
5.1 The Born-Oppenheimer approximation

So far we have tacitly assumed that the motion of the electrons can be described separately 

from the motion of the nuclei. This assumption is also implicit in general chemistry, when we 

picture a molecule as a nuclear framework bound together by molecular orbitals. Its 

theoretical justification is the Born-Oppenheimer approximation, which is based on the fact 

that nuclei are much heavier than electrons (mp/me = 1836), and therefore much slower.

Unless we need very high accuracy, the motion of the nuclei can be ignored completely when 

we are interested in the electrons. That is, we treat the nuclei as 'clamped' in position while we 

work out the electronic wavefunction. This gives us the 'clamped-nucleus' electronic 

Hamiltonian,

and the electronic Schrodinger equation,

which is the first half of the Born-Oppenheimer approximation.
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This equation includes the electronic kinetic energy ෠𝑇𝑒 and the total potential energy 

𝑉(𝑸, 𝒒), which depends on the positions of the electrons 𝒒, with the nuclei clamped at 

position 𝑸.

If we are just interested in the electronic energy levels and orbitals at one particular 

nuclear geometry (e.g. the equilibrium geometry), then we solve eq. (1) once, with 𝑸 set 

equal to the nuclear positions at this geometry.

However, if we also want to treat the nuclear motion, we must solve this eq at many 

different nuclear positions 𝑸, in order to obtain 𝐸elec(𝑸) as a function of 𝑸. 𝐸elec(𝑸) is 

then used as the potential energy in the nuclear hamiltonian,

where ෠𝑇𝑁 is the nuclear kinetic energy operator. The nuclear wave function 𝜓nuc(𝑸) is 

calculated by solving the nuclear dynamics Schrodinger equation,

where E is the total energy.
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• Note that each electronic energy level gives rise to its 

own potential energy function 𝐸elec(𝑸). In general, 

these functions are completely different, because the 

bonding described by each electronic energy level is 

different.

• The diagram shows the potential energy curves 𝐸elec(𝑟)

for the three lowest electronic energy levels of the Br2

molecule. The symbols are standard labels for the 

electronic energy levels which will be explained.



Each of the curves in the above diagram has a set of vibrational wave functions 𝜓nuc(𝑸) and 

energy levels E associated with it, which we could calculate by solving 

separately for each curve. Note that E is the total (electronic + vibrational) energy, and that the 

energy differences between successive E are the vibrational energy spacings. The zero point 

energy is the difference between the lowest E and the potential 𝐸elec(𝑸) at equilibrium (i.e. the 

lowest energy point).

In a practical calculation, one sometimes approximates each of the potential curves using a 

Morse potential, or, if only low-lying vibrations are of interest, using a harmonic oscillator 

potential.

The total wave function 𝜓tot(𝒒, 𝑸) describing the combined motion of all the electrons and 

nuclei in the molecule is the product,

The Born-Oppenheimer approximation is usually very accurate, although it can break down 

when different potential surfaces get close together.

   nuc nuc nucH E Q Q



5.2 The hydrogen atom 

In the hydrogen atom there is only one nucleus, and we take it to be clamped at the origin of 

coordinates. We consider the general 'hydrogen-like' one-electron atom, with nuclear charge Ze.

The potential energy is

and the kinetic energy is

It is more convenient to express this in spherical polar coordinates, using the expression for 𝛻2 :
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The hydrogen atom Hamiltonian 

For the hydrogen-like atom, then,

We can recognise in the angular part of the kinetic energy the expression for the square of the 

angular momentum, but in the case of the hydrogen atom it is conventional to use the symbol መ𝒍

for the orbital angular momentum of the electron, reserving ෠𝑱 (or Ƹ𝒋) for the total angular 

momentum including spin.

The complete Hamiltonian is then

Note that the radial part can be written in several equivalent ways:
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The H atom Hamiltonian is rather cluttered with fundamental constants. To get rid of the 

clutter, we use atomic units:

When we work in atomic units, me, e, ℏ and 4𝜋𝜖o all have a numerical value of 1, as do the 

quantities a0 and Eh derived from them.

This simplifies the equations, but has the disadvantage that it becomes difficult to check the 

dimensions of an expression.

Unit Symbol Name Definition SI value

Length a0 bohr 4𝜋𝜖oℏ
2/𝑚𝑒𝑒

2 52.917721 pm
Mass me electron mass 0.910938 × 10-30 kg
Charge e proton charge 1.6021765 × 10-19 C
Energy Eh Hartree 𝑒2/4𝜋𝜖o𝑎o 4.359744 × 10-18 J
Angular 
momentum

ℏ 1.0545717 × 10-34 Js

Atomic units



We write 𝑟′ = 𝑟/a0, and find that

Similarly, writing መ𝒍′ = መ𝒍/ℏ, the angular kinetic energy becomes

In this way we find

or, dropping the primes, and remembering that energies will be in Hartree,

2 2

0 0 04 4
h

Ze Ze Z
V E

r a r' r' 
     

蝌

22 2 2 2 2 2

2 2 2 2 2 2

0 0 0

ˆ ˆ ˆ ˆ

2 2 4 2 2

e
h

e e e

m e' ' '
E

m r m a r' m a r' r'
  

ò

l l l l

2
2

2 2

ˆ1
/

2 2
h

' Z
H E r'

r' r' r' r' r'

 
   

 

l

2
2

2 2

ˆ1

2 2

Z
H r

r r r r r

 
   

 

l



5.3 Wavefunctions for the hydrogen atom 

The Hamiltonian contains the angular variables only as the operator መ𝒍2; the potential energy 

depends only on r. Knowing that the eigenfunctions of መ𝒍2 are the spherical harmonics, we look 

for solutions of the form 𝜓(𝑟, 𝜃, 𝜑) = 𝑅(𝑟)𝑌𝑙𝑚(𝜃, 𝜑). We get

and since መ𝒍2𝑌𝑙𝑚 = 𝑙(𝑙 + 1)𝑌𝑙𝑚 we can cancel out 𝑌𝑙𝑚 to get the radial equation

For each value of l (i.e., 0, 1, 2, ...) there are infinitely many solutions of this equation. They 

are conventionally labelled by the principal quantum number n, which runs from 𝑙 + 1 to ∞.

The quantum number m has dropped out of this eq, so the radial wavefunctions don't depend 

on m. We label them Rnl, and the complete wavefunction is 𝜓𝑛𝑙𝑚 = 𝑅𝑛𝑙(𝑟)𝑌𝑙𝑚(𝜃, 𝜑).
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Solution of R equation
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or

So the radial equation is the same for all Z, except that the energies scale with Z2.
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The first few normalized radial wavefunctions are, writing 𝜌 = 𝑍𝑟

As is customary, we write nl using the letters s, p, d, f, ... to represent l = 0, 1, 2, 

3, ….Each of these has to be multiplied by one of the corresponding 𝑌𝑙𝑚 (l = 0 for s, 1 for 

p, etc.). For each value of l, m can have any integer value from -l to l, so there are three 2p

orbitals, five 3d orbitals, and so on.
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Radial wavefunctions for hydrogen

These are the functions of the previous slide, with Z = 1. Note the differences in horizontal 

and vertical scales; the functions with higher principal quantum number extend much 

further from the nucleus.



Radial probability density

The probability of finding the electron in an element of volume dv is

|𝜓|2d𝑣 = |𝜓|2𝑟2sin𝜃d𝑟d𝜃d𝜑, where 𝜓 is the normalized wavefunction for the electron.

If we integrate over the angles we get the probability of finding the electron in a spherical 

shell between 𝑟 and 𝑟 + d𝑟:

𝑃𝑛𝑙(𝑟) is called the radial probability density. Note that it is independent of m
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E.g., for hydrogen 1𝑠,

so

To find the maximum in 𝑃1𝑠(𝑟):

so the maximum is at 𝑟 = 1.

Note that this is not the same as the expectation value of 𝑟:
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 A spherical surface with the electron density

of zero is called a node, or nodal surface.

 The radial distribution function has (n-l)

maxima and (n-l-1) nodal surfaces

𝑃𝑛𝑙(𝑟)



The angular functions 𝑌𝑙𝑚(𝜃, 𝜑) for hydrogen
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A node is a surface on which an electron is not found. For a given orbital, the total number of 

nodes equals n-1. The number of angular nodes is l. 

Ylm(θ,φ)=0

Nodes



The wavefunctions 𝑅𝑛𝑙(𝑟)𝑌𝑙𝑚(𝜃, 𝜑) are the 

atomic orbitals. For the hydrogen atom, the 

energy depends only on n, not on l or m:

The energy level pattern is as shown (to scale).

Atomic orbitals

2

22
nlm

Z
E

n
 



Real or complex orbitals?

If we assemble the complete 2p orbitals for the hydrogen atom (𝑍 = 1), we get:

𝑚 = 0:

𝑚 = 1:

𝑚 = −1:

Here 𝑁2𝑝 = (32𝜋)−1/2.
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Real or complex p orbitals

The complex orbitals 𝜓𝑛𝑙𝑚 are eigenfunctions of 𝐻, 𝒄and መ𝑙 z and are suitable for use when we 

are interested in angular momentum.

For many purposes, however, it is more convenient to construct the real functions

together with

These real functions are still eigenfunctions of 𝐻 and መ𝒍2, but not of lz when 𝑚 ≠ 0.
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Angular function ( Ylm() )
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d orbitals

The 3d orbitals are constructed from the R3d radial function and the 𝑌2𝑚 spherical harmonics:

where the normalising factor 𝑁3𝑑 =
4
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Just as for the p orbitals, we can write 𝑟sin𝜃e±𝑖𝜑 = 𝑥 ± 𝑖𝑦 and 𝑟𝑐𝑜𝑠𝜃 = 𝑧, and take real and 

imaginary parts to obtain the 3d orbitals in the familar real form. 

(Note that 𝑟2sin2𝜃e±2𝑖𝜑 = (𝑟sin𝜃e±𝑖𝜑)2 = (𝑥 ± 𝑖𝑦)2 = 𝑥2 − 𝑦2± 2𝑖𝑥𝑦.)
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d orbitals in real form 

The 3d orbitals in real form are:

Note that the so-called 𝑑𝑧2 orbital is in fact proportional to (3𝑧2− 𝑟2).
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Nodal structure of the atomic orbitals

The radial wavefunctions R1s , R2s , R3s , etc. are solutions of the same eigenvalue equation, so 

they have to be orthogonal with respect to radial integration. Like the wavefunctions for the 

particle in the box and the harmonic oscillator, the lowest-energy function has no nodes, the 

next has one node, and so on, each function having one more node than the previous one.

The radial p functions are solutions of a different equation (because l is different), so they don't 

have to be orthogonal to the radial s functions. However they too are orthogonal to each other, 

with the number of nodes increasing with increasing energy.

Also the complete p orbitals are orthogonal to the s orbitals and to each other, because of the 

orthogonality of the angular functions 𝑌𝑙𝑚 .

The atomic orbitals with principal quantum number 𝑛 all have 𝑛 − 1 nodal surfaces. Of these, l

are angular nodes and the rest are radial. The radial nodes are spherical surfaces at particular 

values of r; for instance, the 2s orbital for the H atom is zero when r = 2, for any 𝜃 and 𝜑.



Angular nodes

Of the angular nodes, 𝑚 are planes perpendicular to the equator (the xy plane) and the rest 

are conical surfaces defined by particular values of 𝜃. For example, the 𝑑𝑧2 orbital has nodes 

where 3cos2𝜃 = 1, i.e.,𝜃= 54.74° or 125.26°.




