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2. Representations  (群的表示)

What we will see in this section is that it is very convenient to arrange for the orbitals to 

behave in a way which reflects the symmetry of the molecule. 

This discussion will lead us to introduce representations (表示) and the all-important 

irreducible representations (不可约表示) of the point groups. 

The key thing about a symmetry operation is that it leaves the molecule in an 

indistinguishable orientation to the starting position, e.g., xz over H2O.

e.g, the 2s, 2pz, 2px, 2py valence atomic orbitals (VAOs) of O in H2O.

What effect do these symmetry operations have on functions 

‘within’ the molecule, such as the atomic orbitals? 



2.1 Introducing representations

• The idea of a representation is best introduced using an example:  H2O (C2v)

Symmetry elements for H2O (C2v): the identity (E), a two-fold axis of rotation (the principal axis, 

C2) and two (vertical) mirror planes (v). 

• By convention the z-axis is coincident with the principal axis, but we are at liberty to put the x- and 

y-axes where we like. (e.g., right handed coordinates!)

• Allowed symmetry operations for H2O (C2v):    E,   𝑪𝟐
𝒛 , xz,  yz. 

(These four operations are of course the elements of the C2v point group!) 



2.1.1 Behavior of  the oxygen AOs in H2O

• How are the oxygen atomic orbitals (AOs) 

affected by the symmetry operations of the 

point group: 𝑪𝟐
𝒛 , σxz and σyz. 

White for + and black/red for  value of the wavefunctions.

Start 

& effect of E

• Under the symmetry operations these 

AOs either remain the same or simply 

change sign; they neither move to another 

position nor become other orbital. 

• In each case, the effect of a symmetry 

operation  𝑹 can be expressed in the form of 

 𝑹𝝍 = 𝑨𝝍 (A = +1 or –1). 

Es = 𝑪𝟐
𝒛s = σyzs =σxzs =s s s s

Epx = 𝑪𝟐
𝒛px = σyzpx =σxzpx =px −px

px −px

Epz = 𝑪𝟐
𝒛pz = σyzpz =σxzpz =pz pz pz pz

Epy = 𝑪𝟐
𝒛py = σyzpy =σxzpy =py −py py

py

• In Group Theory these AOs are an example 

of a set of basis functions; they are simply 

referred to as a basis. 

(1)px

(+1)s (+1)s(+1)s(+1)s

(+1)px
(+1)px(1)px

(+1)pz
(+1)pz (+1)pz

(+1)pz

(1)py(+1)py (+1)py(1)py

• The effect of the symmetry operations on px

can be summarized as  (+1, −𝟏, +1, −𝟏).

effect of 𝑪𝟐
𝒛

effect of 𝝈𝒙𝒛
effect of 𝝈

𝒚𝒛



2.1.1 Behaviour of  the oxygen AOs in H2O

• Taking the O px orbital as the basis, the effect of the symmetry operations can be summarized 

by grouping together as follows :  (+1, −𝟏, +1, −𝟏).

• In Group Theory this is said to be a representation of the operations of the group in a basis

consisting of just the px AO, and can be found as a row in the character table.

(+1,−1,+1,–1) in the basis px

• In the character table the rows are a very special set of representations called the irreducible 

representations (IRs). 



Which row for the basis py?

2.1.1 Behaviour of  the oxygen AOs in H2O
• Similarly, the s, py and pz AOs each result in a representation:

representation in the basis s:  (+1,+𝟏,+1,+𝟏)

representation in the basis py:  (+1,−𝟏,−1,+𝟏)

representation in the basis pz:  (+1,+𝟏, +1,+𝟏)

• These are all described as one-dimensional representations since in each case there is only one 

basis function. They also can be found in the character table of C2v. 

(+1,−1,−1,+1) in the basis py

(+1,−1,+1,–1) in the basis px

Which row for the basis pz?(+1,+1, +1,+1) in the basis s or pz

• In the present example,  we would say that ‘px transforms as the irreducible representation 

B1’. Similarly, py transforms as B2 and pz transforms as A1. 

Ex. 5



2.1.2 Behavior of  the hydrogen AOs in H2O

• The basis functions sA and sB are interconverted

by the operations of the group. (write eqs.!)

• The effect of a particular operation on an orbital 

function is no longer simply to multiply it by ±1,

but can be expressed as a linear combination of 

the two AOs. 

• Two hydrogen 1s AOs in water (labeled as sA and sB). 

𝑪𝟐
𝒛sA=

𝑪𝟐
𝒛sB=

𝑪𝟐
𝒛 sA

sB

=
sB

sA

=
0 1
1 0

sA

sB

𝒙𝒛sA=

𝒙𝒛sB=
𝝈𝒙𝒛 sA

sB

=
sA

sB

=
1 0
0 1

sA

sB


y𝒛

sA=


𝒚𝒛

sB=
𝝈𝒚𝒛 sA

sB

=
sB

sA

=
0 1
1 0

sA

sB

𝑬sA=

𝑬sB=
𝑬

sA

sB

=
sA

sB

=
1 0
0 1

sA

sB

effect of C2
z effect of xz effect of yzstart & effect of E

sA = 1sA + 0 sB

sB = 0sA + 1 sB

sB

sA

sA

sB

sB

sA

sA
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2.1.2 Behaviour of  the hydrogen AOs in H2O

• These four matrices together form a representation of the operations of the group:        

{ 
1 0
0 1

0 1
1 0

1 0
0 1

0 1
1 0

}

𝑪𝟐
𝒛𝑬 σxz σyz

• This is a two-dimensional representation, which is a set of 2 × 2 matrices, generated in the 

basis consisting of two orbitals (or basis functions), sA and sB.

• The characters of the matrices are more important than the matrices themselves. For the 

above representation in the sA and sB basis, the characters are

( 2  ,       0     ,      2     ,      0 )

𝑪𝟐
𝒛𝑬 σxz σyz

The character () of a matrix: the sum of the 

diagonal elements (also known as the trace)

The matrix representative of E (identity) must 

always be a unit matrix, so its character must 

be equal to the number of basis functions.
the dimensionality of the representation!



2.1.3 Characters and reducible representations

• The representation with  characters (2,0,2,0) is not one of the IRs in the character table. 

i.e., the representation with characters (2,0,2,0) is reducible (可约的) and can be reduced to 

the sum of the two IRs A1 and B1, i.e., A1 ⊕ B1. (⊕~直和)

• The two-dimensional representation formed by the two hydrogen 1s orbitals ‘spans the IRs 

A1 and B1’. In other words, ‘these two orbitals transform as A1 ⊕ B1’.

• However, this set of numbers can be 

obtained by adding together the 

characters of the IR A1 with those of the 

IR B1, i.e., A1 ⊕ B1 :  (2,0,2,0)
⊕

2       0       2 0   



2.1.4 A quick method of finding characters

• If a symmetry operation moves an orbital to a different position there will be a 0 on the 

diagonal of the matrix. e.g. for the effect of 𝑪𝟐
𝒛 on sA.

Since we are only interested in the characters of the representative matrices (i.e. the sum of 

the diagonal elements), then we only need to work out their diagonal elements.

• If the symmetry operation leaves the orbital in the same place, there will be a +1 on the 

diagonal, e.g., for the effect of σxz on sA. 

• Finally, if the orbital remains in the same place but just changes sign, a 1 will appear on 

the diagonal, e.g., for the effect of 𝑪𝟐
𝒛 on the O px. 



2.1.4 A quick method of  finding characters

1. For each orbital which remains unaffected by the operation, count +1

2. For each orbital which remains in the same position but simply changes sign, count 1

3. All orbitals that are moved by the operation count zero.

Simple rules for finding the character corresponding to a particular symmetry operation:

In the basis of the two hydrogen 1s orbitals, the procedure is applied in the following way:

Operation 𝑪𝟐
𝒛 :

Operation  𝑬 : both sA and sB unaffected, both count +1; character is +1 + 1 = +2

Operation σxz:

both sA and sB moved, both count 0; character is 0+0 = 0

Operation σyz:

both sA and sB unaffected, both count +1; character is +1 + 1 = +2

 The characters are therefore (2,0,2,0), as we found before.

both sA and sB moved, both count 0; character is 0+0 = 0

BA



σyz : both moved,         0 + 0 = 0

 (2,0,-2,0)  

2.1.4 A quick method of  finding characters

Example: (somewhat hypothetical) two equivalent py orbitals on the hydrogens in H2O.

 A2 ⊕ B2. 

𝑬 : both unaffected, +1 + 1 = +2

E C2
z xz yz

two functions in the basis  ? -dimensional representation.

Ex.6

two

σxz : both change sign, -1-1 = -2

( 𝑹) 2 0 -2 0

𝑪𝟐
𝒛 : both moved,         0+0  = 0

Now reduce it!? 

Now count out (  𝑅) !



2.1.5 Introducing symmetry orbitals

•  In section 2.1.3, we saw that the two hydrogen 1s AOs in H2O transform as A1⊕B1. We 

should be able to find a (linear) combination of the two AOs which transforms just as A1 and 

another combination which transforms as B1. 

( 𝑹) 1

Ex.7

C2
z xz yzE

(sA + sB)

(sA sB)

•  Let us consider (sA  sB) .

( 𝑹)

1 1 1

1 1 1 1



2.1.5 Introducing symmetry orbitals

• (sA+sB) and (sA-sB) are called symmetry orbitals (SOs) or symmetry adapted linear 

combinations (SALCs) because they have the special property that they transform as a 

single irreducible representation.

•  Symmetry orbitals (SOs) play an important role in the construction of molecular orbital 

diagrams. 

•  In this simple case we were able to construct the symmetry orbitals by guess, but later on 

we will see that there is a more systematic way of constructing them.



Now write out the characters for y!

Now write out the characters for z!

2.1.6 Using extra information from the character tables

• Returning to H2O, let us consider what happens to hypothetical vectors, each attached to the 

oxygen and pointing along x, y, and z, respectively. 

& effect of E 

1Vector x -1 1 -1              ?

Vector z  

Vector y  

Basis 

1

1

1 1 1             ?A1

I.R.

-1 -1 1              ?

Typical basis function(s) for IRs: The 

information about how simple functions (and 

the corresponding vectors) transform is 

usually given as part of the character table. 

effect of C2
z effect of xz effect of yz

B1

B2

Now look at the 3rd

column of the 

character table.



2.1.6 Using extra information from the character tables

• Accordingly, it follows that the px orbital wavefunction has the same transformation properties as 

the function x, so we can read off from the table of C2v that px transforms as B1.

Atomic orbitals

• The mathematical form of the orbital wavefunction for a 2px AO (in 

hydrogen in atomic coordinates) is  rsinθcos exp (-r/2).

• In the normal cartesian coordinate system x = rsinθcos, the orbital 

wavefunction can thus be written as xexp(-r/2).

• Similarly, the 2py and 2pz orbital wavefunctions

are y∙exp(-r/2) and z∙exp(-r/2),  respectively, and 

so transform as y and z,  i.e. B2 and A1 from the 

character table of C2v. 



2.1.6 Using extra information from the character tables

• Again for the AOs of oxygen in H2O, 

s AO transforms like  ? (of spherical symmetry!)

𝑑𝑧2

𝑑x𝑦

𝑑x𝑧

𝑑y𝑧

In this case, only for 

AOs of O can we do 

such reading-off!

d orbitals ~ their names indicate the corresponding 

cartesian functions.

e.g., dxy transforms like ?  .

?

Q1:  which IR does the 𝑑𝑥2−𝑦2

AO of O transform like?

Ex.8



2.2 Two-dimensional irreducible representations

• We now switch to BF3 and focus on the boron 2p orbitals. 

• BF3 belongs to     ? point group.

• px (or x) and py (or y) are ‘mixed’ 

by the C3 operation! 

D3h

120
• neither px nor py， but seemingly to 

be the combination of px and py.？
？

x

yz



2.2 Two-dimensional irreducible representations
• In D3h, the vectors along x and y, and likewise the px and py orbitals of the central boron 

atom in BF3, are mixed by the operations of the group. They form a two-dimensional 

irreducible representation which CANNOT be broken down into two one-dimensional 

representations. 

• (x,y) transform as the irreducible representation E, a two-dimensional IR.

• In this group there is E along with several one-dimensional IRs (all labelled A with 

various additional annotations).

How do the characters of the 

E IR arise? 



2.2.1 Forming the characters of a two-
dimensional irreducible representation

• How do the characters of the E IR arise? 

• To do this we will use unit vectors along x and y as our basis, denoted i and j.

• For the vectors  y and x under C3
z operation, we have   

C3

i

j
=  ?

i

j

(C3) =  ?

(S3) = ？

Ex.9–1

• Effect of the C3 operation on these vectors is simply a problem in geometry.

𝑪𝟑𝐣=   ? 𝑪𝟑𝐢=   ?−
𝟑

𝟐
i−

𝟏

𝟐
j −

𝟏

𝟐
i+

𝟑

𝟐
j

−
𝟏

𝟐

𝟑

𝟐

−
𝟑

𝟐
−

𝟏

𝟐

i

j

(C2
x) = ?

(h) = ?

(v
xz) = ?

1+1 = 2

1–1 = 0

1–1 = 0

(C3) = –1

i

j



2.3 Reducing a representation (表示的约化)

• So far we have been able to deduce by inspection the irreducible representations from which a 

particular representation is composed. For example, in the group C2v we were able easily to spot that 

the representation (2,0,–2,0) reduces to A2⊕B2. 

• However, for more complex examples, a more systematic method is 

needed, and this is provided by the reduction formula (约化公式).

ii) For kth IR, Γ(k), in the group, the characters are denoted χ(k)(R). 

e.g., for the 4th IR (B2) (1, –1, –1,1) in C2v , χ(4)(E) = 1, χ(4)(C2) = –1, χ(4)(σxz) = –1 and χ(4)(σyz) = 1.

• Some notations: 

i) The (arbitrary) representation of a group:  Γ = {χ(R1) , …, χ(Rh)}. 

e.g., for the representation (2,0,-2,0) in C2v, χ(E) = 2, χ(C2) = 0, χ(σxz) = –2 and χ(σyz) = 0.



2.3 Reducing a representation

• A particular representation Γ can be expressed as a sum of irreducible representations Γ(k):

Γ = a1Γ
(1)⊕ a2Γ

(2)⊕ a3Γ
(3)⊕ . . .

=  akΓ
(k) (ak: the number of times that the IR Γ(k) appears in the representation.)

• The reduction formula give us a way of finding the coefficients ak: 

h is the total number of operations in the group, and the * indicates the complex conjugate. 

• This formula is simply the scalar product between the two vectors formed by the characters of the 

irreducible representation and those of the representation being reduced.

𝒂𝒌 =
𝟏

𝒉
 

𝑹

 𝒌 (𝑹)
∗
(𝑹)



2.3 Reducing a representation
• Example: reducing a representation (2,0,-2,0) in the group C2v

• χ(E) = 2,        χ(C2) = 0,    

χ(σxz) = -2,    χ(σyz) = 0;

• h= 4;

• Now use the reduction formula to  determine the coefficient a1 of the first IR A1 with the 

characters: χ(1)(E) = 1,    χ(1)(C2) = 1,    χ(1)(σxz) = 1,    χ(1)(σyz) = 1

𝑎1 =  
1

ℎ
𝑅

 𝜒(1)(𝑅) 
∗
𝜒(𝑅)

=
1

4
( 𝜒(1)(𝐸) 

∗
𝜒(𝐸) +  𝜒(1)(𝐶2) 

∗
𝜒(𝐶2) +  𝜒(1)(𝜎𝑥𝑧 ) 

∗
𝜒(𝜎𝑥𝑧 ) +  𝜒(1)(𝜎𝑥𝑧 ) 

∗
𝜒(𝜎𝑦𝑧)

=
1

4
( 1 ∗ × 2 +  1 ∗ × 0 +  1 ∗ × −2 +  1 ∗ × 0)

=
1

4
(2 + 0 − 2 + 0)

= 0

 

= 0

 2       0        -2         0



2.3 Reducing a representation
• The next IR is A2,

• For the 4th IR B2, we have a4= 1.  

𝑎2 =
1

ℎ
 

𝑅

 2 (𝑅)
∗
(𝑅) =1

• The 3rd IR is B1,

𝑎3 =
1

ℎ
 

𝑅

 2 (𝑅)
∗
(𝑅) =0

 2      0        -2        0

• The representation (2,0,-2,0) thus reduces to Γ(2)⊕Γ(4), i.e., A2⊕B2.  



2.3.1 Reduction formula in terms of classes

• Operations in the same class have the same character for a given IR. Similar trend holds for an 

arbitrary representation .

• Accordingly, the use of the reduction formula can be somewhat simplified! 

• Example: a basis consisting of the three equivalent 2s orbitals on the fluorine atoms in BF3. 

𝑎𝑘 =  

𝑅

1

ℎ
 𝑘 (𝑅)

∗
(𝑅)

=
1

ℎ
 

𝑐

𝑔(𝑐)  𝑘 (𝑐)
∗
(𝑐)

cth class of operations
Number of operations 

within the cth class

g(c)



2.3.1 Reduction formula in terms of  classes

• For BF3, we ‘count’ the characters for each class of operations in the basis of 3xF 2s.

(E) = 3

(C3) = 0

(C2) = 1

(h) = 3

(S3) = 0

(v) = 1

A ? - dimension representation will be obtained.



2.3.1 Reduction formula in terms of  classes

• Hence, the representation generated by these three s orbitals is (3,0,1,3,0,1), with 

operations in the same class being grouped together. 

(3xF2s) 3 0 1 3 0 1

• For A1, 𝒂𝟏 =
1

ℎ
 

𝑐

𝑔(𝑐)  𝑘 (𝑐)
∗
(𝑐) = 1

• For A2, 𝒂𝟐 = 𝟎

• For E, 𝒂𝟑 = 𝟏

• ….. 𝒂𝟒−𝟔 = 𝟎

 (3F2s) = A1  E

(3xF2pz)    ?    (3xF2pz) = A2 E3 0 -1 -3 0 1



2.3.2 A possible quick method for reducing representations

• A helpful method to reduce the labour:

1. Multiply the characters of the representation to be reduced by the number of operations in 

each class. For the example here (3,0,1,3,0,1) becomes (1×3, 2×0,3×1,1×3,2×0,3×1) i.e. 

(3,0,3,3,0,3).

2. Take a piece of paper and line up its edge beneath the top row of the character table (where the 

operations are listed); write in the numbers you have determined in step 1 in the correct columns.



2.3.2 A possible quick method for reducing representations

3. Move the paper down until the characters for the first IR are revealed; multiply these by the numbers 

written on the paper (you can usually do this in your head), and divide by h. This gives you the number of 

times the first IR is present.

4. Move the paper down until the next IR is revealed and repeat the process.

Advantages:

• reducing the number of calculations at each step.

• focusing on one IR at a time.



2.3.3 Checking that you have reduced a representation correctly

Two easy checks to ensure that a representation has been reduced correctly.

1. The number of times a representation is present can be zero or a positive integer.

2. The sum of the irreducible representations, each multiplied by the number of times they 

are present, must be equal to the representation you reduced.

e.g., in D3h we found that the representation (3,0,1,3,0,1) reduced to A1⊕E. 

To check we simply add up the characters of the IRs: 

1 ×A1+ 1×E

= 1 × (1,1,1,1,1,1) + 1 × (2,-1,0,2,-1,0) = (3,0,1,3,0,1) √OK

Ex.10-12



2.4 The names of  irreducible representations

1. One-dimensional IRs： A or B, 

two-dimensional IRs:   E; 

three-dimensional IRs:   T.

3. In presence of a centre of symmetry, a subscript g is added if the character under the 

inversion operation is +1 (i.e. ‘gerade’ or even) whereas if the character is -1 a subscript u is 

added (i.e. ‘ungerade’ or odd).

2. 1-D IRs are labelled A if the character under the rotation about the principal axis is +1

and B if it is -1. (A ~ symmetric upon the rotation about the principal axis;   B ~ 

antisymmetry upon the rotation about the principal axis)



2.4 The names of irreducible representations

4. Reflection upon σh plane：

IRs symmetric added a prime (), anti-symmetric added a double prime ().

5. Subscript numerals 1, 2 . . . are added to further distinguish the IRs which would otherwise have 

the same label.



2.5 Summary

1. By choosing a basis (e.g. a set of orbitals, functions or vectors) we can form a 

representation of the operations of a group.

2. If the basis consists of just one function, the representation will simply be a set of 

numbers (a one-dimensional representation). If the basis consists of N functions, the 

representation will be a set of N × N matrices (i.e., N-dimensional).

3. The traces (sum of diagonal elements) of these matrices are called the characters; the 

characters are far more important than the matrices themselves.

A basis (a set of 

orbitals, functions or 

vectors)

Operations of the 

point group
A representation with a set of 

matrices (or simply a set of characters) 

reducible to the sum of irreducible 

representations.



2.5 Summary

4. A given representation (i.e. set of characters) can always be reduced to a sum of 

irreducible representations. These IRs are listed in the character table.

5. The IRs corresponding to simple functions are indicated in the character table.

6. The irreducible representations which comprise a particular representation can be found 

either by inspection or by systematic application of the reduction formula.

7. For a set of orbitals (or other objects), the characters can be found by using the ‘counting 

method’ in which we count +1 for an orbital which does not move, 0 for an orbital which 

moves, and -1 for an orbital which does not move but simply changes sign.

8. Operations in the same class have the same character.



More about irreducible representations

• If dj is the dimension of jth IR and h is the order of a group, then  

• For a given point group of h-order, the h-dimensional vectors whose components are the 

characters of two irreducible representations are orthogonal.

 

𝑹

𝒊 𝑹 𝒋 𝑹 = 𝒉𝒊𝒋

 

𝒋

𝒅𝒋
𝟐 = 𝒉

 

𝒋

 𝒋 (𝑬) 𝟐 = 𝒉As j(E) = dj, then  


