
7. Approximate methods - the Variation Method

In a famous paper published in 1929, Dirac wrote:

"The underlying physical laws necessary for the mathematical theory of ... the whole of 

chemistry are thus completely known, and the difficulty is only that the exact application of 

these laws leads to equations much too complicated to be soluble. It therefore becomes 

desirable that approximate practical methods of applying quantum mechanics should be 

developed, which can lead to an explanation of the main features of complex atomic systems 

without too much computation."

With the help of computers, we can now solve many of the problems that Dirac considered 

insoluble in 1929. The most important tools for this purpose are the Variation Method and 

Perturbation Theory. Here we examine the first of these and show how it leads to the ideas that 

we use to understand chemical bonding.



The Variation Principle

The Variation Method is based on the variation principle.

This asserts that if ෨𝜓 is an arbitrary wavefunction satisfying the boundary conditions for the 

problem, then the expectation value of its energy is not less than the lowest eigenvalue of the 

Hamiltonian.

That is,
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where E0 is the lowest eigenvalue of H
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Proof

Expand ෨𝜓 in terms of the normalized eigenfunctions of H
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If  H is any linear Hermitian operator that represents a physically observable property, 
then the eigenfunctions of H form a complete set.
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if 𝐸0 is the ground-state energy. Note that ෨𝐸 = 𝐸0 only if all the 𝑐𝑘 are zero for states with 

𝐸𝑘 > 𝐸0. To get the energy exactly right we have to get the wavefunction exactly right.

However a good approximation to the wavefunction will yield a good approximation to the 

energy.

To arrive at good approximation to the ground state energy E, we try many trial 

variation functions and look for the one that gives  the lowest value of the variational

integral.



Variation principle for a particle in a box

Suppose that we did not know the ground-state wavefunction for a particle in a box. 

Knowing that it has to be zero when 𝑥 = 0 and 𝑥 = 𝑎, we might try the wavefunction ෨𝜓 =
𝑥(𝑎 − 𝑥). For this wavefunction we find
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The exact energy for the ground state in this case is ℎ2/8𝑚𝑎2, so the approximate result is 

higher than the exact one by a factor of 10/𝜋2 = 1.013. The wavefunction is not correct, 

but it gives a good estimate of the energy.
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Variation method for the harmonic oscillator 

Usually we use a trial function that contains one or more adjustable parameters, and minimize 

the energy with respect to the parameters. We can use the variation method in this way to find 

the harmonic oscillator ground state, using the trial function ෨𝜓 = e−
1

2
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To find the lowest energy, we minimize with respect to 𝛼 and 

easily find that 𝛼 = 𝑘𝑚/ℏ, as before.

The first term in ෨𝐸 is the expectation value 𝑇 of the kinetic 

energy, while the second term is the expectation value 𝑉 of 

the potential energy. If 𝛼 is large, we get a sharply peaked ෨𝜓

which has a low potential energy but a high kinetic energy. If 

𝛼 is small, the wave function is broad and varies slowly with 

x, so 𝑇 is small, but it extends into regions where the 

potential energy is high.



Linear combination of atomic orbitals

Usually we choose a trial wavefunction that has one or more adjustable parameters in it, and 

choose values for the parameters that minimize the energy. An very important type of trial 

function is the linear combination of atomic orbitals (L.C.A.O.), which we can illustrate for 

the hydrogen molecule ion.

The wavefunction for an individual hydrogen atom is the 1s orbital; for a hydrogen 

molecule ion we try the wavefunction

where sa is the normalized 1s orbital for atom a and sb for atom b, and ca and cb are 

numerical coefficients that we shall adjust to minimize the energy. This function behaves 

like sa near nucleus a, where sb is small, and like sb near nucleus b.
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The energy ෨𝐸 for the L.C.A.O. trial function is
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𝛼 is the energy of the hydrogen 1s orbital, somewhat modified because the Hamiltonian is 

for the molecule, not the atom. 𝛽 is the energy of the overlap density in the field of the 

molecule; it describes the strength of the bonding, and like 𝛼 it is negative. S is the overlap 

integral, and for simplicity we neglect it.
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differentiate with respect to 𝑐𝑎

At the minimum, 𝜕 ෨𝐸/𝜕𝑐𝑎 = 0, so this becomes
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They have a non-trivial solution (i.e., other than 𝑐𝑎 = 𝑐𝑏 = 0) only if the determinant of the 

coefficients (the secular determinant) is zero:
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[Recall the condition for non-trivial solutions:
Given the matrix equation 𝑨𝑥 = 0, we can 
multiply by 𝑨-1, if it exists, to get 𝑨-1𝑨𝑥 = 𝑥 =
0. So for non-trivial solutions 𝑨-1 must not exist, 
i.e. 𝑨 must be singular, with det(𝑨) = 0.]



When ෨𝐸 = 𝛼 + 𝛽 we find 𝑐𝑎 = 𝑐𝑏, and if the wavefunction is to be normalized (i.e., 𝑐𝑎
2

=𝑐𝑏
2 = 1) we need 𝑐𝑎 = 𝑐𝑏 = 1/2.

In the same way, ෨𝐸 = 𝛼 − 𝛽 leads to 𝑐𝑎 = −𝑐𝑏 = 1/2 .

Remember that 𝛽 is negative.



Molecular orbitals of lithium hydride

Often we need to deal with heteronuclear molecules, of which LiH is the simplest example. 

Here the two valence orbitals, Li 2s and H 1s, have different energies
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The secular equations become
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In general, we find the orbital coefficients, ca and cb in this case, by substituting the energy 

back into the secular equations and solving for the coefficients.



The essential features of the orbital coefficients are that if 𝛼𝑎 > 𝛼𝑏,

• the bonding orbital has |𝑐𝑏| > |𝑐𝑎| and the antibonding orbital has |𝑐𝑏| < |𝑐𝑎|.

• The coefficients have the same sign for the bonding orbital, and opposite signs

for the antibonding one.



General features of the two-orbital problem

We can deduce some general results from the energy expression:

• If 𝛼𝑎 = 𝛼𝑏 = 𝛼 we get energies 𝐸 = 𝛼 ± 𝛽 as before.

• If 𝛽 = 0 there is no interaction and the energies are 𝐸 = 𝛼𝑎 and 𝐸 = 𝛼𝑏.

• For a fixed value of 𝛽，the bonding orbital is stabilized most when 𝛼𝑎 − 𝛼𝑏 = 0. If 𝛼𝑎 >
𝛼𝑏 the stabilization is
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E1 = a- ||, E2  b +||

The AOs should have comparable energy.
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Lithium hydride: a better approach 

How do we know that the Li orbital in this molecule is an sp hybrid? We allow the 2s and 

2pz orbitals to contribute independently to the wavefunction, and let the variation principle 

find the answer.
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We have more 𝛼s and 𝛽s in this problem. In a real calculation the computer would calculate 

them. For illustration we assume that 𝛼𝑠 = 𝛼𝑝 = 𝛼, 𝛼ℎ = 𝛼 + 𝛽 and 𝛽𝑠ℎ = 𝛽𝑝ℎ = 𝛽. 𝛽𝑠𝑝 is 

zero by symmetry. The secular equation becomes
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The usual procedure is to substitute α − ෨𝐸 = 𝑥𝛽 in the secular determinant, and factorize 𝛽
out of each row. This gives a simple cubic equation for x. It is now quite easy to show that cs

= cp in two of the solutions (giving an sp hybrid 𝜑Li2𝑠 + 𝜑Li2𝑝𝑧) and cs = -cp in the other 

(giving another sp hybrid).



The effect of overlap

In solving the secular equations for the hydrogen molecule ion we assumed that the overlap 

integral 𝑆 = 𝑠𝑎𝑠𝑏׬ d𝜏 was negligible. This is in fact a poor approximation. If we don't ignore it, 

the eq becomes

and the secular equations become

Setting the secular determinant to zero gives

Setting 𝛼 = 0, so that we are taking ෨𝐸 relative to the non-bonding energy 𝛼, we get

Since 𝑆 > 0, the strength of the bonding is reduced, while the strength of the antibonding is 

increased.
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Based on this principle, the parameters are regulated by the minimization routine so as

to obtain the wavefunction that corresponds to the minimum energy. This is taken to be the

wavefunction that closely approximates the ground state.

Linear Variation Functions
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• From the variation theorem, we know that the lowest value of root  is the upper bound for 

the system’s ground-state energy. 

• If approximation to the energies of more states are wanted, we add more functions fk to

the trial function .

• The addition of more functions fk can be shown to increase the accuracy of the

previously calculated energies.


