
6. Many-electron atoms

The helium atom

The Hamiltonian for He (with clamped nucleus) is

Because of the term in 1/𝑟12this can't be separated into 𝐻(1) + 𝐻(2), so the wavefunction 

can't be written as Ψ = 𝜓(1)𝜓(2).
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However we can write approximately

(2)

with

(3)

where V includes a spherical average of the repulsion from the other electron.

This is the central field approximation, and it allows us to treat the electrons as if they

move independently of each other.

That is, Ψ = 𝜓(1)𝜓(2), with 𝐻𝜓 = 𝐸𝜓.

Writing out the kinetic energy term gives (in atomic units)

6.1 Central field approximation 
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The important feature is that V still depends only on r, not on 𝜃 and 𝜑.

Because of this we can still write

where 𝑌𝑙𝑚(𝜃, 𝜑) is a spherical harmonic, just as before, but 𝑅𝑛𝑙(𝑟) now satisfies a different 

radial equation:
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The Self-Consistent Field method 

The radial equation is

V is an average of the interactions with the other electron (or electrons, in general), so we 

can't calculate it until we know where the electrons are. We have to start by guessing the 

form of the orbitals, and then
(i) use the orbitals to evaluate 𝑉(𝑟) ,

(ii) solve the eq. to get new orbitals,

and repeat the process until the new orbitals agree with the old ones

This is called the Self-Consistent Field or SCF method.
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Each electron in an atom moves independently in a central potential due to the Coulomb 

attraction of the nucleus and the average effect of the other electrons in the atom.

The potential acting on the electron is spherical
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Hartree’s procedure is as follows
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Orbital energies in many-electron atoms

Because we now have a potential 𝑉(𝑟) instead of 𝑍/𝑟, the energies change, and they now 

depend on l as well as n. We can see why by comparing the radial functions for the 2s and 2p

orbitals in hydrogen.

Remember that in the hydrogen atom, the 2s and 2p orbitals have the same energy. The 

potential energy contribution is

When ෠𝑉 = −1/𝑟 this is the same for both 𝜓2𝑠 and 𝜓2𝑝.

For example
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Radial probability densities

for 2s and 2p hydrogen atom orbitals.

Schematic potential energy curves for the 

hydrogen atom (solid line) and for a many-

electron atom (dashed line).

Radial probability densities in the H atom 
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Orbital energies in many-electron atoms 

For the many-electron atom, the operator 

෠𝑉 = −1/𝑟 is replaced by the function shown by the 

clashed line in the figure, which behaves like −1/𝑟 for 

large r, but like −𝑍/𝑟 near the nucleus.

The orbitals in a many-electron atom are not the same 

as in the hydrogen atom, but the 2s wave-function 

always has a radial node, and consequently a peak in 

the probability density near the nucleus, while the 2p

radial density has no node.

Consequently a 2s electron in a many-electron atom 

feels the attraction of the nucleus more strongly than a 

2p electron does, so it has a lower energy.



A 2p electron is more effectively screened from the nucleus by the other electrons than a 2s

electron, or equivalently the 2s electron penetrates through the other electrons to the 

nucleus more effectively than the 2p.

Either way, the 2s orbitals have lower energy than the 2p, and the difference in energy 

increases as we go across the period from Li to Ne.

The same thing happens in each row of the periodic table, so the orbital energy level pattern 

becomes something like the following (omitting the 1s level):



In the hydrogen-like atom the orbital energies are −𝑍2/2𝑛2. In many-electron atoms, the 

nuclear charge is screened by the other electrons and the energy does not increase in 

magnitude so quickly with increasing Z. However it does increase, so the electrons with 

given principal quantum number become more strongly bound as Z increases. The orbital 

energies can be expressed very roughly as −𝑍eff
2/2𝑛2, where 𝑍eff depends on both n and l,

and is given by Slater's rules:

𝑍eff = 𝑍 − 𝑠𝑛𝑙, where for electrons with principal quantum number 𝑛 > 1,

Here Nn is the number of electrons with principal quantum number n, and Ncore is the 

number with principal quantum number less than 𝑛 − 1.

𝑠1𝑠 = 0.3 is a special case.
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The energy difference between 2s and 2p increases quite sharply:
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Ionization energies

The ionization energy is the energy needed to remove one electron from the atom, to form the 

positive ion. Because of the general downward tend in orbital energies, the ionization energy 

increases across a period, but the trend is interrupted where the electrons begin to fill a new 

shell, for instance between Be and B and between Ne and Na. The steps between N and O 

and between P and S are less easily explained, and we shall return to that later.



Zeeman Effect

The splitting of a spectral line into two or more components of slightly different frequency 

when the light source is placed in a magnetic field. It was first observed in 1896 by the 

Dutch physicist Pieter Zeeman as a broadening of the yellow D-lines of sodium in a flame 

held between strong magnetic poles. 

The (normal) Zeeman effect can be understood classically, as Lorentz predicted, as the 

interaction energy of an orbiting electron with the magnetic field.

This "anomalous" Zeeman effect was eventually explained by the quantum mechanical 

effects of spin.



Spin

One of the more mysterious features of quantum mechanics is the property called spin,

which has no classical analogue. It does have the properties of an angular momentum, as the 

name implies, but it should not be thought of in classical terms.

We have seen that an electron in an atom has orbital angular momentum, usually designated 

by the symbol መ𝒍, with quantum numbers 𝑙 describing the magnitude ℏ 𝑙 𝑙 + 1 of the 

angular momentum vector, and ml describing its z component. Both of these quantum 

numbers have to be integers because of the boundary conditions on the wavefunction.

An electron also has an intrinsic angular momentum called spin, designated by the symbol ො𝒔.

It has quantum numbers s and ms, describing its magnitude and z component.



Spin is not described by angular coordinates in the same way as orbital angular momentum, 

and the quantum numbers are not restricted by boundary conditions. It turns out that they 

may have half-odd-integer values in addition to the integer values.
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The differences between spin and orbital angular momentum are:

• The spin quantum numbers need not be integers ——they may be half-odd-integer.

• The quantum number s has a fixed value for a particular kind of fundamental particle. 

It is always 
1

2
for electrons (and for protons and neutrons).

We note in passing that nuclei also have spin (important in n.m.r.). The nuclear spin 

operator is usually designated I, with quantum numbers I and mI. Some values are:

H (proton) 𝑰 =
1

2

D (deuteron) 𝑰 = 1

F 𝑰 =
1

2
16O, 12C 𝑰 = 0

13C 𝑰 =
1

2



17



18



Notations for spin 

The ms quantum number follows the usual rules for angular momentum: it can take values 

between s and -s in integer steps. Since s =
1

2
for an electron, ms can take only the values 

1

2
or -

1

2
.

The state with ms =
1

2
('spin up') is denoted by the symbol 𝛼, and the state with ms = −

1

2
('spin 

down') by the symbol 𝛽 These can be thought of as wavefunctions, but there is no coordinate in 

the conventional sense. We can also use 𝜎𝑚𝑠
for a generic spin function; i.e., 𝜎1/2 = 𝛼 and 

𝜎−1/2 = 𝛽 .

The symbols ↿ and ⇂ are commonly used in orbital energy level diagrams to denote electron 

occupancy with spin up and down respectively.
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Wavefunctions including spin 

The spin is a new degree of freedom, so we can construct a complete wavefunction for the 

hydrogen atom by multiplying together an atomic orbital and a spin function. A general one-

electron atomic wavefunction or spin-orbital is then

and it satisfies the eigenvalue equations

We don't need to list the quantum number s because it is always 
1

2
.
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Quantum Numbers 

n

l

ml

1                  2                      3                           4

0             0         1         0     1       2        0      1        2        3

0            0    -1  0  +1  0 -1 0 +1            0 -1 0 +1

-2 -1 0 +1 +2        -2 -1 0 +1 +2

-3 -2 -1 0 +1 +2 +3

• The total number of orbitals for a given value of n is n2. Considering the spin, the 

degeneracy is 2 n2



Two spins 

If we have two electrons, they each have spin 
1

2
and each has spin states 𝛼 and 𝛽. Using 

subscripts 1 and 2 to label the electrons, the possible states of the system are

Now the z component of the total spin is described by the operator

መ𝑆𝑧 = Ƹ𝑠1𝑧 + Ƹ𝑠2𝑧, which is just the sum of the z components of the individual spin vectors. 

Ƹ𝑠1𝑧 doesn't have any effect on the spin functions of electron 2, and vice versa, so

and 𝛼1𝛼2 is an eigenfunction of Sz with eigenvalue ℏ, which we can write as 𝑀𝑠ℏ with 𝑀𝑠 = 1.
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Two spins: singlet and triplet states 

Thus 𝑀𝑠 = 1 for the wavefunction 𝛼1𝛼2 . In the same way,

𝛼1𝛽2 and 𝛽1𝛼2 have 𝑀𝑠 = 0, and 𝛽1𝛽2 has 𝑀𝑠 = −1.

Remembering that angular momentum eigenfunctions come in sets with 𝑀 = 𝐽, 𝐽 − 1, . . . , −𝐽, 

we see that we have a set with 𝑀𝑠 = 1, 0 𝑎𝑛𝑑 − 1, which has 𝑆 = 1, and a second function 

with 𝑀𝑠 = 0 which is the sole member of a set with 𝑆 = 0.

Clearly 𝛼1𝛼2 and 𝛽1𝛽2 belong to the set of functions with 𝑆 = 1. 

𝛼1𝛼2 𝑀𝑠 = 1
𝛼1𝛽2 ,𝛽1𝛼2 0
𝛽1𝛽2 -1



𝑀𝑠 𝑆 = 1 (triplet) 𝑆 = 0 (singlet)
1 𝛼1𝛼2

0
1

2
𝛼1𝛽2+ 𝛽1𝛼2

1

2
𝛼1𝛽2− 𝛽1𝛼2

-1 𝛽1𝛽2

The third function of this set turns out to be neither 𝛼1𝛽2 nor 𝛽1𝛼2 but a mixture, 
1

2
(𝛼1𝛽2+



Identical particles

All electrons are identical and therefore indistinguishable.
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The Pauli principle

In a two-electron atom, we might expect to be able to write down a wavefunction as a 

simple product of one-electron functions, such as

where 1 and 2 are abbreviations for all the coordinates of electrons 1 and 2 respectively, 

and 𝜓1𝑠
𝛼 1 means 𝜓1𝑠 𝒓1 𝛼1.

However electrons are indistinguishable, so the probability density must be unafFected by 

exchanging the electrons. That is, we require

or

It has been found empirically that for electrons the minus sign always applies; that is, 

electronic wavefunctions are always antisymmetric with respect to exchange of electrons.

This is the Pauli principle.

1 2(1, 2) (1) (2)
zs p    

2 2
(1, 2) (2,1)  

(1, 2) (2,1)  



Suppose we have an electron in a 1s orbital, and another 

in a 2pz orbital. We ignore spin for the moment. Suppose also that 

we can attach labels to the electrons. If electron 1 is in the 1s

orbital and electron 2 in the 2p orbital, the wavefunction would be 

𝜓1𝑠 𝒓1 𝜓2𝑝𝑧 𝒓2 . With the electrons at the positions shown, this 

wavefunction is nonzero.

If now we switch the electron labels in the wavefunction, so that 

electron 1 belongs to the 2p orbital and electron 2 to the 1s orbital, 

the wavefunction becomes 𝜓1𝑠 𝒓2 𝜓2𝑝𝑧 𝒓1 . Electron 1 is at a 

node in the 2p orbital, so the wavefunction is now zero.

This example is evidently rather contrived, but it should be clear 

that in general a wavefunction 𝜓𝑎 1 𝜓𝑏 2 describing electron 1 

in orbital 𝜓𝑎 and electron 2 in orbital 𝜓𝑏 will change if we switch 

the electron labels.

Exchange of electrons



Symmetric and antisymmetric functions 

Suppose that we add our two functions together:

This new function doesn't change if we switch the electrons — it is symmetric with respect 

to electron exchange.

Alternatively we can subtract them:

This function changes sign if we switch the electrons ——it is antisymmetric with respect to 

electron exchange.

One way to achieve antisymmetry for two electrons is to construct a symmetric orbital wave 

function and multiply it by an antisymmetric spin function, i.e., a singlet function. The other 

way is to use an antisymmetric orbital function and a symmetric spin function.

(1, 2) (1) (2) (2) (1)a b a b     

(1, 2) (1) (2) (2) (1)a b a b     



The Pauli principle 

If we have two electrons in orbitals 𝜓𝑎 and 𝜓𝑏 ,the symmetric and antisymmetric orbital 

functions are

We can combine these with singlet and triplet spin functions respectively to obtain acceptable 

overall wavefunctions.

Note that if 𝜓𝑎 = 𝜓𝑏 ,the antisymmetric wavefunction Ψ− vanishes. Thus two electrons can

go into the same orbital only if they have opposite spins (singlet state).
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N-particle systems

They ( ෠𝑃 and ෡𝐻) possess simultaneous eigenfunctions. There are only two functions, Ψ𝑆 and 

Ψ𝐴, which are simultaneous eigenfunctions of ෡𝐻 and all of the pairwise exchange operators ෠𝑃

How many operators ෠𝑃 in N particle systems?
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The operator ෠𝑃 is any one of the 𝑁! operators, including the identity operator, that permute a 

given order of particles to another order. The summation is taken over all 𝑁! permutation 

operators. P = 1 for sym; P = -1 for anti-sym
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How to construct antisymmetric wave function?
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For Li atom:
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The electronic configuration (for ground state) 

2s
• H  = 1s1

• He = 1s2

• Li  = 1s2 2s1

• Be = 1s2 2s2

• B  = 1s2 2s2 2p1

• C  = 1s2 2s2 2p2

• N  = 1s2 2s2 2p3

• O  = 1s2 2s2 2p4

• F   = 1s2 2s2 2p5

• Ne = 1s2 2s2 2p6

1s

2p

+ +



For a system of two identical particles

two bosons

two fermions

If a system is composed of several kinds of particles, then its wave function must be 

separately symmetric or antisymmetric with respect to each type of particle.

If states a and b are the same state (a = b)

Probability densities

The probability density for one 

distinguishable particle

exchange density 

(indistinguishable)



when the two particles have the same coordinate value

q1 = q2 = q0



The two bosons have an increased probability density of being at the same point in space, 

while the two fermions have a vanishing probability density of being at the same point.

The exchange density is important only when the single-particle wave functions overlap 

substantially.

are then negligibly small and the exchange density essentially vanishes.

This expression is just the probability density for particle 1 confined to region A and particle 

2 confined to region B. The two particles become distinguishable by means of their locations 

and their joint wave function does not need to be made symmetric or antisymmetric.



Fermi holes

Consider a wavefunction for two electrons, which we write in the form 𝛹 𝑟1, 𝑟2 𝜎(1,2). 𝑟1
and 𝑟2 are the electron positions, and 𝜎(1,2) is a two-electron spin function, either singlet or 

triplet.

Because of the Pauli principle, the overall wavefunction must be antisymmetric: 

𝛹 𝑟1, 𝑟2 𝜎 1,2 = −𝛹 𝑟2, 𝑟1 𝜎 2,1 .

Now if the two electrons are in the same place, then 𝑟1 = 𝑟2 = 𝑟, and the antisymmetry

condition becomes 𝛹 𝑟, 𝑟 𝜎 1,2 = −𝛹 𝑟, 𝑟 𝜎 2,1 .

If the spin function is symmetric (triplet), then 𝜎 1,2 = 𝜎 2,1 , and we find 𝛹 𝑟, 𝑟 =

− 𝛹 𝑟, 𝑟 , so the wavefunction must vanish. That is, the probability of two electrons with 

the same spin being in the same place is zero.

There is no such limitation for electrons of opposite spin.



The probability density is a continuous function of the electronic coordinates, so there is a 

region around any electron where the probability of finding any other electron with the same 

spin is small. This region is called the Fermi hole.

Because the repulsion between two electrons is inversely proportional to the distance 

between them, the repulsion energy is substantially less for two electrons of the same spin 

than for two electrons of opposite spin



The helium atom 

The 1s2 configuration of the He atom has only one possible state, a singlet, so we consider 

the excited ls2s configuration to explore the energy differences between singlet and triplet.

For the ls2s configuration, the possible states are the spin singlet, for which the orbital 

function is symmetric:

and the spin triplet, for which the orbital function is antisymmetric:

We need to find the expectation value of the electron repulsion:
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The electron repulsion energy for the singlet state is:
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Coulomb and exchange integrals 

Similarly, for the triplet state,

J is the Coulomb integral; it describes the repulsion between the charge densities |𝜓1𝑠|
2 and 

|𝜓2𝑠|
2, and is classical in nature. K is called an exchange integral, and cannot be understood 

in classical terms, except as the electrostatic energy of the 'overlap density' 𝜓1𝑠𝜓2𝑠 with 

itself. It is always positive.

We see that the triplet state has a lower energy than the singlet.

Electron repulsion energies are large; two electrons at a distance of 1 bohr have a repulsion 

energy of 1 Hartree = 27.2 eV = 2626.5 kJ mol-1. The separation between the singlet and 

triplet states in He ls2s is not as large as this, but it is still quite substantial in chemical terms: 

6421cm-1 = 0.8 eV = 77 kJ mol-1.
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Let’s summarize the steps so far in calculations of electronic structure:

1. Born-Oppenheimer approximation (clamped nuclei) to separate electronic from 

nuclear motion.

2. Independent-electron approximation (central-field approximation in the case of atoms): 

each electron moves in a potential which is an average of the interactions with the 

other electrons. Quantitative calculations via the Self-Consistent Field (SCF) method.

3. Apply the Pauli principle: make the wavefunction antisymmetric with respect to 

exchange of electrons. (This step is incorporated into the SCF procedure for 

quantitative calculations.)

4. Antisymmetrisation leads to Fermi holes (qualitative picture) preventing the close 

approach of pairs of electrons of the same spin and reducing the repulsion energy 

between them. The exchange integral provides the quantitative description of this 

effect.



Consequences of electron repulsion 

In the independent-electron picture of an atom, each electron has well-defined angular 

momentum quantum numbers l, ml, s and ms.

In the real atom, the electrons repel one another, so they can exchange orbital angular 

momentum. Consequently the orbital angular momentum of an individual electron is no 

longer well defined, and we can only consider the total orbital angular momentum, through 

the quantum numbers L and ML.

While the spin is not directly affected by electron repulsion, the interplay between orbital 

and spin angular momentum that results from the Pauli principle means that it is not useful 

to think about individual electron spins either, so we can only use the total spin, with 

quantum numbers S and MS.

To reduce the electron repulsion energy as much as possible, we need as many Fermi holes 

as possible, which in turn means as many parallel electron spins as possible.



Hund’s Rules

These considerations lead to Hund's First Rule: for the ground configuration of an atom, the 

term that is lowest in energy has the maximum possible S.

More detailed consideration of electron repulsion also leads (for less obvious reasons) to 

Hund's Second Rule: if there is more than one term with the maximum S, the one with 

maximum L lies lowest, where L is the total orbital angular momentum quantum number.

These rules apply, strictly speaking, only to the ground configuration of an atom or atomic ion. 

They can give a useful guide for higher-energy configurations, but should not be relied on in 

such cases.

To clarify these rules, we need to understand the technical expressions term and configuration.



Configurations, terms and levels 

A configuration of an atom or molecule simply specifies which orbital shells contain 

electrons. For the He atom, the ground (lowest-energy) configuration is 1s2; the excited 

configurations include ls2s and ls2p. The ground configuration of the C atom is ls22s22p2.

The electrons have both orbital and spin angular momenta. The total orbital angular 

momentum is called L; since it is an angular momentum there are quantum numbers L and 

ML, with ML taking values L, L - 1,…, -L. Because the orbital wavefunctions have to be 

single-valued these quantum numbers are integers.

In the same way, there is a total spin S, with quantum numbers S and MS (which may be half-

odd-integers). The values of L and S define a term.



A. Addition of two angular momenta:

The addition of two angular momenta characterized by quantum number j1 and j2 results in a

total angular momentum whose quantum number J has the possible values:

J=j1+j2, j1+j2-1, …, |j1-j2|

0
1

2

-1

-2

j1+j2

j1-j2



B. The total electronic orbital angular momentum

The total electronic orbital angular momentum of an n-electron atom is defined as the vector 

sum of the angular momenta of the individual electron:


i

l imL )(


The total-electronic-orbital-angular-momentum quantum number L of an atom is indicated 

by a code letter:

L 0 1 2 3 4 5 6 7

Letter S P D F G H I K

For a fixed L value, the quantum number ML (MLħ---the z component of the total electronic 

orbital angular momentum) takes on 2L+1 values ranging from –L to L. 



l 0 1 2 3 4 5 6 7

Letter s p d f g h i k

Orbital symbol   iiii lll  1ˆ 
iliz ml  ˆ

L 0 1 2 3 4 5 6 7

Letter S P D F G H I K

Term symbol    1ˆ LLL  Lz ML̂

ML = -L, -L+1, …, L

(2L + 1)



Example: Find the possible values of the quantum number L for states of carbon atom that 

arise from the electron configuration 1s22s22p3d.

Solution:

Angular momentums are vectorsd1p1

s       l=0        

p     l=1

d       l=2

The total-orbital-angular-momentum quantum number ranges from 1+2 = 3 to |1-2| = 1

L = 3, 2, 1



C. The total electronic spin angular momentum

The total electronic spin angular momentum S of an n-electron atom is defined as the 

vector sum of the spins of the individual electron:


i

s imS )(


For a fixed S value, the quantum number MS takes on 2S+1 values ranging from –S to S. 

Example: Find the possible values of the quantum number S for states of carbon atom that 

arise from the electron configuration 1s22s22p3d.

Solution: 1s electrons: Ms = + ½ - ½ =0

2s electrons: Ms = + ½ - ½ =0

2p electrons: ms = ½     3d electrons: ms = ½ 

Addition of two angular momenta rule S =  1, 0



Finally, there is an overall total angular momentum L + S, which is called J. The 

quantum number J associated with the total angular momentum can take the values 𝐿 +

𝑆, 𝐿 + 𝑆 − 1, ..., down to |𝐿 − 𝑆|. The values of L, S and J define a level. If 𝑆 ≤ 𝐿, which 

is often the case, there are 2S + 1 values of J, i.e. 2S + 1 levels, so 2S +1 is called the 

multiplicity of the term (whether or not 𝑆 ≤ 𝐿).

The total angular momentum

J =  (L + S), (L+ S) –1,… L- S 

Spin – orbit coupling



Example: Find the possible values of the total-angular- momentum quantum number 

resulting from  the addition of two angular momenta with quantum number j1 = 2 and j2 = 3 .

Solution: j1+j2=2+3=5 

|j1-j2|=|2-3|=1

The possible J values are: 5, 4, 3, 2, 1

Example: Find the possible values of the total-angular- momentum quantum number 

resulting from  the addition of two angular momenta with quantum number j1 = 2 and j2 = 3/2 .

Solution: j1+j2=2+3/2=7/2

|j1-j2|=|2-3/2|=1/2

The possible J values are: 7/2, 5/2, 3/2, 1/2



Term symbols

This information is presented in the form of a term symbol.

The central item represents the quantum number L, but it is expressed as a letter: S, P, D, F,

etc., for L= 0, 1, 2, 3, etc. It is conventional to use lower-case letters for one-electron 

properties and upper-case for many-electron properties, and these letters follow the scheme 

used for one-electron orbital angular momenta

2S+1LJ total angular momentum quantum number J

multiplicity

For example, the B atom has the configuration ls22s22p. Completely filled shells have total 

angular momentum zero, so we need only consider the 2p electron. It has l = 1 (so L = 1,

symbol P) and s =
1

2
(so S =

1

2
and the multiplicity is 2 — a doublet). J can be 𝐿 + 𝑆 =

3

2
or 

𝐿 + 𝑆 − 1 = |𝐿 − 𝑆| =
1

2
. There are two levels, with term symbols 2𝑃1/2 and 2𝑃3/2.



Spin-orbit coupling and level splittings

The levels of a term have slightly different energies as a result of spin-orbit coupling. There 

is an interaction between the magnetic moment of each electron, which is proportional to its 

spin, and its own orbital motion. There is a slight preference for the spin of each electron to 

be in the opposite direction to its own orbital angular momentum, and for shells that are less 

than half full the result is that the lowest-energy level is the one with smallest J.

For shells that are more than half full, the lowest-energy level is the one with the largest J.

These assertions about the J value for the lowest level constitute Hund's third rule.



Ground terms of atoms

Finding the ground term of an atom or ion is relatively simple, because of 

Hund’s rules. MS takes values from S to -S, so the highest possible value of 

S is the same as the highest possible value of MS. To evaluate MS we just 

count 
1

2
for each 𝛼 electron and −

1

2
for each 𝛽. To get the highest possible 

MS we have to fill 𝛼-spin orbitals first, before filling any 𝛽-spin ones.

Similarly the highest possible value of L is the same as the highest 

possible value of ML, which is the sum of ml values for the individual 

electrons. To get the highest ML we fill the orbitals with the highest ml first.

For p electrons, we have six 'boxes' for electrons, labelled by ml and ms.

We fill the 𝛼 boxes first, then the 𝛽, in each case filling the boxes with the

highest ml first.



ML= 1 1 0 1 1 0

MS=
1

2
1

3

2
1

1

2
0

Term: 2𝑃1/2 3𝑃0
4𝑆3/2 3𝑃2

2𝑃3/2 1𝑆0

We can find the ground terms of ions in the same way. The positive ion of element 𝑍 has the 

same number of electrons, and therefore the same ground term, as the neutral atom 𝑍 − 1.

The same method is used for atoms and ions with dn configurations. The only difference is 

that ml runs from 2 to -2.



Anomalous ionization energies 

We can now understand the blips in the graph of ionization energies between 

N and O and between P and S.

The N atom has ground term 4S. Its positive ion, N+, has ground term 3P,

like the C atom. The O atom has ground term 3P, and O+ has ground term 4S.

Now if we add an electron to N+, it has the same spin as the two p electrons 

already there, and there is a Fermi hole and a favourable exchange integral 

for each electron repulsion.

If we add an electron to O+, however, it has to have opposite spin to the ones 

already there, so there are no new Fermi holes. Consequently the O atom has 

a higher energy relative to O+ than the N atom relative to N+. 

This is the reason why O has a smaller ionization energy than N.



ML=  1 1 0 1 1 0

MS=
1

2
1

3

2
1

1

2
0

Term: 2𝑃1/2 3𝑃0
4𝑆3/2 3𝑃2

2𝑃3/2 1𝑆0

Exchange energy: 0 -K -3K -3K -4K -6K

∆Eexch:
(ion - atom)

0 K 2K 0 K 2K



More on spin-orbit coupling

The spin-orbit coupling is not described by the Schrodinger Hamiltonian, because it is 

relativistic in origin, but we can add it in. The spin-orbit coupling energy for a single electron is 

𝜁𝒍 ∙ 𝒔, with 𝜁 > 0. For a many-electron atom, the spin-orbit energy within a single term takes the 

form 𝜆෡𝑳 ∙ ෡𝑺, where 𝜆 = ±𝜁/2𝑆. The plus sign applies for shells that are less than half full, and 

the minus sign for shells that are more than half full.

The total angular momentum is ෠𝑱 = ෡𝑳 + ෡𝑺, which is associated with the quantum number J. J

can take the values from 𝐿 + 𝑆 by integer steps down to |𝐿 − 𝑆|, as we have seen.

Now

so

For an atomic term, ෡𝑳2 has the eigenvalue 𝐿(𝐿 + 1) and ෡𝑺2 has the eigenvalue 𝑆(𝑆 + 1), while 

෠𝑱2 has the eigenvalue 𝐽(𝐽 + 1), which is different for each level.
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H0 still can not interpret the atomic spectrums. We must consider the high level Hamiltonian 
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H0, L
2, LZ

have the common eigenfunctions    ,
li lm i iR r Y  

 ms i

S2, SZ

have the common eigenfunction

H0, L
2, LZ, S2, SZ

have the common eigenfunction        ,
l s lnlm m i lm i i msi R r Y i   

H（H0+ L·S）, L2, S2, J2, Jz

have the common eigenfunctions, l,s, j, mj are the good quantum numbers 



Hund's third rule and the Landéinterval rule

Consequently the spin-orbit coupling energy takes the form

Since 𝜆 is positive for shells that are less than half full, but negative for shells that are more 

than half full, this leads to Hund's third rule :

If the shell is less than half full, the lowest level within the ground term is the one with 

minimum J; if it is more than half full, the lowest level is the one with maximum J.

   2 2 21 1ˆ ˆˆ ˆ ˆ - [ 1 ( 1) 1 ]
2 2
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The scalar product S·L is negative if the spin and orbital angular momentum are in opposite 

directions. Since the coefficient of S·L is positive, lower J is lower in energy.
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This result also leads to the Landéinterval rule: the splitting between adjacent levels is 

proportional to the higher J value:

The spin-orbit coupling constant 𝜆 increases sharply with atomic number; for instance it is 

about 270 cm-1 for F, 586 cm-1 for Cl and 2460 cm-1 for Br. If the value is too large, so that 

the effects of spin-orbit coupling are comparable with those of electron repulsion, the 

treatment given here (known as Russell-Saunders coupling) is inappropriate.



The following approach may help in understanding Hund's third rule. 

For the B atom, a single electron with 𝑚𝑠 =
1

2
and 𝑚𝑙 = 1 has 𝑀𝐽 = 𝑀𝐿 +𝑀𝑆 =

𝑚𝑙 +𝑚𝑠 =
3

2
, so this microstate belongs to the level with 𝐽 =

3

2
. The spin and orbital angular 

momenta are in the same direction, so this arrangement is unfavourable. 

In the fluorine atom with the arrangement shown, we again have 𝑀𝐿 = 1, 𝑀𝑆 =
1

2

and 𝑀𝐽 =
3

2
, so again this microstate belongs to the level with 𝐽 =

3

2
. However the 

spin-orbit contributions for the two electrons with 𝑚𝑙 = 1 cancel (one has spin up, 

the other spin down), and similarly for the two with 𝑚𝑙 = 0. The remaining electron has 𝑚𝑙 =

− 1 and 𝑚𝑠 =
1

2
, so the spin and orbital angular momenta are in opposite directions and this 

arrangement is favourable.

The energy differences involved are quite small for light atoms (400 cm-1 for fluorine). They 

become much more important for heavier atoms.


