

Part III Symmetry and Bonding

Chapter 3 Direct Products 第三章 (表示的) 直积

Prof. Dr. Xin Lu(吕鑫) Email: <u>xinlu@xmu.edu.cn</u> http://pcoss.xmu.edu.cn/xlv/index.html http://pcoss.xmu.edu.cn/xlv/courses/theochem/index.html

3. Direct products

• In this chapter we will learn how to find *the symmetry of a product of two or more functions*. *This is extraordinarily important!*

Recall those integrals we used before:

$$S_{ij} = \int \psi_i^* \psi_j d\tau \qquad \beta = \int s_a \widehat{H} s_b d\tau$$

3.1 Introduction

- From the C_{2v} character table, we know that *the function x transforms like B₁* whereas *the function y transforms like B₂*. *Then how does the function xy transform?*
- This is already given in the table.
 *The function xy transforms like A*₂.
- How can we actually work this out?

C_{2v}	E	C_2^z	σ^{xz}	σ^{yz}			
A_1	1	1	1	1	z		$x^2; y^2; z^2$
A_2	1	1	-1	-1		R_z	xy
B_1	1	-1	1	-1	x	R_y	XZ.
B_2	1	-1	-1	1	y y	R_x	уz

3.1 Direct products introduction

• Use the function xy as a basis to form the corresponding representation of C_{2v} , which will just be *a* set of numbers, i.e., these numbers are the *characters*.

• The characters for xy are simply found by multiplying together the characters for the IR B_1 , which is how *x* transforms, and for the IR B_2 , which is how *y* transforms, operation by operation:

$$\underbrace{(1,-1,1,-1)}_{B_1(x)} \otimes \underbrace{(1,-1,-1,1)}_{B_2(y)} = (1 \times 1, -1 \times -1, 1 \times -1, -1 \times 1) \equiv \underbrace{(1,1,-1,-1)}_{B_1 \otimes B_2 = A_2}$$

This kind of multiplication is called the *direct product*: $B_1 \otimes B_2 = A_2$.

• To take another example, if we wanted to know how *xz* transforms:

 B_{2}

$$\underbrace{(1,-1,1,-1)}_{B_{1}(x)} \otimes \underbrace{(1,1,1,1)}_{A_{1}(z)} = (1 \times 1, -1 \times 1, 1 \times 1, -1 \times 1) \equiv \underbrace{(1,-1,1,-1)}_{B_{1} \otimes A_{1} = B_{1}}$$
Thus *xz* transforms like *B*₁.
$$\underbrace{\begin{array}{c|c} C_{2v} & E & C_{2}^{z} & \sigma^{xz} & \sigma^{yz} \\ \hline A_{1} & 1 & 1 & 1 & 1 & z & x^{2}; y^{2}; z^{2} \\ \hline A_{2} & 1 & 1 & -1 & -1 & x & R_{y} & xz \\ \hline B_{1} & 1 & -1 & 1 & -1 & x & R_{y} & xz \\ \end{array}}$$

 R_x

VZ.

3.2 Direct product of one-dimensional irreducible representations

- ◆One-dimensional *IR*s are those with character *1* under *the operation E*, and always denoted by *the labels A and B*. 全对称不可约表示
- In any group there is always the *totally symmetric IR* with all of the characters being +1.
- For the *i*th one-dimensional *IR*, $\Gamma^{(i)}$, of a group, the following properties apply:
- The direct product of this *IR* with the *totally* symmetric *IR*, *I^{tot. sym.}*, gives this *IR*,

 $\Gamma^{(i)} \bigotimes \Gamma^{tot. sym.} = \Gamma^{(i)}$

2) The direct product of a *one-dimensional IR* with itself gives the *totally symmetric IR* $\Gamma^{(i)} \bigotimes \Gamma^{(i)} = \Gamma^{tot. sym.}$

C_{2v}		Ε	C_2^z	σ^{xz}	σ^{yz}			
A_1	ſ	1	1	1	1			$x^2; y^2; z^2$
A_2	Τ	1	1	-1	-1		R_z	xy
B_1		1	-1	1	-1	x	R_y	XZ
B_2	L	1	-1	-1	1	y y	R_x	yz

3.3 Direct product of two-dimensional irreducible representations

- Two-dimensional *IR*s have character 2 under *the identity operation*, and are always denoted by *a label E*. (e.g., *E* IR in C_{3v})
- *Property 1* from the previous section still applies. For example, if we take the direct product $A_1 \bigotimes E$ we obtain E.

L			1		- F A	$(\mathbf{R}_{\mathbf{X}},\mathbf{R}_{\mathbf{Y}})$	$(\lambda z, yz), (\lambda y, z \lambda y)$
	F	2	_1	0	(\mathbf{r}, \mathbf{v})	(R R)	(x_7, y_7) : $(x^2 - y^2, 2xy)$
	A_2	1	1	-1		R_z	
	A_1	1	1	1	z		$x^2 + y^2; z^2$
	C_{3v}	E	$2C_{3}^{z}$	$3\sigma_v$			

$$\underbrace{(1,1,1)}_{A_1} \otimes \underbrace{(2,-1,0)}_{E} = (1 \times 2, 1 \times -1, 1 \times 0) \equiv \underbrace{(2,-1,0)}_{E} \quad \underbrace{(2,-1,0)}_{E} \otimes \underbrace{(2,-1,0)}_{E} = (2 \times 2, -1 \times -1, 0 \times 0) \equiv (4,1,0)$$

- **Property 2** does not apply. If we compute $E \otimes E$, we find $E \otimes E = E \oplus A_1 \oplus A_2$
- *Modified version of property 2*: The direct product of an IR with itself *contains* the *totally symmetric IR*. This trend holds for higher-dimensional *IR*s.

3.4 *Further points*

• How does *xyz* transforms in the group $C_{2\nu}$? Consider the triple direct product:

$$\underbrace{B_1}_{x} \otimes \underbrace{B_2}_{y} \otimes \underbrace{A_1}_{z} = \underbrace{A_2}_{B_1 \otimes B_2} \otimes \underbrace{A_1}_{z} = A_2.$$

Thus *xyz* transforms as *A*₂.

C_{2v}	E	C_2^z	σ^{xz}	σ^{yz}			
A_1	1	1	1	1	z		$x^2; y^2; z^2$
A_2	1	1	-1	-1		R_z	xy
B_1	1	-1	1	-1	x	R_y	XZ
B_2	1	-1	-1	1	y	R_x	уг

• The direct product is commutative and distributive.

i.e. $B_1 \otimes B_2 = B_2 \otimes B_1$ and $(B_1 \otimes B_2) \otimes A_1 = B_1 \otimes (B_2 \otimes A_1)$.

• *Simple numbers* (scalars) transform as the *totally symmetric IR*, as a number is *unaffected* by any symmetry operation. *Ex.13*

- If *two functions* transform as the *IR*s $\Gamma^{(i)}$ and $\Gamma^{(j)}$, respectively, then *their product* transforms as the *direct product* of the two *IR*s $\Gamma^{(i)} \otimes \Gamma^{(j)}$.
- The *direct product* is found by *multiplying the characters* of the two *IR*s for each symmetry operation: (*a*, *b*, *c*, ...) \bigotimes (*p*, *q*, *r*, ...) = (*a* ×*p*, *b* ×*q*, *c* ×*r*, ...)
- The *totally symmetric IR*, *I^{tot. sym.}*, has character +1 for all operations.
- For any $IR \Gamma^{(i)}$: $\Gamma^{(i)} \bigotimes \Gamma^{(tot. sym.} = \Gamma^{(i)}$.
- For any one-dimensional $IR: \Gamma^{(i)} \bigotimes \Gamma^{(i)} = \Gamma^{tot. sym.}$
- For any higher-dimensional *IR* the result of the product $\Gamma^{(i)} \otimes \Gamma^{(i)}$ contains $\Gamma^{tot. sym.}$.
- Scalars (numbers) transform as the totally symmetric IR.