
What’s a  chemical bond?  

Chemical bonding occurs when one or more electrons are 

simultaneously attracted to two nuclei.



"SOMETIMES IT SEEMS to me that a bond between two atoms has 

become so real, so tangible, so friendly, that I can almost see it. Then 

I awake with a little shock, for a chemical bond is not a real thing. It 

does not exist. No one has ever seen one. No one ever can. It is a 

figment of our own imagination.”     

--C.A. Coulson (1910-1974) 

The molecular orbital theory that Coulson developed is an 
extension of atomic quantum theory and deals with 'allowed' 
states of electrons in association with two or more atomic nuclei, 
treating a molecule as a whole. He was thus able to explain 
properly phenomena such as the structure of benzene and other 
conjugated systems, and invoked what he called partial valency to 
account for the bonding in such compounds as diborane. 
He wrote three best-selling books: Waves 1941, Electricity 1948, 
and Valence 1952.



• Molecular Orbital (MO) Theory

a) Proposed by Hund, Mulliken, Lennard-Jones et al. in 1930s.  

b) Further developments by Slater, Hückel and Pople et al.

c)  MO-based softwares are widely used nowaday, e.g., Gaussian  

• Valence Bond (VB) Theory

a) Proposed by Heitler and London 1930s, further developments by Pauling and Slater et al.

b) Programmed in later 1980s,  e.g., latest development--XMVB! 

• Density Functional Theory

a) Proposed by Kohn et al. 

b) DFT-implemented QM softwares are widely used, e.g., ADF.

Quantum mechanical theory for chemical bonding



G. N. Lewis

He introduced the notions of electron-pair bonding and the octet rule.

The Atom and the Molecule JACS, 1916, 38, 762

The covalent bond consists of a shared pair of electrons 

The discovery of the covalent bond and the concept of electron pairs

nominated 41 times for Nobel prize



I. Langmuir

The Arrangement of Electrons in Atoms and Molecules. 

JACS, 1919, 41, 868–934

The term "covalence" in regard to bonding is proposed firstly

“covalence”



Zeits. für Physik. 44, 455 (1927). 

Interaction Between Neutral Atoms and Homopolar

F. LondonW. Heitler

In 1927 the Heitler–London theory was formulated to show how two hydrogen atom 

wavefunctions join together, with plus, minus, and exchange terms, to form a covalent bond.

The naissance of VB and quantum chemistry



The Nature of the Chemical Bond, Cornell University Press, Ithaca New York,1939 (3rd Edition, 1960).

L. Pauling

A B A B A B

A B

Pauling constructed a general quantum chemical theory for

polyatomic molecules. He developed the notion of hybridization, the

covalent-ionic superposition, and the resonating benzene picture.

The contributions of Pauling



 The pair bonding ideas of Lewis

 The Heitler–London theory

 Resonance (1928)

 Hybrid orbitals (1930)

Classical VB theory



R. S. Mulliken

J. C. Slater; F. Hund; J. Lennard-Jones… 

Molecular orbital theory

Originally called the Hund-Mulliken theory, introduced by 

Mulliken in 1932.

The first accurate calculation of a molecular orbital 

wavefunction was that made in 1938 on the hydrogen 

molecule.

From 1950s….



共振论与化学键概念直接联系，成功地应用到所有化学结构和所有化学问题

L. Pauling, The Nature of the Chemical Bond, Cornell University, Press, Ithaca 

New York, 1939 (3rd Edition, 1960).

G.W. Wheland, Resonance in Organic Chemistry，Wiley, New York, 1955.

相反地，MO理论直接与已有的化学思想概念抵触

VB理论统治着人们对化学的理解



1950 年中期，

MO方法 Huckel规则得到实验验证

1952年Fukui发表了前线分子轨道理论

光谱，化学反应等应用的成功，

计算方法的发展（EHMO, 半经验方法）

1965年Woodward和Hoffmann发表轨道对称守恒原理

对化学反应的研究取得巨大的成功

VB方法停滞不前，没有给出新东西，无法应用于较大分子体系



Density functional theory

The Hohenberg-Kohn Theoremm

Density Is Everything

Kohn played the leading role in the development of density 
functional theory, which made it possible to calculate quantum 
mechanical electronic structure by equations involving the 
electronic density (rather than the many-body wavefunction). 

There exists a one-to-one correspondence between the electron 

density of a system and the energy
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Once v(ri) and N are specified, wave function is determined.



Proof by contradiction

If the theorem is wrong, one (r) must correspond to least two external potential, v(r) 

and v’(r), so there must be two Hamiltonian system:

H = T + V + Vee

H’ = T’ + V’ + V’ee

(1)The operator  T = T’ , Vee = V’ee

so we have H = H’ + V - V’

(2) H=E

H’’=E’’

For system 1: (r) = |(r)|2

2: (r) = |’(r)|2



(3) According to variation principle:

If the exact ground state (r) is found, the energy is

E = <|H|> 

E’ = <’|H’|’>

If the ground state (r) is not fully optimized, then E < <|H|> 



E = <|H|> 

< <’|H|’> 

= <’| H’ + V - V’ |’> 

= <’| H’ |’> + <’| V - V’ |’> 

= E’ + <’| V - V’ |’> 
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Because:

So we have: 
  )()'(' rVVdrEE  (*)



  )()'(' rVVdrEE  (**)

Sum of eqs (*) and (**), we have:

E + E’ < E+ E’

The conclusion is wrong. 

So the theorem is right.

E’ = <’|H’|’> 

< <|H’|> 

= <| H – (V - V’ )|> 

= <| H |> - <’| V - V’ |’> 

= E - <’| V - V’ |’> 



(1)Instead of dealing with the formidable 3N degrees of freedom, only 3 degrees of freedom 

are necessary to be studied in any physical or chemical system since the electron density 

normally is a 3-dimensional variable. 

This theorem grantees that a quantum theory based on the particle density is not only 

possible but also promising.

(2) The nuclear geometry => V(r) => (r) => H

It determines the physical and chemical nature of the system. 

Structure determine everything.



8. Diatomic molecules 

For calculations on larger molecules it is necessary to use a linear combination containing 

many more functions. The set of functions that we use is called a basis set. The simplest basis 

set contains, for each atom, the atomic orbitals up to and including its valence shell. This 

minimal basis for any first-row atom contains the 1s, 2s, 2px, 2py and 2pz orbitals. For a first-

row diatomic this gives 10 functions, and leads to secular equations for the 10 coefficients —

an eigenvalue equation involving a 10 × 10 matrix.

This basis set can be improved by adding more functions. A split-valence basis uses two 

each of the 2s and 2p functions, one a bit more contracted and one a bit more diffuse than the 

single function of the minimal basis. This allows the wavefunction on a particular atom to be 

more contracted if it carries a net positive charge, or more diffuse if it carries a net negative 

charge.



Modern accurate wavefunction calculations use even bigger basis sets, and the secular 

equations can then only be solved using a computer. However valuable insights may be 

obtained using the much simpler approach of Hückel theory, combined with the use of 

symmetry to simplify the problem.



Homonuclear diatomic molecules 

The two-orbital picture can be applied to diatomic molecules. Let's consider the F2 molecule.

The 1s atomic orbitals are far removed in energy from the other orbitals, so they don't mix 

with them. Also they are very compact, so they overlap with each other only very slightly —

𝛽 is very small. However ∆𝛼 is zero, so the molecular orbitals are sum and difference of the 

atomic orbitals.

Molecular orbitals in diatomics are labelled 𝜎 if they have no nodes containing the molecular 

axis, 𝜋 if they have one such node, and so on.

Orbitals are described as g (for German gerade, 'even') if they are unchanged by inversion 

through the centre of mass — that is, if 𝜓(−𝑥,−𝑦,−𝑧) = 𝜓(𝑥, 𝑦, 𝑧).

They are u (for German ungerade, 'odd') if inversion changes the sign, i.e. if 

𝜓 −𝑥,−𝑦,−𝑧 = −𝜓(𝑥, 𝑦, 𝑧).

Thus the 1s atomic orbitals generate a 1s𝜎g orbital and a 1s𝜎u one



Orbitals in diatomic molecules: F2

In F2 the 2s orbitals are some way below the 2p in energy, and as a first

approximation we can ignore sp mixing. There is a bonding

combination (2s𝜎g) and an antibonding one (2s𝜎u). The overlap is much

larger than for the 1s orbitals, so 𝛽 is bigger and the difference in

energy is substantial.

Finally, the 2p orbitals can be classified into 2p𝜎 (pointing along the bond) and 2p𝜋

(perpendicular to the bond). The 𝜎 and 𝜋 orbitals don't mix with each other — the 𝛽

integral between 𝜎 and 𝜋 is zero because positive and negative regions cancel.

Consequently we get bonding and antibonding 2p𝜎 orbitals — 2p𝜎g and 2p𝜎u respectively.

From the 2p𝜋 orbitals we get a pair of 2p𝜋u bonding orbitals and a pair of 2p𝜋g

antibonding orbitals. The resulting orbital energy level pattern is the familiar picture shown.

(The 1s𝜎g and 1s𝜎u levels have been omitted.)



N2

In the fluorine atom, the 2s and 2p orbitals are well separated 

because of screening effects.

Further to the left in the periodic table, screening has less 

effect in separating the 2s and 2p orbital energies, and we 

have to allow for sp mixing. This can again be treated as a set of 

two-orbital problems, one for each symmetry.

The 2s𝜎g and 2p𝜎g orbitals mix, pushing each other apart so that 

the 2s𝜎g becomes more strongly bonding and the 2p𝜎g more 

weakly bonding.

Similarly, the 2s𝜎u and 2p𝜎u orbitals mix and push each other apart.

The 2p𝜋 orbitals are unaffected.



Because the 𝜎 orbitals are now mixtures of s and p, it is usual to 

label them sequentially from lowest energy upwards. Sometimes 

the core orbitals are included in the numbering, sometimes not. 

Here we count them as 1𝜎g and 1𝜎u.

The outcome of all this is that for N2,

• The 2𝜎g orbital is very strongly bonding.

• The 3𝜎g orbital lies above the 𝜋u and is relatively weakly 

• bonding.

• The 2𝜎u orbital is only weakly antibonding.

These effects are present in O2 but the screening effects are 

intermediate between N2 and F2. In particular, the 3𝜎g orbital 

lies below the 𝜋u in O2.
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Electronic configurations

2s-2pz mixing

3su

1p*
g

3sg

1pu

2s*
u

2sg



Angular momentum in diatomics

As before, መ𝑙z =
𝜕

𝜕𝜑
. For orbitals to have definite angular momentum they need to be expressed 

in complex form. The value of 𝜆 is identical to m in those equations, so 𝜆=0 for 𝜓2𝑝0 and ±1 

for 𝜓2𝑝1 and 𝜓2𝑝 ҧ1
respectively. Orbitals with 𝜆=0 are called 𝜎, those with 𝜆=±1 are 𝜋, and so 

on; the letters are the Greek equivalents of the s, p, d, f, etc., that we use for l = 0, 1, 2, 3, etc., 

in atoms.

Angular momentum is an important property of diatomics and other linear 

molecules. We take the z axis to coincide with the internuclear axis. The 

orbital angular momentum operators for an electron are the components መ𝑙x, 
መ𝑙y

and መ𝑙z and መ𝒍2 = መ𝑙x
2+ መ𝑙y

2 + መ𝑙z
2, but only መ𝑙z commutes with the Hamiltonian and 

only it can have a definite value. It is customary to use greek letters for 

diatomics, and the quantum number associated with መ𝑙z is called 𝜆. We can 

assign a 𝜆 value to each occupied molecular orbital, and we just add these up 

to get the total angular momentum Λ for all the electrons.



Term symbols for diatomics

Term symbols are used for diatomics in the same way as for atoms — to label states and to 

specify their angular momenta and other symmetry characteristics. The central item 

represents the quantum number Λ, but it is expressed as a greek letter: Σ, Π, Δ, Φ, etc., for Λ = 

0, 1, 2, 3, etc.

𝑋2𝑆+1Λ𝑔/𝑢
±

There may be a prefix letter: 

usually X for the ground term, 

then A, B, etc., for higher-energy 

terms with the same multiplicity 

and a, b, etc., for terms with 

different multiplicity.

The right subscript is g if the 
overall molecular 
wavefunction is unchanged 
by inversion of all the 
electron coordinates in the 
centre of mass, or u if 
inversion changes the sign



Constructing diatomic term symbols 

• We get Λ by adding up the 𝜆 values for the occupied orbitals.

• If the number of electrons in u orbitals is odd, the overall inversion symmetry is u,

otherwise it is g.

• Hund's rule determines the spin and hence the multiplicity for the ground term, but 

other values may be possible for excited states.

• For Σ states only, there is a superscript + or − which describes the effect of reflecting 

the entire wavefunction in a plane containing the internuclear axis, or (equivalently) the 

effect of changing the sign of the 𝜑 coordinates of all the electrons. The - case can only 

arise in open-shell Σ states.



H2


Molecule     Configuration             

(1sg)1

 g

2

e.g.,  (1pu)2
 (1p+1)

1 (1p-1)
1

 = +1 -1 =0,  S = 1, u×u = g

or

 =0, S=1/2

m =0 
ms = 1/2

Reflection

212 S

0 



H2

Molecule     Configuration             Term symbol    

(1sg)2


g

1
Σ

H2
 (1sg)2(1su)1



u

2
Σ

He2 (1sg)2(1su)2


g

1
Σ

Li2 (1sg)2(1su)2(2sg)2


g

1
Σ

1sg1s 1s

1su1s 1s

2sg2s 2s

2su2s 2s

Be2 (1sg)2(1su)2(2sg)2(2su)2


g

1
Σ

• For homonuclear diatomics, a closed-shell electronic configuration has S = 0 and  =0 , 

giving rise to the spectral term         .  

gΣ
1

• The spectral terms of molecules with open shell(s) are determined by the electrons in 

the open shell(s)!



Examples of diatomic term symbols 

Let us find the ground terms of some of the first-row 

homonuclear diatomics.

Li2 There are 2 valence electrons. They occupy the 2𝜎g orbital 

(𝜆 = 0), so Λ = 0. The spins are paired, so S = 0. There are no u

orbitals occupied, so the term symbol is 1Σ𝑔
+.

N2 There are 10 electrons. All the bonding orbitals are occupied. 

The 𝜋u orbitals have 𝜆 = ±1, but there are two electrons in each, 

so the total Λ = 0 as before. Once again we have a 1Σ𝑔
+ term.



Diatomic term symbols: N𝟐
+

In the photoelectron spectrum of N2, we observe states of N2
+. The lowest 

of these has an electron removed from the 3𝜎g orbital, leaving the 

configuration ...2𝜎𝑢
2𝜋𝑢

43𝜎𝑔
1 . There is only a single 𝜎g electron outside 

closed shells, so Λ = 0 and 𝑆 =
1

2
, and the term symbol is 𝑋2Σ𝑔 .

Other possibilities observed in the photoelectron spectrum include the ionisation of an 

electron from the 𝜋u shell (𝜆 = ±1), to give a state with Λ = ±1, the 𝐴2Π𝑢 term. Removal of 

an electron from the 2𝜎u orbital leaves a single 𝜎u electron apart from closed shells, and gives 

the B2Σ𝑢 term.

The photoelectron spectrum, together with other spectroscopic data, provides experimental 

evidence for the theoretical expectation that the 2𝜎u orbital is only weakly antibonding and 

the 3𝜎g only weakly bonding.



Diatomic term symbols: C2

C2 is an interesting case. The obvious candidate for the ground state has 

the configuration ...(2𝜎g)
2(2𝜎u)

2(𝜋u)
4, which is a closed shell, with term 

symbol 1Σ𝑔
+.

However the energy difference between 𝜋u and 3𝜎g is small, so there is 

the possibility of promoting an electron, giving the 

configuration ...(2𝜎g )2(2𝜎u)
2(𝜋u)

3(3𝜎g)
1. The promotion energy can be 

compensated by making the spins parallel (triplet state). 

Two of the 𝜋 electrons can have 𝜆 = 1 and the other 𝜆 = −1, or 

vice versa, so Λ = ±1 and we have a Π term. The number of occupied u orbitals is now odd, so 

the overall g/u symmetry is u, and the overall term symbol is 3Π𝑢 .

For some years it was not known which of these states is the ground state. It is now established 

to be the 1Σ𝑔
+, but the 3Π𝑢 is only about 700 cm-1 higher



Diatomic term symbols: O2

The oxygen molecule is a more complicated case. There are 2 electrons in addition to the 

N2 closed shell, and they go in the shell. There are several possibilities.

a1Δ𝑔 b1Σ𝑔
+ X3Σ𝑔

−

E = 7918 cm-1 13195 cm-1 0 cm-1

Hund's first rule tells us that the ground state is the one with the highest spin, i.e. the 3Σ𝑔
− state.



Term symbols for 𝝅2 configurations

To complete the term symbols for O2, or for any state with two electrons in a 𝜋 shell, we have to 

examine the wavefunctions in a bit more detail. We only need to consider the 𝜑-dependent part 

of the wavefunction, and the spin.

For equivalent electrons in an open shell: pg
2 has in total C4

2 = 6 microstates.  (e.g., O2)

m  +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1

ML=   0 

MS =  1

0 

-1

0 

0

0 

0

2 

0

-2 

0



       2 1 1 2 2g g p  p  

            2 -

1
1 2 1 2 1 2

2
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 
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 

Angular Momentum: |ML| = (+1) + (-1) = 0

Symmetry: gg = g



       3 1 1 2 2g g p  p  
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1
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Angular Momentum: |ML| = (+1) + (-1) = 0

Symmetry: gg = g

Consider the Σ wave functions and make the substitution πg+  → πg− 

notice that the triplets change sign while the singlet does not.
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• MO’s will no longer contain equal contributions from each AO.

– AO’s interact if symmetries are compatible.

– AO’s interact if energies are close.

– No interaction will occur if energies are too far apart.  A nonbonding orbital will form.

YY makes a 

greater 

contribution to 

the YMO

YX makes a 

greater 

contribution 

to the Y*
MO

MO Theory for Heteronuclear Diatomics



Heteronuclear diatomics: CO 

We can think of CO as a modified N2, in which we have moved a proton charge from one 

nucleus to the other. There is no centre of symmetry in a heteronuclear diatomic, so the g/u

labels don’t apply. Several differences result:

• The core orbitals are far removed in energy from each other as well as from the other orbitals, 

so they don't mix. The 1𝜎 is wholly on the O atom and the 2𝜎 wholly on the C.

• The difference in electronegativity causes bonding orbitals to have their electron density 

mainly on the O atom, while the antibonding ones have their electron density mainly on the C.

• What were the 2𝜎u and 3𝜎g orbitals of N2 can now mix with each other. The resulting 4𝜎

orbital is essentially a lone-pair on the oxygen, while the 5𝜎 is a diffuse lone-pair orbital on 

the carbon.

• The 𝜋u now labelled 1𝜋, has its density mainly on the O atom. The unoccupied 2𝜋, formerly 

the 𝜋g, is primarily on the C atom, where it is an effective 𝜋-acceptor orbital.



LiH 4 K(2σ)2

BeH 5 K(2σ)2 (3σ)1

CH 7 K(2σ)2 (3σ)2 (1π)1

NH 8 K(2σ)2 (3σ)2 (1π)2

OH 9 K(2σ)2 (3σ)2 (1π)3

HF 10 K(2σ)2 (3σ)2 (1π)4

Electronic configurations

Heterogeneous diatomic molecules, HX

MO diagram for HF
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Simplified MO diagram of heteronuclear diatomic molecules

A  BA = B

A B
z

yA
yB

xA xB

2p 2p

pu

sg

pg

su

2s2s

sg

su

1s1s

sg

su

A B
z

yA
yB

xA xB

2s

2s

s

s

2p

2p

p

s

p

s



BeO 12 KK(3σ)2 (4σ)2 (1π)4

CN 13
KK(3σ)2 (4σ)2 (1π)4 (5σ)1

CO 14
KK(3σ)2 (4σ)2 (1π)4 (5σ)2

NO 15
KK(3σ)2 (4σ)2 (1π)4(5σ)2 (2π)1

Heterogeneous diatomic molecules, YX

Isoelectronic rule: 

The MO’s bond formation and 

electronic configurations are 

similar among the isoelectronic 

diatomic molecules.

CO is isoelectronic with N2.

KK(3σ)2 (4σ)2 (1π)4 (5σ)2

2s

2s

s

s

2p

2p

p

s

p

s



LiH 4 K(2σ)2 1Σ+

BeH 5 K(2σ)2 (3σ)1 2Σ+

CH 7 K(2σ)2 (3σ)2 (1π)1 2Π

NH 8 K(2σ)2 (3σ)2 (1π)2 3Σ—

OH 9 K(2σ)2 (3σ)2 (1π)3 2Π

HF 10 K(2σ)2 (3σ)2 (1π)4 1Σ+

BeO , BN 12 KK(3σ)2 (4σ)2 (1π)4 1Σ+

CN ,

BeF

13 KK(3σ)2 (4σ)2 (1π)4 (5σ)1 2Σ+

CO 14 KK(3σ)2 (4σ)2 (1π)4 (5σ)2 1Σ+

NO 15 KK(3σ)2 (4σ)2 (1π)4 (5σ)2 (2π)1 2Π

Molecule   electrons         electronic configuration               term
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