
4.1 Angular Momentum

Classically, the angular momentum of an 

isolated system is a constant of the motion. 

Quantum mechanically, this means that we

expect to be able to find states of definite 

angular momentum.

In three dimensions, the angular momentum about a point is the magnitude p of the 

momentum multiplied by the perpendicular distance of the momentum

vector from the point (r sin θ in the diagram).

The angular momentum describes rotation about an axis perpendicular to the

plane containing r and p, so in vector notation it is J = r × p.



4.2 Angular momentum operators

The angular momentum is the vector product J = r × p. That is,

Making the usual substitutions yields the operators
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Angular momentum operators don’t commute

The components of the angular momentum operator do not commute with each other.

Writing 𝜕/𝜕𝑥 = መ𝜕𝑥for brevity, and remembering that መ𝜕𝑥 𝑥 = 1 + 𝑥 መ𝜕𝑥, but መ𝜕𝑥 𝑦 = 𝑦 መ𝜕𝑥 and 
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Commutation relations for angular momentum

We have found that

Similarly,

(Note that x, y and z appear in cyclic order in these equations.)

The uncertainty principle tells us that, for example,

so in general we cannot find wavefunctions that are simultaneously eigenfunctions of two or 

more of መ𝐽𝑥 , መ𝐽𝑦 and መ𝐽𝑧 . The only exception is that it is possible to find wavefunctions for 

which Jx, Jy and Jz are all exactly zero.
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However, መ𝐽𝑥 , መ𝐽𝑦 and መ𝐽𝑧 all commute with ෠𝑱2 = መ𝐽𝑥
2 + መ𝐽𝑦

2 + መ𝐽𝑧
2. For example,

and similarly መ𝐽𝑧, መ𝐽𝑦
2 = −𝑖ℏ መ𝐽𝑦 መ𝐽𝑥 + መ𝐽𝑥 መ𝐽𝑦 , while መ𝐽𝑧, መ𝐽𝑧

2 = 0.

Adding these results together shows that መ𝐽𝑧, ෠𝑱
2 = 0.

Therefore we can find wavefunctions that are eigenfunctions of both ෠𝑱2 and one

only of መ𝐽𝑥 , መ𝐽𝑦 and መ𝐽𝑧 . It is customary to choose መ𝐽𝑧 .
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Spherical polar coordinates

Before proceeding, we recall the definition of spherical polar coordinates. They are 

defined by

and conversely

The volume element for integration over spherical polar coordinates is

Forgetting the r2sinθ is a very common source of mistakes.
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A central force V =V (r)

2
2ˆ ˆ ˆ ( )

2
H T V V r

m
     

Ñ2 =
¶2

¶r2
+

2

r

¶

¶r
+

1

r2

¶2

¶q 2
+

1

r2
cotq

¶

¶q
+

1

r2 sin2q

¶

¶f 2

2
2

2 2 2

2 1
Ĵ

r r r r

 
  
 

2ˆ ˆ, 0H J  
  z

ˆ ˆ, 0H J  
 

2 2
2

ˆ 1 ˆ ˆ[ , ] 0
d J J

J H
tdt i


  



ˆ ˆ 1 ˆ ˆ[ , ] 0
z z

z

d J J
J H

tdt i


  




In spherical polar coordinates, መ𝐽𝑧 = −𝑖ℏ
𝜕

𝜕𝜑
. መ𝐽𝑧 commutes with ෠𝑱2, so we can find functions that 

are eigenfunctions of both. Eigenfunctions of መ𝐽𝑧 satisfy the eigenvalue equation

The unnormalised solutions are of the form exp(𝑖𝑘𝜑/ℏ), but the value of k is restricted by the 

requirement that the wavefunction is single-valued — that is, 𝜓(𝜑 + 2𝜋) must be the same as 

𝜓(𝜑). This means that

Thus 𝑘 = 𝑀ℏ, where M is an integer (positive, negative or zero), and the wavefunctions 

become (after normalisation)

The eigenvalue is 𝑀ℏ : the angular momentum is an integer multiple of ℏ.
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4.3 Spherical harmonics



Eigenfunctions of ෠𝑱𝟐

෠𝑱2 is more complicated:

To obtain eigenfunctions of ෠𝑱2 we have to multiply the functions e𝑖𝑀𝜑 by suitable functions of 

θ. Write

where Φ𝑀(𝜑) = e𝑖𝑀𝜑 . Then the eigenvalue equation ෠𝑱2𝑌𝐽𝑀 = 𝜆𝑌𝐽𝑀 becomes

We can cancel out Φ𝑀(𝜑) to get an eigenvalue equation in θ. The eigenvalues λ turn out to be 

ℏ2𝐽(𝐽 + 1) for integer J. 

The functions 𝑌𝐽𝑀(𝜃, 𝜑) are spherical harmonics. 
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The Ladder-Operator Method for Angular Momentum
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4.4 Angular momentum eigenvalues

𝑱2 can have definite values ℏ2𝐽(𝐽 + 1) , for integer 

values 0, 1, 2, . . . of J.

For a given value of J, Jz can have the definite

values 𝑀ℏ, where 𝑀 can take any of the

integer values 𝐽, 𝐽 − 1, . . . , −𝐽 + 1,−𝐽.

(For the proof, see the Mathematical Notes.)

If 𝑱2 and Jz have definite values, Jx and Jy can’t, because 

they don’t commute with Jz. All we can say about them is that
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The first few normalized spherical harmonics are
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So far we have been using ෠𝑱 2 and መ𝐽 z for the angular momentum operators, and J and M for the 

quantum numbers. There are many different angular momenta that we may have to deal with, 

and several of them may be present in the same system. There is a fairly standard notation for 

these different angular momenta. 

A note on notation

Operators
Quantum 

numbers

l2,lz l, ml Orbital angular momentum of a single electron

s2,sz s, ms Spin angular momentum of a single electron
j2,jz j, mj Total angular momentum of a single electron
L2,Lz L, ML Total orbital angular momentum
S2,Sz S, Ms Total spin
J2,Jz J, MJ Total angular momentum of an atom; also angular 

momentum of molecular rotation and general 

angular momentum

I2,Iz I, mI Nuclear spin
F2,Fz F, MF Total angular momentum including nuclear spin
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4.5 The Rigid Rotor

We consider diatomic molecules. If the nuclei have masses m1 and m2, the rotational behaviour

(classically as well as quantum mechanically) is the same as that of a particle of mass 𝜇 =

m1𝑚2/(m1 +𝑚2) (the reduced mass) moving on the surface of a sphere of radius d equal to

the bond length.

Reduction of the Two-particle Problem to a One-Particle Problem
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Suppose that the rigid rotor not affected by external force, the potential energy is zero, and the

kinetic energy is
1

2
𝐼𝝎2 = ෠𝑱2/2𝐼, where 𝐼 = 𝜇𝑑2 is the moment of inertia, 𝝎 is the angular

velocity vector and ෠𝑱 = I𝝎 is the angular momentum. The Hamiltonian for the rigid rotor is

therefore

Since the Hamiltonian is just a multiple of ෠𝑱2, its eigenfunctions are the spherical harmonics

and its eigenvalues are ℏ2𝐽(𝐽 + 1)/2𝐼.
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The rotational constant B 

The rotational constant B is an energy, as is the vibrational spacing ℏ𝜔, and both can be 

expressed in any convenient energy unit. However, the SI units of joules or kJ mol-1 are not 

very convenient.

For a photon with frequency 𝜈 and wavelength 𝜆, E = h𝜈= hc/𝜆 = ℎ𝑐𝜆−1, where 𝜆−1 is the 

wavenumber, i.e. the number of waves per unit length. Evidently wavenumber is proportional 

to energy, and it is widely used as a measure of energy.

In SI the unit of length is the metre, but the wavenumber is always expressed in reciprocal 

centimetres, cm-1. This is the number of waves per centimetre, so we have to divide by 100:
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Conventionally we define a rotational constant B = ℏ2/2𝐼, and the energies for the rigid

rotor are then just 𝐵𝐽(𝐽 + 1). For each of these energy levels, the quantum number M can

take the 2J+1 values from J to -J, so each level has degeneracy 2J+ 1.



4.6 Rotation-vibration energy levels 

Real molecules rotate and vibrate. The Hamiltonian for both motions considered together is 

just the sum of the vibration and rotation Hamiltonians:

and these two refer to different degrees of freedom 一 the vibrational coordinate r - re and the 

spherical polar angles 𝜃 and 𝜑 respectively. Consequently 𝐻vib does not affect the rotational 

wavefunction and 𝐻rot does not affect the vibrational one. An overall wavefunction of the form 

Ψ = 𝜓𝑣
vib𝜓𝐽𝑀

rot is an eigenfunction of the complete Hamiltonian:

and the energy is just the sum of the individual vibrational and rotational energies Ev and 

𝐵𝐽(𝐽 + 1). B is much smaller than the vibrational spacing ℏ𝜔 — typically B is around l cm-1

and ℏ𝜔 is around 1000 cm-1.
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Rotation-vibration energy levels. The rotational spacings are very 

greatly exaggerated compared with the vibrational spacing.



4.7 Quantum theory of spectroscopy

Molecules can absorb or emit electromagnetic radiation and undergo transitions between energy 

levels, according to the following general principles:

(a) For a transition between states 𝜓𝑚 and 𝜓𝑛 the frequency 𝜈𝑚𝑛 of the radiation must match the 

energy difference Em − En between the levels, according to the Bohr condition ℎ𝜈𝑚𝑛 =

Em − En ,

(b) The rate at which transitions are induced by an external electromagnetic field is given by the 

Einstein coefficient for induced absorption or emission, B𝑚𝑛 :

Where ෝ𝝁 is the operator for the dipole moment of the molecule. This is Fermi's golden rule. For 

a given pair of states, the coefficients for induced absorption and induced emission are the same.
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3. If a molecule is in an excited state 𝜓𝑚 (i.e., not in its lowest-energy state) then it may 

undergo a spontaneous transition to a lower-energy state 𝜓𝑛, emitting radiation at the 

frequency 𝜈𝑚𝑛 given by the Bohr condition. The rate at which this occurs is given by the 

Einstein coefficient for spontaneous emission, Amn.

For many purposes, we do not need to know the actual rate of absorption or emission. It is 

enough to know whether it is zero (the transition is forbidden) or non-zero (allowed). This 

information is summarized in selection rules.

For the harmonic oscillator, the selection rule is ∆𝑣 = ±1; that is, transitions are allowed 

only between adjacent levels. In addition, the dipole moment must change during the course 

of the vibration.

For the Morse oscillator, and for real molecules, this selection rule does not apply rigorously, 

but transitions between non-adjacent levels are much weaker. They are called overtones.
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Pure rotation spectrum

In pure rotational spectroscopy, transitions occur between rotational levels of a particular

vibrational state, usually the ground state ν = 0. The molecule must have a non-zero dipole

moment. The selection rule is Δ𝐽 = ±1.

The transition between levels 𝐽 and 𝐽 + 1 has energy

so transitions occur at energies 2B, 4B, 6B, etc. These normally fall in the microwave region

of the electromagnetic spectrum.
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Rotation-vibration spectrum 

The selection rules for a rotating, vibrating diatomic are

• Δ𝜈 = ±1(overtones are allowed but weak);

• Δ𝐽 = ±1.

So the transitions between vibrational levels 𝜈 and 𝜈 + 1 fall into two groups:

• Δ𝐽 = −1 (P branch):

• Δ𝐽 = +1 (R branch):

where Δ𝐸0 = 𝐸𝑣+1 − 𝐸𝑣.
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