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75 Reviewing—vanishing integrals
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5. Molecular orbitals

* Now that we have developed the necessary Group Theory tools, we can use them to draw
up (qualitative) MO diagrams. (;F*: 1X=ZI1EN95FE1E (canonical molecular orbital,

CMO) ElfR, MiEXA—IZFIHERD FEIE(LMO)EIR! )

« Symmetry arguments greatly simplify this process and help us not only to work out which
Interactions are important but also make it possible to sketch the form of the MOs in a

straightforward way.

* In addition, we will be able to say something about the resulting electronic properties of
the molecule and discuss why molecules have a preference for one shape over another.



5. Molecular orbitals

The procedure we will adopt for drawing up MO diagrams:
1. Identifying the point group of the molecule to be concerned.
2. ldentifying the AOs (valence orbitals) to be involved in bonding.

3. Classifying the AOs according to symmetry and, if necessary, combining those
symmetrically equivalent AOs to form symmetry orbitals, SOs.

4. Allowing orbitals of the same symmetry to overlap (both in phase and out of phase!), and
hence constructing the MO diagram.

(In the Chapter of “Representations”, we have learnt some concepts needed in step 3.)



5.1 Basic observations about MOs

* When two AOs of the same symmetry interact, a bonding MO is formed which is lower in
energy than the lowest energy AO and an antibonding MO is formed which is higher in
energy than the highest energy AO.
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5.1 Basic observations about MOs

 When several AOs interact to form MOs, the number of the MOs Is the same as the number

of the AOs.
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* In this more complex case it remains true that a particular MO will have the greatest
contribution from the AOs which are closest to it in energy.
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Representing MOs

« To draw MOs, we need to show the result of the in-phase or out-of-phase overlap, as well
as the relative contributions made by the different AOs.

€ () Out-of-phase overlap
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Co @ o Jeesteont
GO, “1 ! '1 't
equal contribution ~ ‘ :. :
o g 3
In-phase overlap
o O greatest contribution
: .. _ from atom B.
(white ~ positive, black ~ negative)



5.2 MO diagram for water

« Example: H,O (point group C,) Cy | E G oF o
- : | 11 1 1| z x2:y2: 22
« The O 1s AO is too contracted and too low In A L1 -1 1 R -
2 Z XY
energy, transforming as A,. B 1 -~ I -1 | x Ry Xz
B> l -1 -1 1 | y R, yZ
O: 2s (spherical) as A; (5., S0) 2 0 2 0 I'=A @B,

2p, (z-like) as A,.

i =— | By inspection! (For AOs without equivalent AOs
2P, (x-like) as B, YA ( | )

op,  (y-like) as B, ~ 2 X
* 2H: (S, s,) A, @B, (Already considered in chapter 2)
0,=(s,*5,) as A, z

0,=(s,-s,)  (x-like) as B,



5.2 MO diagram for water

« A rough sense of the relative energies of the AOs involved is needed to draw up the MO

diagram.
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* Now put the AOs(SOs) In the order of energy.

* Now use the key principle: only AOs(SO)s with
the same symmetry will interact to form MOs.

1) O2p, (B,) + the B, SO(8,) of H1s.
w(B,)=c.2p, +¢,0,  (Cq, C, ~Coefficients)
- Two MOs with B; symmetry!
(in-phase & out-of-phase)
2) O2s, 2p, (A;) + the A; SO.
y(A)) =d2s +d,p, +d;0,  (d,~d; ~coefficients)
- Three MOs with A; symmetry!
3) O2p, gives a non-bonding MO with B, symmetry !

- Atotal of six VMOs (valence molecular orbitals)
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5.2 MO diagram for water
Labelling the MOs

« The inner O1s gives the lowest-energy, non-
bonding MO of A, IR, therefore labelled 1a,.

* The OZp, gives a non-bonding MO of B, IR,
labelled 1Db.,,.

* The O2p, interacts with the B, SO to form a
bonding MO 1b, and an anti-bonding MO 2b,.

« The O2p, and 2s interact with the A; SO to give
three MOs, labelled 2a,, 3a, and 4a,.

« Computer calculation is needed to determine the
position of 3a, in relation to 1b, and 1b,.

* 8 VES - The lowest four VMOs are occupied.

« Electronic configuration: 2a,1b,?3a,%1b,?

Molecular-orbital diagram of H,O
(CZV)
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AOs AQOs/SOs



2\ Form of the MOs Construction of the MOs for H,O.

 We can also make some educated guesses % 2Py /]\ 16,
about the form of the MOs.

B, -

* The 1b, MO is solely the O2p, AO.

in-phase
combination

 The interaction of the O 2p, and ¢, SO of B, IR s S
leads to the formation of a bonding MO, 1b,, and ﬁ

an anti-bonding MO, 2b;. (5~ 5a)

out-of-phase
combination

e The interaction of the AOs and SO with W —--mrrmmmmmmmmmmmmmm s
symmetry A, gives three MOs: in-phase

combination

25 (mainly 2s + SO)

» The A; MO, 2a,, arises from in-phase

combination of the O2s, O2p, (minor) and the ) /
6, SO. > > \

» The 3a, MO arises from out-of-phase
combination of O2s (minor) and in-phase
combination of O2p, (major) with the 8, SO. (Sa + 5B)

out-of-phase
combination
(mainly 2p, + SO)




Form of the MOs

* This picture shows plots of the occupied
MOs of H,O based on a computer
calculation using the Hyperchem program.

* The 2a,, 1b, and 1b, MOs do indeed match
up with our expectations based on the
qualitative arguments given above.

* The 3a, MO is weakly bonding, as
evidenced by the small amount of electron
density between the O and H atoms.
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5.3 Symmetry orbitals

« A symmetry orbital is a linear combination of other orbitals (usually AOs) which are
chosen in such a way that the symmetry orbital transforms as a single irreducible
representation.

In some texts these linear combinations are called symmetry adapted linear combinations,
SALCs.

« We will describe two approaches to the construction of SOs:

(1) by making use of the additional information presented in character tables;

e~

\ 7 X7 re
(2) by use of the projection formula (&&= AT). C» Lo 0"
- - - . A 1 1 1 \ll.b Z Xz"}"z'zz
In practice, the first one is by far the easiest. A, L1 1 R o
Bl 1 -1 | -1 X R}, Xz
B> 1 -1 -1 1 ||y Rz




5.3.1 SOs in BH, + Point group: D,

* First consider a basis consisting of three H 1s AOs and ‘count’ the characters.

Dy, | E 203 3C; o, 253 3o,  Obviously, the combination of

A L1 1 1 1 1 ¥+ 3% 2 the hydrogen 1s AOs which

A 1 I —1 | 1 -1 R.

E > 1 0 2 -1_ 0 |[@y "~ (2—y22ny) transforms as the totally

S T e symmetric IR A} is

Al 11 -1 -1 -1 1 z

E" | 2 -1 0 -2 1 0 R.R, Z,y

(RuR)  (xz,y2) (Sat S5+ 50).
I 3 0 1 3 0 1 =A,'®F
* The remaining two SOs transform

@ as E', similar to the basis (x,y).
o | 0

© & (s © ()




SO, = 0xs, + (+1)xsg + (—1)xSc

Sg - S¢

Not normalized yet!

A 4

‘like y’ symmetry orbital SOZ — (+1)XSA + (-1/2))(88 + (—1/2)XSC

‘D y coord = +1
> =S5 — (Sg+Sc)/2
y coord = -1/o @ y coord = -1/

SA = 1/285 - 1/250




3.3.1 §Os in BH,
 Hence the three H 1s AOs in BH; give the following three SOs,

O, =sptsp+sc; Opy=sp—Sc, Op,=5,—(5p+5c)/2

)

* Itis important to realise that 6/ , and @ , together transform as the two-dimensional IR E":
it is not that each alone transforms as E’.

, E
A1 1 N 1
‘like x’ SO like y’ SO

- X

OA‘II = S'ﬂt + SE + SC HE,x =5g - S HE'.]V' = Sp - 1..-'258 - 1":25'3



5.3.2 Normalization of symmetry orbitals

« In quantum mechanics a wavefunction y is normalized if f Ypdr = 1

* If a wavefunction y Is not normalized, then define

1 . . .
N = normalization factor), and (Ny) 1S hormalized.
v ), and (V)

« A symmetry orbital Is written as a linear combination of atomic orbitals &;:
0 = Clq)l + Czq)z + C3q)3 + .-
If the AO wavefunctions are themselves normalized, and if we assume that the AOs on

different (but symmetrically equivalent) atoms do not overlap, i.e., /@i @dz=6; =0 (1#))

- c1®+ c, P, + ;P31 ...
the SO can be normalized as _ 1717 *272 T %373

\/c§+c§+cg g

or if the SO is normalized then c,>+c,> +c2 +... =1.



5.3.2 Normalization of symmetry orbitals

* For the A7 SO, the coefficients give J12 +12 + 12=4/3.

1
Then the normalized SO is 9,4’1 =—(S4+Ssg+5Sc)

V3

» For 8, the coefficients give /02 + (+1)2+(—1)2=V/2

1
Then the normalized SO is Op « = 7 (58— S¢)
* For @, the normalized SOIs  Opr ,, = \/ig(ZsA — S — S¢)

By using a similar procedure, the two SOs (of H 1s) in H,O can be normalized as

1 1
04, =7 (54t sp) 05, = 75 (54— SB)
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The form of the MOs of BH,

"
AZH zpz 182
Non-bonding
In-phase ,
25 combination 1

7

out-of-phase
combination ™,

>
J
e mm e e e e d e e

] In-phase
combination

Exs.15-17

In-phase
combination

out-of-phase e
combination

—

Q
o+
©
S
(4]
C
)
o0
Q
)]

out-of-phase
combination

=
©
o

pair



« Example: a hypothetic molecule OH, in a square planar geometry (D,.). 4xH1s - 4 SOs

Dy, E 2C4 Cﬁ 2C, 2(:5 i1 2854 oy 20, 204
Al 1 11 ] 11 1 ] ] ¥+ % 22
Asg 1 1 1 -1 -1 1 11 -1 - R,
By, 1 -1 1 1 -1 1 -1 1 1 -1 x? —y?
By, 1 -1 1 -1 11 -1 1 -1 xy
E, 2 0 -2 0 0 2 0 -2 0 0| (R,R) (xzy2)
A 1 11 | 1 -1 -1 -1 -1 -
A, 1 1 1 -1 -1 -1 -1 -1 1 1 z
B, 1 -1 1 1 -1 -1 1 -1 -1 1
B>, 1 -1 1 -1 1 -1 1 -1 |
E, 2 0 -2 0 0 -2 0 2 0 0 (x,y)

9 40 0 0 2 0 0 4 0 2 Ay®By®E,

* We encounter 2-dimensional IR
again.

* Ay, ~ totally symmetric IR.

BA =SA+SB+SC+SD

1g
(Note: (x*+y?) transforms as A,,.)

* (X,y) transforms like E, and xy
transforms like B,

* Now make the coefficients
match the corresponding
functions.



u The coefficients B,
matchthey | @ - --
coordinates

The coefficients | /] | |
match_ the x : The coefficients :
coordinates | - |

' match the values : ‘
ofxy. | \ U

(-1, -1) (+1,-1) ‘like x’ SO like y’ SO ‘like xy’ SO

* Oneof E, SO ‘likex’is O = (+1) Xs4+ (—1) X sg +(—1) X s¢ +(+1) X s5p

* Oneof E, SO ‘likey’is @y = (+1) x 54+ (+1) x 55 +(=1) X 5¢ +(=1) X 5p
* The B,, SO ‘like xy’ is 0p,, = (+1) X s+ (1) X sg +(+1) X s¢c +(—1) X sp
* The normalized SOs are 04, = (Sa+sp+sc+sp)2 Op, =(sa—Sp+Sc—5p)/2

Op,., = (Sa—sp—Sc+sp)/2 O, ,=(Sa+5Sg—Sc—5p)/2



-- MO diagram 2,

* 4H 1sSOs: 4,, B,,, E,; — \ 5y
'J'—\“ \“ 174
[ O: Zp z A 2u . ,"l" \\\\‘\‘
% / :" \‘:‘\
(pr’zpy) Eu 8 VMOS sz AZu // ," IaZu\:\
10 VEs Vd — \
ZS Alg _ — ’,’ ------ - Bzg
- N . 2p, & \\ ! Ibzg ‘\‘;= E,
Q: THH] ﬁ%%%ﬁﬂﬁéﬂ}&a@ [H] IZEI o Zpy E, \ / — A,
\Y 0 1 g
Dy, | E 2C4 C3 2C, 2C, i 254 oy 20, 20y
A, |1 1 1 1 1 1 11 1 —
Ay [T T 1T T - T T T -1 - R - — - A L
B, 1 -1 1 -1 1 -1 1 -1 le, ! 3 Ao(;ns E(iive
By, 1 -1 1 - 11 -1 1 - 1 i / s an
E, 2 0 -2 0o 2 0 -2 0 | RuR) S /| VEs unused
A 1 1 1 1 -1 -1 -1 -1 - SHBig N\ for bonding!
Ao 1 1 1 -1 -1 -1 -1 -1 1 1 Z Unstable!
By | -1 | 1 -1 -1 I -1 — | N\, 'lla
By, | 1 -1 1 -1 1 -1 1 -1 1 -l Oxygen H 2 Hydrogen
E, 2 0 -2 0 0 -2 0 2 0 0 (x,¥) AOS VMOs AOs/SOs




%) 5.3.5 Constructing SOs in an intelligent way

* Example: BF; (point group D;,).  F:2s, 2p, 2p,2p,
e Three F 2s AOs 2 three SOs (A, ® E'’); three F 2p, AOs = three SOs. (Q11))

* However, the Zp, and Zp, AOs are all mixed together in a rather complicated way by the
operations of the group,

producing an annoying ?-D rep.!
How to simplify the situation?

* The situation can be simplified by

. . . Set 1 Set 2
using a different local axis system. — X Pia P

. e o
* Now the SOs for set 1 1s similar to *

those for the 2s AOs. k X ﬁ\d me. .OmB pg,cq C’ Pog



 Now find the characters of the

E 2C; 3C, o5 253 30,
) . 4 representation in the basis of
Al 1 1 1 1 1 1 xX“+y°;z
Al 1 1 =1 1 1 =1 R, the three sz AQ:s. (Ql 1)
E’ 2 -1 0 2 -1 0| (xy (x* =¥, 2xy) 0
AV |1 1 1 -1 -1 - A" = Pza TPzt Pzc
A 1 1 -1 -1 -1 Z
E"” 2 -1 0 -2 1 (Ry, Ry) (xz,yz) J _
Y Y HE"xz — pz,B_ pz,C
r 3 0 -1 -3 0 I = A,”®E"
FzA -PzB PA -Pza ‘ HE"yZ — pZ,A o (pZ,B +pZ,C)/2
b
.t Pre [ “Pzc “Pza Prc Pz -Pzc -P.B
Pza PzB
%
eE”,xz =PzB = PzcC eE”,yz =PzA = 172 Pzg = 1/2 Pzc
Pzc Pzs Pzc PzA



Finding the SOs

Ex. 18

 Now find the characters for set 2.

E 2C; 3C, o5 253 30, (
three p, AOs)

Al 1 1 1 1 1 24y 7 ¥
A, 1 -1 1 1 -1 R, * The E’ SOs:
E’ 2 -1 0 2 -1 0]|||y (x* = %, 2xy) 0., =
AY [ T T T | E'x =P~ Pic
A 11 -1 -1 -1 z 0
E" | 2 -1 0 -2 1 (RuR)  (xz,y2) Ely =SP4~ 025t 93072
I 0o -1 3 -1 = A,®FE’

3 0 /'@ * A good guess for the 4," SO,

BAZ' =P24TP28TP:c
Po A -Pop Pa.n
GV
—
Pac P2B -Pac ~P2.A P2c P2pB -Poc =P2.A eE”X =P2p = P2c Oy =Poa=T2P2p = T2P2c




 C,H,, point group D,,

E C ¢ G i o% o% %
A, 1 1 1 1 1 1 1 1 X% y% 22
B, 1 1 -1 -1 1 1 -1 -1 ] R Xy
By, 1 -1 1 -1 1 -1 1 -1 | R Xz
Bs, 1 -1 -1 1 1 -1 -1 1 | R, ¥z
A, 11 1 1 -1 -1 -1 -1
By, 1 1 -1 -1 -1 -1 1 1 Z
By, 1 -1 1 -1 -1 1 -1 1 y
Bs, 1 -1 -1 1 -1 1 1 -1 X
r 4 0 0 0 o0 4 0 0

= A, ®B,, ®B,, @B;,

o

* Constructing the SOs arising from
the four hydrogen 1Is AOs in C,H,,.

S 9 Sa

Sc Sp
eAn=SA+SB+SC+SD

B2u

‘like y’ SO
982U=SA+SB- SC- SD

BSu

‘like x’ SO
eBSuzsA-SB-SC+SD

Big

‘like xy’ SO
eB‘|g=SA_SB+SC-SD



5.4 Projection operator

* A more formal way of finding the symmetry orbitals 1s using the projection operator.

* However, using projection operator 1s laborious and in addition it does not work

straightforwardly for two- and higher-dimensional IRs.

* Suppose that we have a set of basis orbitals {¢,} which are being used to construct SOs.
The SO transforming as the irreducible representation k, 8%, can be found by applying

the projection operator P® to one of the basis functions,

o) = pkg, ~ Projection formula

in which the projection operator 1s

pUo) — %E[X(k) (R)]"R
oy —

Sum over all symmetry operations

1




3.4.1 §Os in H,0O

* The two hydrogen 1s AOs together transform as A, @B,.
* Now work out the effects of all operations on s,.

start X effect of E effect of C,? effect of 62 effect of o¥2

<f\ <f\/\><f\/\>

Py

ESA:SA CZZSAZSB b\'xZSA:SA 33’ZSA=SB
1 =
:EZ[X(")(R)] Rs
R

— Z [X(k) (E)E' + X(k) (CZ)EZ +X(k) (0*?)0*7 + X(k) (O-yz)a-}’z]SA

1
=2 [ ®E)sy + 10 (€)s5 +1® (05, + 10 (07)s]



3.4.1 §Os in H,0O

PWs, = z [X(k) (R) RSA

C»,

E

CF
o

Al
A
B,
B>

1
1
1
l

1
1
-1
—1

1
= 2 (OB, + 719 (C)sp +1" (05, + 1 (079)5]

* For the SO that transforms as 4,

* For the SO that transforms as B,,

 Using the projection operator for the IR 4, gives

p(AZ)SA —

— S

T)(Al)SA = (SA + SB)/Z

PBVs, = (s4 —sp)/2

4= Sp)

4

=0




5.4.2 SOs in ethene  P» | £ G & G @ o” o% o~
. A, | | | | 1 | 1 1
* The four hydrogen 1s AOs in ethene Bi, 11 =1 =1 1 1 =1 -
transform as 4, #B,, #B,, @B;,. By, Il -1 1 -1 -1 1 -1 1
* The effects of operations on s, P | 1 202t P A0 1A
effect of E effect of Cy? effect of C,¥ effect of Cyx
B A ( E :
SA
c™ _ D ( :sc : Y R Sp
Esy = sa C,%s, = S¢ C,”s, = sg C;*Sa = Sp
effect of j effect of 6*¥ X effect of 6%2 effect of o¥Z

: : ) Sa S
Sc : ; )SD

ISy =S¢ 0"YS,y = Sy 0*2s ) = 0Y?s, = Sp



Ex.19&20

D, ~ a subgroup of D,,

E——

Operation E CFf Cy CF|li o2 o* o0”*

Effect ons, S4 Sc S _Sp | Sc S4 Sp Sp

Characters for 4, |1 1 1 1 1 1 1 1

Result Sy Sc Sgp Sp | S¢c S4 Sp Sp =(2s ,+ 2s5 + 25 + 2sp)/ 8
Characters for B;, |1 1 -1 -1 1 1 -1 -1

Result Sy Sc -Sg -Sp | S¢ S4 -Sp -Sp =(2s, —2sp + 25, —2sp)/ 8
Characters for,, |1 -1 1 -1 (-1 1 -1 1

Characters forg;, (1 -1 -1 1 |-1 1 1 -1

Result S4 Sc S Sp| Sc S4 Sp Sp =(2s,—2sp—2s,+ 2sp)/8

Q: How can we make the process less tedious?

Use a subgroup that keeps the equivalence of atoms!



Dgh E 2C3 3C2 Oh 253 30'1,

5.4.3 SOs in BH3 A’ 1 | 11 1

—

E 2 -1 0 2 -1 0
* The three hydrogen 1s AOs in BH; (point group D,,) transform as A7 ® E’.
Operation E C; ¢ ¢ c® 9o, S; S o¥ o o@
Effect on s, S, Sc Sy Sq Sg Sc S4 Sc Sg S; Sg Sc

Characters for 4,7 1 1 1 1 1 1 1 1 1 1 1 1
Result S4 Sc SB S4 SB Sc S4 Sc SB S4 SB SC
Charactersfor £/ 2 -1 -1 0 0 0 2 -1 -1 0 0 0
Result 0 0 0 2s, -so -sz 0 0 0

R . 9A1,= (4s + 4sg + 4s.)/ 12
« Op= (45, 2s5—2s))/12 (like )

» Another SO of E' can not be found by using the PO!

» Similar problem will be encountered for 3-D IRs.



PO problem with a degenerate IR: the way-out

C3 E G G ® = exp(2mi/3)
A 1 1 1 z R- x> +y%; 22
7 I ® | x—iy Ry— 1R, xz—1yz; x% + 2ixy —y?
| { 1l o o x+1 Ry+1R, xz+1yz; x% —2ixy —y?
I 3 0 0 (note: ®* = ®?)
Operation E C;, C;
Effecton s, S\ Sc  Sg
O Q CharactersforE®) 1 ® o*
C B
Result Sp  @*Sc @b
CharactersforE®@ 1 o®* o
Result Sn  ®Sc @S

= O 4= N(Of 1+ 0g 2) = N(25,—S5 —S¢)

« Alternatively, lower the symmetry of the
molecule from Dy, to its pure rotation
subgroup, C,,, for which the degenerate E IR
becomes two associate 1-D representations.

* AgainforBH;, 3H1sSOs [ =A ®E
Iy 1 ;o
P(k)SA = 1—1{2 [X(k) (R)] R} SA
R
O 1= (Sat @*Sc + w8g)/3

O 2= (Sp+ @Bc + @*s)/3

Or b= N(Of 1— 0f 2) = N(Sg —S¢)



5.5 Transition metal complexes

 Transition metals form an astounding number of coordination compounds, or complexes,
In which a central metal atom is surrounded by a number of ligands.

 The ligands are anions, such as Cl-, or small molecules, such as H,O and CO.

« Some frequently encountered coordination geometries: (a) is tetrahedral (point group T ),
(b) is square planar (point group D,, ) and if we concentrate on just the ligating atoms, (c)
IS octahedral (point group O,,).




5.5.1 MO diagram of an octahedral complex with o-only ligands

 Suppose an octahedral complex in which the central metal ion is surrounded by six
structureless ligands, each directing a o-type orbital towards the metal atom.

* Typically these ligand orbitals will be those occupied by lone pairs, such as in NH.,.

Key symmetry operations of the O, group: HOMO of NH. |
3

. C, from central atom
Ca, 24 , S4 to centre of triangle




5.5.1 MO diagram of an octahedral complex with o-only ligands

Cartesian function orbital IR
re=x2+Yy°+72 4s A,
VAOs of the (X,Y,2) 4p,, 4p,, 4p, T,
central metal (XZ,XY,y2) 3d,,, 3d,, 3d, T,
(222'X2'y21\/§(X2'y2» 3d, dez—yz Eg
Gh E 8(:1 3(__& 6C4 6(:2 1 SS'_:,, 3(]';, 654 6(]",_.;
A, | 1 1 I 11 1 I | 1 X +yt+ 77
As, | 1 1 -1 -1 1 1 1 -1 - ~
E, 2 -1 2 0 0 2 -1 2 0 0 ((22% = x> = y%), V3(x* —y%)
T, 30 -1 I -1 3 0 -l I -1 | (R,R,R.)
Taq 30 -1 -1 1 3 0 -1 -l 1 (X2, XY, ¥2)
Al I l l I I -1 -1 -1 -1 -l
Aa, I l Il -1 -1 -1 -1 -1 I 1
E, 2 -1 2 0 0 -2 I =2 0
T 30 -1 1 -1 -3 0 1 -1 1 (x,¥,7
Tou 30 -1 -1 1 =3 0 | |




5.5.1 MO diagram of an octahedral complex with o-only ligands
G 855

 The six o-type ligand MOs transform as A DE;OTy,.

Gh E 8C1 3(:3 6(:4 6Cg 1 85 6 30‘;1 654 f)ﬂ'd
Aj, 1 1 | 1 1 ] 1 1 C, from central atom
As, 1 1 1 1 — T i 7 — to centre of triangle
E, 2 -1 2 0 0 2 -1 2 0
T 3 0 -1 1 -1 3 0 -1 1 -1
T>, 3 0o -1 -l I 3 0 -1 - 1
Ay 1 I I 1 I -1 -1 -1 -1 -l
Az 1 I /I -1 -1 -1 -1 -1 1 1
E., 2 -1 2 0 0 -2 1 =2 0

3 0

3 0

0

N
o



* The six o-type ligand MOs transform as A,, #E, &T,,,.
O

Z

0

S0 o -

T

0

1lu
=

— %

O like x like y like z Like X2_y2
O;, E BC:; 3C§r 6C4 6Cg i 85 6 30'” 654 66"(;
Al | 1 1 | 11 1 1 1 1 X +y+ 7 Sp
Asg | 1 1 -1 -1 1 1 1 -1 -1
E, 2 -1 2 0 0 2 -1 2 0 0 (222 = X% =y, V3(x* = y?)
Tig 3 0 -1 I -1 3 0 -l 1 -1 | (R.R,R.)
Tag 3 0 -1 -1 1 3 0 -1 -l 1 (XZ, Xy, ¥2)
At 1 1 1 1 I -1 -1 -1 -1 -l
Az, I 1 I -1 -1 -1 -1 -l 1 1
E, 2 -1 2 0 0 -2 Il -2 0 0
T 3 0 -1 I -1 -3 0 1 -1 1 (x,y,2)
Ta 3 0o -1 -1 1 -3 0 1 1 -1

Larger
coefficient

Like 2z2-x2-y?

Ex. 21



———————— | 2 u . .
- antibonding MOs —
main contribution

_ from metal
- Now work out the MOs using the [ 7./ ="
symmetry principle.
* Then the occupations of MOs. Ao fe
Vi w  antibonding
 The metal 3d electrons should go L % MOs—main
. Ly L, W contributio
A 2% % Metal 3d-
to 1t,, and 2e, MOs; the energy (I . from metal baiead o
gap between them is called the ol £ ba ) { nonbonding
ligand-field splitting, A.. PRt %, & MOs from metal
» The size of A, depends on the bt i
- . ’.;:; R ———— LT
strength of the M-L bonding a8 R
' i v e
7 \ y \ 9,
Interaction. why” : 77| Bonding MOs - main
l—-%=“1 contribution from ligands
I‘—T—l—*" 18, =

Metal MLg Ligands



P

antibonding MOs

—_— 2lr1._. }

o },\ /)7 =
,.,1;,& * - - =, " ';’ ‘ — main contribution
{3 Ligand-field splitting e s
» For a fixed set of ligands, A, increases as the oxidation A ;
state of the metal Increases and also as we move across g
the first transition series. Why? hrg 48—
1) Both increasing the oxidation state and increasing the : ;
atomic number will result in the 3d AOs falling in energy it — s f?#iﬁ??é”ﬁ'iﬂﬁ?on
R ’ " rom meta
. - e Aq “.‘ I.‘.'
a-nd SO bec_omlng more closely matched in energy to the S S
ligand orbitals. SRt y
i) The result is a stronger M-L c-interaction, and hence a ¥ :
greater shift of the antibonding MOs (2e,). H\g A
« The way in which A, varies with ligand is rather more e,
complex, and is a point deserves further discussion. B S g bt
v o ;—'“1” from ligands
1a,

Metal MLg Ligands



5.5.2 High- and low-spin complexes

 Now let us focus on how the electrons which derive from metal 3d orbitals are accommodated in the
non-bonding 1t,; and antibonding 2e, MOs —Ligand field theory.

» Assume that the energy of the 1t,, MOs is 0, the energy of the 2e, MOs is 4,, and each pair of
electrons of parallel spins lowers the energy by an amount of K (exchange energy).

(Note: for d-d3 or d3-d1°, there is only one electronic configuration!)

“ highspin  lowspin Epigh-spin = (3X0+ 4)) —6K =4, - 6K
\
% U1 ey Ejow-spin = (4X0) — 3K = -3K Cy?
O [ttt P L] 1o If A, < 3K, high spin is favored!
i high spin low spin Ehigh-spin = (3x0+ 24,) - 10K =24, - 10K
% LU *% EIow-spin = (5XO) —4K = 4K

OLtJLtiit ] Uit ] Teg If 4, < 3K, high spin is favored!




A0 I Zeg

5.5.2 High- and low-spin complexes 0o 1,

Similarly, we can tabulate the exchange energy and orbital energy for each state:

N A A A A R AT

High-spin Orbital (A)

Exchange(K)
Low-spin  Orbital(A,)

exchange(K)
i) For small 4, exchange contribution dominates. ) For large 4, orbital contribution dominates.
(a) (b) () : (d)

one high low total energy cgr?f?g 2'&2 slgm total EX 22
} config. spin - spin > one configuration possible o} . o < orbital ib o ey
>| © @ & orbital contribution o > SIS . 3 one configuration possible
¢ | ¥ + X exchange contribution = gD © * + X exchange contrib + high spin
) X low spin @ )
X low spin

Oi)lii/a/E_We/ﬁ) 0 123 456 7 8 910

o

|
6 7 8 9 10

low spin lower
in energy
in energy

\ 1

* For small 4., the d*-d” may favor high sBin state. e+ For large 4., the d*-d” may favor low spin state.

high spin lower




5.5.3 Spectroscopic and magnetic properties

* Electronic spectroscopy, in which the transitions can be thought of as involving electrons
moving from one orbital to another, is an excellent way of studying the electronic structure
of transition metal complexes and the energies of the orbitals involved.

* Naively, we might think that a transition in which an electron is promoted .. light

from the 1t,, to the 2e, would give us a direct measure of A,.. ,
A, — 28

* Unfortunately this Is not the case since the act of promoting an electron O hy
from one orbital to another alters the energy of all of the orbitals due to

0—--— 1t,
changes in the electron—electron repulsion. ’

* Yet, it is possible to infer the value of the ligand-field splitting from the We observe the
electronic spectra of these complexes, but the details of how this can be ggr;flgm?;g?ry

done are beyond the scope of this course. absorbed!



5.5.3 Spectroscopic and magnetic properties Ex.23

* The presence of unpaired electrons in a complex leads to paramagnetism.

* For first-row transition metal complexes it turns out that the effective magnetic moment, |Ls,
which is a measure of the degree of paramagnetism, is given by

Herr = 2,/S(S + 1) in Bohr magnetons, B.M. ().
S is the quantum number for the total spin angular momentum. --SBHE(BEE) = FEL

* As S =n/2, where n is the number of unpaired spins. The expression can therefore be re-
written as

”eff = \/n(n + 2) B.M.

» A complex containing Mn?* in high-spin state, n =5 and pe¢s = J5(5+2)=59B.M.Its

low-spin state has only one unpaired electron, p.rr = J1(1+2)=1.7B.M.



5.5.4 Thermodynamics properties

« This figure shows how the hydration enthalpies (ZX&%%) of M2*and M3*ions and the lattice
energies (E&i&EE) of divalent chlorides vary along the first transition series.

(a) number of d electrons (b) number of d electrons

« If on the plot we connect the values ¢ -teoog+2-3 4 5 8 7 8 910 3g000 - 2 2 7 2 2 7 2 210
for d°, d>and d'° configurations we S M2+ -400 M3+
£'g “1900r -4200
see that all the other data fall beneath s 3 ~ 4400
: : : & -2000F
these lines In two dips, one between 2 -4600
5 2000l -agoo0l .
d%and d®°, and the second between d> © 220 4800
and le_ (c) number of d electrons (d)
op00l 1 2 3 45678 910 55,
z MClo 8 215t
E'T_D-Exiﬂﬂ L%
cE 2 2.10F
822600 ? 208}
@© =
L 2.00

2800 01 2 3 456 7 8 9 10
number of d electrons



5.5.4 Thermodynamics properties

* The predominately ligand-based 1a,, 1t;,and 1e, bonding MOs are fully occupied regardless of the
number of d electrons.

Assume that the reduction in energy due to the occupation of these MOs as —E, and that each
electron in the 2e, MOs increases the energy by an amount E..

» Then overall the energy change upon forming the complex is
— Ej + ng_ X E; (ng_~ the number of electrons in the 2eg
MOs). high-spin

nxeE,

* For high-spin complex, the energy change solely depending on
the occupation in the 2e, MOs Is given here.

= M W B O
1

energy change / E;

01234567 8 910
number of d electrons



5.5.4 Thermodynamics properties

« As the interaction between the metal and ligand MOs becomes stronger as we go across the
first row, i.e., E, Is expected to increase across the row.

* The overall energy change on forming the complex is the combination of two effects: the
Increase In energy due to the occupation of the 2e, MOs, shown in (a) below; and the general
decrease in energy due to the increase in E, shown in (b).

(a) (b)  number of d electrons (c)
D1$3455?591D
high-spin
nxkE, -E,

——>

to Eeg electrons

energy change due

01234567 8910

energy change due to
electrons in bonding MOs

total energy change




5.5.4 Thermodynamics properties

* We have assumed that E_ Is constant across the row, whereas in reality it should increase for

the same reasons that E; increases. However, this extra subtlety does not alter the basic
picture.

* Historically, the lowering in energy of the complex beneath the d°-d>-d1° line has been
called the crystal-field or ligand-field stabilization energy (CFSE or LFSE). Our analysis

here shows that this characteristic behavior is entirely understandable from the form of the
MO diagram for these complexes.



* In general we should expect ligands to have other orbitals of suitable

symmetry to interact with the metal.
Sp

» For example, in the case where the ligand is a simple anion (e.g. CI)
the p orbitals which are perpendicular to the M—L axis can interact
with some of the metal orbitals as shown below. In general, this type
of interaction is described as 7 interaction.

 If each ligand L has a pair of p (or =) orbitals pointing 9
perpendicular to the M—L bond, then the resulting set of 12
orbitals can be shown to transform as T,, &@T,, &T,, &T,,. -

(after-class EX.: prove this! )

p AO

O®
@




1" 7) 5.5.5 Effect of 7 Interactions with the ligands

* Now there are ligand SOs with T,, symmetry which can interact with the T,, metal orbitals:
the latter will therefore no longer be non-bonding.

* The diagram below shows the effect of introducing these T,;, SOs. For simplicity, only the
MOs involving the metal 3d AOs are shown.

a —+— 2e b —+— 2e
( ) ,’, ‘\ g ( ) ”z AO \‘ g

’ &O \‘ ,,' \\2t29
Ton+ E .~ | it Ton+ E < R
29T =g ‘ . 9 29T =g \ Y
Sd \" “\ Sd ‘\ \‘\
\."t \‘ ‘1.‘ \\ |igand
\ \ Y ‘ 29 m-type
\ ‘ Eg ' E
\‘ ,/ . \‘ 1t29’I g
\ 0 ligand \ ;
\ o-type Y .
No rt-interaction Teg T-interaction leg



5.5.5 Effect of m-interactions with the ligands

* Such n-interaction gives bonding 1¢,, and antibonding 2¢,, MOs.

* As a result the separation between the two predominantly metal-based sets of orbitals
(here the 2¢,,and the Ze)) has been decreased, i.e. A, is decreased.

* The ligand T, SOs are filled, so in the complex the 1¢,, bonding MOs are filled as well.

: . . , 2e
* The extent to which the antibonding 2¢,, PV U
. , \ 2t
are occupied depends on the number of 2
Toq+ E B
3d electrons present. 9778 .
Sd "“ \\ )
 Ligands which interact in this way so as \ Tag ']'ttfltaygg
to decrease A, are called 7z donors. (o Eg
\\ g’




m-acceptor ligands =X 24

Ligands such as CO and CN~ also have empty m-type orbitals, generally the " MOs, available
for interacting with the metal.

Such type of T-interactions results in an increase in A ,, and transfer of electron density from the

metal to the m-acceptor ligands. (d) 2t
The aforementioned o- and n-bonding EELT Tog 19300,
between transition metal and m-acceptor Too+ E, Ao (empty)
ligands (e.g., CO, CN-, alkene, and alkyne) - ”;r};
thus result in o-donation of electron density e "
from the ligands to mental and #- ? % CL) —_—,

backdonation of electron density from metal
to the ligands! (i.e., Dewar-Chatt-Duncanson (S
model -- widely used in organometallics and

catalysis!)



5.5.6 Spectrochemical series

For a given metal and oxidation state, altering the ligand changes the value of A_. A, increases from

left to right in the following sequence of ligands, called the spectrochemical series.
increasing A,

I~ Brr S$2~ SCN~ CI~ F~ OH™ H,0 NH; PPh, CN~ CO

small A

° Weaker o-interaction Stronger a—interactionIarge Bo

stronger -donors stronger z-acceptors
Resulting from a subtle balance between 6- and w-type interactions:
 The stronger o-type interaction = the greater the value of A..

« The ligating atom going from O — N — C - increasing energy of ligand o orbital - better
matching the energy of metal 3d AOs = stronger c-type interaction.

« Enhanced o-type interaction leads to shorter M-L bond length and thus facilitates a stronger #
backbonding interaction, further increasing A,.

« CN~and CO lead to particularly large values of A_: strong ¢ donor & strong & acceptor.



5.5.7 Eighteen-electron rule

* In an octahedral complex with z-acceptor ligands, T 4p =
there are a total of nine bonding MOs: 1a,,, 1t,,(triply
degenerate), le (doubly degenerate) and 1t (triply Arg 4s —%
degenerate). .

« [t takes eighteen electrons to fill completely all of
these bonding MOs, so we can say the maximum
amount of bonding is achieved when there are
eighteen valence electrons present.

« Alternatively, this is to say that the metal atom has
nine valence orbitals: the five 3d, the 4s and the three
4p. If suitable ligand orbitals are available, all these
metal orbitals will be involved in the formation of the
nine bonding MQOs, which can be occupied by up to

eighteen electrons.
Metal

- - - -
pfm=m " e
-

-
-
-yl

ng+ Eg 3d=,7'::',-| ---

—— 21,

i

antibonding MOs
— main contribution

L]
. 23 from metal

L]
L

'-", antibonding MOs

o=======\2¢;, % — main contribution
- * . " from metal metal-based
L) L]

."'\0 L (1]
- =& 11‘2:? "I:‘ ﬂonbonding

e, and t, MOs

»metal AOs

o Mgt Eg-"‘ Tm

bonding MOs
;o — main contribution
SRR from ligands

MLg Ligands



5.5.7 Eighteen-electron rule

« It has been observed that many transition metal complexes which involve z-acceptor
ligands do indeed have eighteen valence electrons, whereas complexes with fewer or
more valence electrons are much less common.

 This has lead to the formulation of the eighteen-electron rule which says that the most
stable complexes are likely to be those with this full compliment of bonding electrons.

* Classical complexes involving ligands which are not  acceptors are not likely to obey
the eighteen electron rule since the metal-based t,; MOs are either non-bonding or

antibonding.



5.5.8 Other coordination geometries EX. 25 ‘,
) Tetrahedral coordination « 4 otype ligand orbitals (each like a s-type AO)

(-];]Cl\) z, 5, C, T, E 8C; 3C, 6S4 60y
DT
AR Y S U S T X4y 47
Y A, | 1 1 -1 -1
E | 2 -1 2 0 0 (222 — ¥ = y%), V3(x2 - %)
\’C T 30 -1 1 -1 (R., Ry, R,)
(-1.1-1) T, 3 o -1 -1 1 (x,,2) (vz, Xz, xXy)
{4 Ligand-c} = I’ 4 1 0 0 2 = A DT, Al—\ 13 MOs
(Q: plz write out their forms after class!) IRs of 4 ligand-SOs <|:-|—2\ la,  bonding, ligand-based
cartesian function corresponding orbital(s) IR of metal AOs 2a, antibonding, M ns-based
4 A, — 1t, bonding, ligand-based
(x,,2) 4py,4py,4p; T, 21, wab/nb, M (n-1)d-based
(xz, XY, yZ) 3d,;, 3dyy, 3d,, T, :l_ 3t, antibongding, M np-based
(227 — x* = y?), (x* = y?) 3d2,3d 2, E 1e nonbonding, M (n-1)d-based




MO diagram of tetrahedral metal complex, ML,

(-1-11) z,S, C,

‘ — 3t, antibonding, M 4p-based
Qﬁ (1,1, [Pt N

-
N—r

<
~
©
_I
)

/,J—\Za\‘lx\ antibonding, M 4s-based

o
5 ~
o/ ~
e \ \\ -
\ ~ _-
\ S -7
\ -7 N
- ~
X v -
-
C \

4S Al ‘: N \\\ . \\\ . .
@/ (-1,1,-1) . ——2t, iy . Antibonding,
(1,-1,-1) RN S e

. M 3d-based

M= 14 }- Non-bonding, Cv Nf Nf
E e . \\\\ \\\ — le \\\\ \M\\Bd'based
\\\ \\\ \\‘\ \\\:‘\\\ T

N \
\
N \
\\ \ //
N \ Pad s
e
N N - P
P 7
\\\ \ -, //
v N -7 .
LR -’ //
AN s -’
A\ -, ’
\\ l— P .
e ’ Bondin
\ .7 I
7
\ 7’ -
—1 ngand based
a -

AOs of M ML, (T, SOs 4xL



5.5.8 Other coordination geometries

S * In the octahedral complex the lobes of the 3d AOs (2¢)
point directly at the ligands, whereas this is not for the

| Y
/ NG 4\ ~tetrahedral complex. The former therefore has a stronger
X

bonding interaction and, hence, an elevated energy of 2e .

Xy o0 * In the tetrahedral case, the separation between the metal-
g = -
! (e dyy, dry) based orbitals is denoted A,. A= 0.44A,
A - 2t :
’ 3 ® « This smaller value for A, means that the exchange term
t - - - . .
1ty ! e dominates and high-spin complexes are invariably found,
(dx ’ d z) dxz) (dxz_yz, dZZ) 2—
ocﬁahyedrm tetrahedral €.g. [FeCI4] '
metal-based MOs of the octahedral Q: 1) estimate the effective magnetic moment of [FeCl,]*;

and tetrahedral complexes. 2) Most tetrahedral transition mental complex prefer a d'9 electronic

configuration on its central metal atom. Why?



Square-planar |
coordination  The point group D, ‘

2C4 C; 2C; 2C, i 284 oy 200 204 Tty,
.'lll_ll_
. I . 1 1 I K24y 22 -
T 1 -1 -1 1 I 1 -1 -1 R.
—1 1 1 -1 || 1 1 -1 x% —y? X
B R - 1 -1 1 =1 T Xy
I I 1 1 -1 -1 -1 =1 -1
L e St W et B B z * The four o-type ligand
-1 1 1 -1 -1 1 -1 -1 1 ]
N . 1 -1 1 -1 1 -1 orbitals.
ITdo) 4 0 O 2 0 O 0 4 2 0 :A196981969Eu

cartesian function corresponding orbital(s) IR of metal AOs IR of ligand SOs ~ MOs &main contribution
4 Alg A o 1319 bonding, ligand-based

19
(xX,y) 4Py 4p, E, E, 2a,, wab/nb, M (n-1)d ,2-based
Z 4p- A _ 3a;, antibonding, M ns-based
(x2, y2) 3d.,., 3d,. Eg non-bonding { le, honding, ligand-based
Xy 3dy 29 2e, antibonding, M np-based
X% —y? 3d,2_y Blg Blg \{ 1blg bonding, ligand-based

z2 3d.» Agq 1ig ab, M (n-1)d,2_,2-based




EXx. 26

Square-planar coordination

* The d,2_2 (B1y) AO has a stronger interaction with the ligands than the 3d 2 (A,,).

« As aresult, among all the metal (n-1)d-based MOs, the
antibonding 2b,, MO is the highest in energy, followed
by the antibonding 2a,, MO, and the non-bonding 1e,

x/\y X /\F and 1b,, MOs.

Z

(dy2_y2,d2) (dyz_y2) oh * If z interactions with the ligands are also present, the 1e,
2e, 19 . . i i i
4 " and 1b, orbitals separate, with the 1b,, moving higher in
A, (d,2) oa,, energy, possibly above the 2a,,..

1t,, 1e,+ 1by, (IS the ligand -donor or -acceptor?)

(day, Ay di)  (dxy) & (dyy, ) o
octahedral square planar Q: Why does the central metal cation in a stable square-planar

coordination complex prefer a (n-1)d® configuration?




Summary

1. When two AOs interact, a bonding MO is formed which is lower in energy than the lowest
energy AO and an antibonding MO is formed which is higher in energy than the highest
energy AO.

out-of-phase
overlap

greatest contribution
from A
o= antibonding
l': 111

#
. ’.— _JI
lowering Y L '
in energy \ '

1 .,.—
\ . "
\ \ : \
1 1
\ \ ' \
. | ] 1 I
& 1 ]
Dyerlap — smaller |I li
1
i | even
| v smaller
' \ lowering
i 1
)

increasing energy separation between AOs

greatest contribution
-

from B




2. When several AOs interact to form MOs, the number of the MOs Is the same as the
number of the AOs.

higher than
[ highest AO

detailed calc.

- | L] -
LY ¥ - -
a * . L

needed to find
‘ , energies
‘ lower than
AOs MQOs AOs MQOs AOs MOs |owest AO

* In this more complex case It remains true that a particular MO will have the greatest
contribution from the AOs which are closest to it in energy.



Summary

3. A symmetry orbital (SO) 1s a combination of (usually) atomic orbitals designed so that

the combination transforms as a single irreducible representation.

* The form of a particular SO can usually be found by drawing an analogy between its
orbital coefficients and a cartesian function which transforms in the same way as the SO.

 In constructing SOs, 1t 1s important to spot which groups of AOs are mapped onto one
another by the operations of the group, as well as any further simplification which can
arise as a result of a judicious choice of a local axis system.

* SOs can be generated using the projection formula, but this 1s rarely a convenient process
and 1t fails for degenerate representations.



Summary

4. In transition metal complexes there exist high- and low-spin configurations depending
on how the electrons are arranged in the predominately metal-based MOs; which 1s the

lower in energy depends on the comparison between the ligand field splitting and the
exchange interaction.

* The characteristic ‘double dip’ behaviour of various properties of transition metal
complexes can be understood by thinking about how the metal-based MOs are filled.

* mdonor ligands generally reduce A, whereas & acceptor ligands generally increase A,.

* Ligands can be arranged into a spectrochemical series according to the A, values of the
complex.



=) More considerations

\‘-\k<"_§?:‘>r‘/«( )

1. How to understand the so-called octet rule, eighteen-electron rule or even the
generalized octet rule in terms of MO theory?

Rules | O, i VO's Examples
2e 1 2 S LiH, LIR, LI2
4e 2 4 sp BeR,, R-Mg-Cl
6e 3 6 Sp? BEt,, La(Ph),
8e 4 8 sp? CH,, NF;, H,0O
10e | 5 | 10 spd PF., SF,, XeF,
12e 6 | 12 sp3d? SF4, MoF,, PR, SiF?
14e 7 14 | sp3d3/d>sp IF-/ Agl,”, Au(CN),
16e 8 16 d°>sp? Cp,Cr, Au(CN),
18e 9 18 d°>sp3 Ni(CO),, Fe(CO)., Cr(CO),4




More considerations

2. How to understand the concept of Molecular fragment and isolobal analogy (FEHFFE(L,
proposed by Roald Hoffmann) in terms of Molecular orbital theory?

* A molecule can be regarded as a combination of molecular fragments chemically
bonded with each other, e.g, C,H, as two CH fragments.

* Molecular fragments having same number of VEs (or VE, = VE,-10) and similar
frontier orbitals are isolobal.

* A fragment 1n a molecule can be substituted with an 1solobal fragment. e.g., CR, vs
Fe(CO),, > Metal-carbene complexes: (L), M=CR,

» |solobal analogy has been widely exploited in synthetic chemistry and led to the
production of numerous cluster compounds.



* 1sostructural [Co(CO),X] (X=H, AuPR,)
* 1sostructural [FeCo4(CO),,(1;-X)] (X=H, AuPR;) compounds

« Blundell and Powell, J. Chem. Soc. A, 1971, 1685
« McNeil and Scholer, J. Am. Chem. Soc. 1977, 99, 6243.
e Lauher and Wald, J. Am. Chem. Soc. 1981, 103, 7649.



3. Polyhedral Skeletal Electron Pair Theory (PSEPT)

--also known as Wade’s rules or Wade-Mingos rules

* PSEPT provides electron counting rules useful for predicting the structures

of clusters such as borane and carborane clusters.

* The rules were originally formulated by Kenneth Wade and were further developed

by Michael Mingos and others;
* The rules are based on a molecular orbital treatment of the bonding.

 These rules have been extended and unified in the form of the Jemmis mno rules.

Wade, K. J. Chem. Soc. D. 1971: 792—-793.
Mingos, D. M. P. Nature Physical Science. 1972, 236: 99-102.
Jemmis, E. D. etal. J. Am. Chem. Soc.2001, 123 (18): 4313-4323


https://en.wikipedia.org/wiki/Carborane

MO:s of linear AH, (D.,,;)

* A:1s ~Xj (core AO) D

25~Z;
2p, ~Zy
(2px,2py)~ 11,
2H 1s:
(5o +sp) ~Zj

(Sa - Sp) ~Z5

E 2C¢ () i 2iC_ 10 h=o0
A (Z9) 1 1 1 1 1 1 z%, x* 4+ y?
AL 1 1 1 -1 -1 -1 z
Ay(Z3) 1 1 -1 1 1 -1
A, (Z7) 1 1 -1 -1 1 1
Elg(l_[g) 2 2 cos ¢ 0 2 —2Cos ¢ 0 (xz, yz)
E, (II) 2 2cos @ 0 -2 2 cos @ 0 (%, 9)
Ezg(&g) 2 2¢cos2¢ 0 2 2cos 20 0 (xy, x? —yz)
2 2cos2¢ 0 —2 —2 cos 2¢ 0

EZLI(AU)
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AH, : linear (D) vs. bent(C,,)

. 4VEs % N
L: 20107 \ 20,
4a
B: 2a/23a/ T~ .

BH, prefers the linear
structure.

L g

\ \
| T - ,
i |
D, A
e H—— H— <« Hf----AS H— Iz, .1x,
\’ \‘

* H,0O: 8 Ves <

- 4 occupied VMOs. \
The bent structure \\_ _'J;
has 3 bonding MOs.

90° 104.5 180"
Bond angle



SOs arising from the six s-type ligand orbitals.
G 855

0, = (54 + 55 +Sc+5p +5p+5:)/V6
)

Or, .= (sc- sp)/N2  0p =(sg-sp)/V2 Or .=(s4- sp)/\2

1u)y

0Eg,1= (5c * sg-sg-5p)/2 9E9,2= (2s, + 2sp- 5o - Sp -Sg - Sp) /12



PO problem with a degenerate IR: the way-out
- CH, D  1-MOs formed by six p, AOs

* Reduce the symmetry of the molecule to pure rotational symmetry C,.

» For cyclic group, the six equivalent AOs span as

Go6 C E Co C3 C2 C; C2
I’ =4 @B &®E, ®E,

Ry A | 1 | | | 1
Ry B 1 -1 I -1 I -1 Operation E C, C; C, C# ¢/

a 2 3 4 5
Ri Eé ] mﬁ m4 m3 mz @ Effect on p, o & O O b5 O
Rs E| | W W W w W
R, Ef 1 o o 1 o ot OED= (¢t T0d; + 0’0 + 05 + 0hs)/6
Ry E)f 1 o o 1 ot @ OEP) = (¢, tod, +02d; + 03P, + 0rs + 0°g)/6

o = exp(27i/6) W(E,;?) = N[O(E ) + O(E,?)]=(29; +b, b3 20, - d5+dg)/ V12
— 1 ¥ = Y(E,P) = N[O(E,?) — O(E ?)]= +d -O-de)/2
PO, — E{Z[X(k)(")] R} : (B%) = NIOGE,?) ~ 0(E,)]= (6, +b3 5
R

O(E,?) = (¢ T, +0d; + oy + 0?5 + ©7¢4)/6
O(E,") = (¢ +o*h, +o*d; + oy + 0?5 + 0dg)/6 }
W(E,?) = N[B(E,?) + O(E,?)] = (24, -0, -03 +20, - d5-05)/V12
P(E,) = N[O(E,?) — O(E,")] = (9, -03 +ds-06)/2

Vy=0,= (9 + P+ 5+ @+ hs + 9g)/6
V=05 = (9;- )+ &5- Py + P5- 9g)/6



L) PO problem with a degenerate IR: the way-out ‘,
* CiHg Dy « 1—MOs formed by six p, AOs I'=A®B ®@E, PE, X

V== (¢;- 0+ &;- b, + b5 - §g)/\/6

HES) = (2, -9, -P5 +28, - 9-Ps)/ V12
HES) = (9, -¢5 +d5-05)/2

HEF) = (29 +¢, -95 -29, - §s+85)/ V12
HEL) = (9, +0;-d5-05)/2

Y=0,= (¢, + ¢, +§5+ ¢, + &5 + ¢))/ /6




1. Use the MO theory to understand the bonding in electron-deficient boranes and
carboranes, e.g., B,H, , as well as the topological rules, e.g., Lipcomb’s styx method and
Tang’s rule for boranes, Wade’s (n+1) rule for closo-boranes and carboranes.

2B(2px)+4H(Ls)

Mainly 2B(2py)
+ minor 2H(15s)
+minor 4H(15s)

2B(2pz) + 2H(1s)

Mainly 2B(25s)
+minor 4H (1s)

2B(2s)+2H(15s)




