple of it, is the only such function. Therefore Qy = gy, for some number Q;

i.e., y is an eigenfunction of Q.



A necessary condition for the existence of a complete set of simultaneous eigenfunctions of
two operators is that the operators commute with each other

Conversely, if P and Q are two commuting operators, there exists a complete set of

functions that are eigenfuntions of both P and Q.

A,B+C|=[A,B]+|A,C
'A,BC|=B[A,B]+[A,B]C
AB,C|=A[|B,C]+[A,C|B

[A.[B.C[]+[B.[C.A]]+[C.[A,B]]=0
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We could not predict the position of particle for a stationary state.



Time evolution of expectation
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If oF /8t =0 =~ [F,H]

If F commutes with H, [F,H]=0 dF/dt=0

F and H have a common complete set of eigen wavefunction. Therefore, when a
time-independent operator commutes with H, it is a constant of motion.
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