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Reviewing—direct products

• 如果两个函数分别按不可约表示 Γ(i) 和 Γ(j)变换, 那么他们的乘积函数当按这两个不

可约表示的直积Γ(i)⊗ Γ(j)变换.

• 两个不可约表示直积中各对称操作的特征标就是两个不可约表示相应特征标的乘积

每个对称操作的特征标的乘积: (a, b, c, . . .) ⊗ (p, q, r, . . .) = (a×p, b×q, c×r, . . .)

• 每个点群必有一个全对称不可约表示Γtot. sym.-- 所有操作的特征标均为 +1。

• 任一不可约表示Γ(i)与全对称不可约表示的直积就是该表示本身: Γ(i)⊗ Γtot. sym.= Γ(i).

• 任意一维不可约表示和它自身的直积就是全对称不可约表示： Γ(i)⊗ Γ(i)= Γtot. sym.

• 任意高维不可约表示和它自身的直积Γ(i)⊗Γ(i )必包含全对称不可约表示Γtot. sym. 。

• 标量(数字) (numbers) 按全对称不可约表示变换。



Reviewing—vanishing integrals

1. 若函数ψ不按全对称不可约表示变换，则其积分𝑰 =  ψ𝒅𝝉 必为零。

2. 若两个原子的AO波函数ψi 和 ψj不依同一不可约表示变换，则其重叠积分𝑺𝒊𝒋 =

 ψ𝒊
∗ψ

𝒋
dτ必为零。换句话说，对称性相同(依同一不可约表示变换)的原子轨道间才

可以有效重叠。

3. 矩阵元𝑸𝒊𝒋 =  ψ𝒊
∗ 𝑸ψ

𝒋
dτ的值必为零若对应的直积 Γ(i) ⊗ Γ(Q)⊗ Γ(j) 不含全对称不可约

表示。

4. 哈密顿算符必然按全对称不可约表示变换(? !)，若两个原子的AO波函数ψi 和 ψj

不依同一不可约表示变换，则交换积分 𝜷𝒊𝒋 =  ψ𝒊
∗ 𝑯ψ𝒋dτ必为零。即对称性相同（依

同一不可约表示变换）的原子轨道间才可以有效成键，形成分子轨道。



5. Molecular orbitals

• Now that we have developed the necessary Group Theory tools, we can use them to draw 

up (qualitative) MO diagrams. （注：这是正则分子轨道（canonical molecular orbital, 

CMO）图像，而非大一时学过的定域分子轨道(LMO)图像！）

• Symmetry arguments greatly simplify this process and help us not only to work out which 

interactions are important but also make it possible to sketch the form of the MOs in a 

straightforward way. 

• In addition, we will be able to say something about the resulting electronic properties of 

the molecule and discuss why molecules have a preference for one shape over another.



5. Molecular orbitals

The procedure we will adopt for drawing up MO diagrams：

1. Identifying the point group of the molecule to be concerned.  

2. Identifying the AOs (valence orbitals) to be involved in bonding.

3. Classifying the AOs according to symmetry and, if necessary, combining those 

symmetrically equivalent AOs to form symmetry orbitals, SOs. 

4. Allowing orbitals of the same symmetry to overlap (both in phase and out of phase!), and 

hence constructing the MO diagram. 

(In the Chapter of “Representations”, we have learnt some concepts needed in step 3.)



5.1 Basic observations about MOs

• When two AOs of the same symmetry interact, a bonding MO is formed which is lower in 

energy than the lowest energy AO and an antibonding MO is formed which is higher in 

energy than the highest energy AO.

Note:  the size of an AO also 

matters in bonding!



5.1 Basic observations about MOs

• When several AOs interact to form MOs, the number of the MOs is the same as the number 

of the AOs.

• In this more complex case it remains true that a particular MO will have the greatest 

contribution from the AOs which are closest to it in energy.



Representing MOs

• To draw MOs, we need to show the result of the in-phase or out-of-phase overlap, as well 

as the relative contributions made by the different AOs. 

(white ~ positive, black ~ negative) 

In-phase overlap

greatest contribution 

from atom A.

greatest contribution 

from atom B.

Out-of-phase overlap

equal contribution



5.2 MO diagram for water

• Example: H2O (point group C2v)

• The O 1s AO is too contracted and too low in 

energy, transforming as A1.

• O:  2s 

2pz

2px

2py

• 2H:  (sa, sb)

1 = (sa+ sb)                as A1

2= (sa-sb) (x-like) as B1

(Already considered in chapter 2) 

(spherical) as A1;   

(z-like) as  A1. 

(x-like) as B1

(y-like) as B2

By inspection!  (For AOs without equivalent AOs)

A1  B1

(sa, sb)  = A1  B12 0 2 0

ab



5.2 MO diagram for water

• A rough sense of the relative energies of the AOs involved is needed to draw up the MO 

diagram. 

• O 2s AO <  2p AO, 

• H 1s AOs ~ the oxygen 2p AOs. 



5.2 MO diagram for water

• Now put the AOs(SOs) in the order of energy.

• Now use the key principle: only AOs(SO)s with 

the same symmetry will interact to form MOs.

1) O2px (B1)   +   the B1 SO(2) of H1s. 

3) O2py gives a non-bonding MO with B2 symmetry！

2) O2s, 2pz (A1) +  the A1 SO.

(B1) = c12px + c2 2

(A1) = d12s + d2pz + d31

(c1, c2 ~coefficients)

(d1~d3 ~coefficients)

 ? MOs with B1 symmetry!

 ? MOs with A1 symmetry!

Two

Three

(in-phase & out-of-phase)

Oxygen

AOs
MOs

hydrogen

AOs/SOs

A1

B1

2s A1

2px B1

2py B2

2pz A1

E

A total of six VMOs (valence molecular orbitals)



5.2 MO diagram for water
Labelling the MOs

Molecular-orbital diagram of  H2O 

(C2v)

• The O2px interacts with the B1 SO to form a 

bonding MO 1b1 and an anti-bonding MO 2b1.

• The O2py gives a non-bonding MO of B2 IR, 

labelled 1b2.
1b2

1b1

2b1

• The O2pz and 2s interact with the A1 SO to give 

three MOs, labelled 2a1, 3a1 and 4a1. 

2a1

3a1

4a1

• 8 VEs

• Computer calculation is needed to determine the 

position of 3a1 in relation to 1b1 and 1b2.

Weakly 

bonding or 

nonbonding

• Electronic configuration: 2a1
21b1

23a1
21b2

2

 The lowest four VMOs are occupied. 

• The inner O1s gives the lowest-energy, non-

bonding MO of A1 IR, therefore labelled 1a1.

Oxygen

AOs
MOs

hydrogen

AOs/SOs

A1

B1

2s A1

2px B1

2py B2

2pz A1



Form of  the MOs

• We can also make some educated guesses 

about the form of the MOs.

Construction of the MOs for H2O.

• The 1b2 MO is solely the O2py AO. 

• The interaction of the O 2px and 2 SO of B1 IR 

leads to the formation of a bonding MO, 1b1, and 

an anti-bonding MO, 2b1.  

• The interaction of the AOs and SO with 

symmetry A1 gives three MOs: 

The A1 MO, 2a1, arises from in-phase 

combination of the O2s, O2pz (minor) and the 

1 SO.

2a1

3a1

4a1

The 3a1 MO arises from out-of-phase

combination of O2s (minor) and in-phase

combination of O2pz (major) with the 1 SO. 



Form of  the MOs

• This picture shows plots of the occupied 

MOs of H2O based on a computer 

calculation using the Hyperchem program. 

• The 2a1, 1b1 and 1b2 MOs do indeed match 

up with our expectations based on the 

qualitative arguments given above. 

• The 3a1 MO is weakly bonding, as 

evidenced by the small amount of electron 

density between the O and H atoms.

Contour plot 3D isosurface

2a1

3a1

1b1

1b2



等值线图 3D 等值面

2a1

1b1

3a1

1b2

E

H2O的占据分子轨道 & PES

I.E. (eV) 

(32.2)

18.5

14.7

12.6

PES-chem.libretexts.org

[Cu(H2O)6]
2+

Q:  Which MO of  

H2O will be used 

when coordinating 

to a metal center?  



5.3 Symmetry orbitals

• A symmetry orbital is a linear combination of other orbitals (usually AOs) which are 

chosen in such a way that the symmetry orbital transforms as a single irreducible 

representation. 

In some texts these linear combinations are called symmetry adapted linear combinations, 

SALCs.

• We will describe two approaches to the construction of SOs: 

(1) by making use of the additional information presented in character tables;

(2) by use of the projection formula (投影公式).

In practice, the first one is by far the easiest.



5.3.1 SOs in BH3

• First consider a basis consisting of three H 1s AOs and ‘count’ the characters.

• Obviously, the combination of 

the hydrogen 1s AOs which 

transforms as the totally 

symmetric IR 𝑨𝟏
′ is 

(sA+ sB+ sC). 
3    0 1 3 0 1

• The remaining two SOs transform 

as 𝑬′, similar to the basis (x,y).

 = A1  E

• Point group:  ?D3h



• For the SO that transforms like the function ‘x’,   

5.3.1 SOs in BH3

SO1 = 0sA + (+1)sB + (1)sC

• For the SO that transforms like the function ‘y’,   

= sB  sC

SO2 = (+1)sA + (1/2)sB + (1/2)sC

= sA – (sB+sC)/2

Not normalized yet!



• Hence the three H 1s AOs in BH3 give the following three SOs，

𝜽𝑨𝟏
′ = 𝒔𝑨 + 𝒔𝑩 + 𝒔𝑪 ; 𝜽𝑬′,𝒙 = 𝒔𝑩 − 𝒔𝑪 , 𝜽𝑬′,𝒚 = 𝒔𝑨 − (𝒔𝑩 + 𝒔𝑪)/𝟐

5.3.1 SOs in BH3

• It is important to realise that 𝜽𝑬′,𝒙 and 𝜽𝑬′,𝒚 together transform as the two-dimensional IR 𝑬′: 

it is not that each alone transforms as 𝑬′. 



5.3.2 Normalization of  symmetry orbitals

• In quantum mechanics a wavefunction ψ is normalized if  𝝍∗𝝍𝒅𝝉 = 𝟏

𝑵 =
𝟏

 ∗𝒅
(normalization factor),  and (Nψ) is normalized.

𝜽 = 𝒄𝟏𝚽𝟏 + 𝒄𝟐𝚽𝟐 + 𝒄𝟑𝚽𝟑 +⋯

• If a wavefunction ψ is not normalized, then define

• A symmetry orbital is written as a linear combination of atomic orbitals Φi:

If the AO wavefunctions are themselves normalized, and if we assume that the AOs on 

different (but symmetrically equivalent) atoms do not overlap, i.e., ijd = ij = 0 (i≠j)

the SO can be normalized as 𝜽 =
𝒄𝟏𝚽𝟏 + 𝒄𝟐𝚽𝟐 + 𝒄𝟑𝚽𝟑+ . . .

𝒄𝟏
𝟐 + 𝒄𝟐

𝟐 + 𝒄𝟑
𝟐 +⋯

or if the SO is normalized then  c1
2 + c2

2 + c3
2 + … = 1.



5.3.2 Normalization of  symmetry orbitals

• For the 𝐴1
′ SO, the coefficients give 𝟏𝟐 + 𝟏𝟐 + 𝟏𝟐= 𝟑.

𝜽𝑨𝟏
′ =

𝟏

𝟑
(𝒔𝑨 + 𝒔𝑩 + 𝒔𝑪)

𝟎𝟐 + (+𝟏)𝟐+(−𝟏)𝟐= 𝟐

𝜽𝑬′,𝒙 =
𝟏

𝟐
(𝒔𝑩 − 𝒔𝑪)

• For 𝜽𝑬′,𝒙 the coefficients give

Then the normalized SO is 

Then the normalized SO is 

• For 𝜽𝑬′,𝒚, the normalized SO is 𝜽𝑬′,𝒚 =
𝟏

𝟔
(𝟐𝒔𝑨 − 𝒔𝑩 − 𝒔𝑪)

• By using a similar procedure, the two SOs (of H 1s) in H2O can be normalized as 

𝜽𝑨
𝟏
=

𝟏

𝟐
(𝒔𝑨 + 𝒔𝑩) 𝜽𝑩

𝟏
=

𝟏

𝟐
(𝒔𝑨 − 𝒔𝑩)



5.3.3 MO diagram for BH3

• H: (sA,sB,sC)    SOs: 𝑨𝟏
′ , E

• B:  2s ~

1𝒂1

2𝒂1

1𝒂2

• The 2pz gives the non-bonding MO, 1𝒂𝟐
′′.

• The 2s interacts with the A1 SO, giving the MOs, 1𝒂𝟏
′

(in-phase) and 2𝒂𝟏
′ (out of phase).

1𝒆

2𝒆

• The 2px and 2py interact with the E SOx and SOy,  

respectively. 

2pz ~ 𝐴2
′′𝑨𝟏

′ , (2px,2py) ~ E

Note: the 𝑨𝟏
′ MO 

arising from the B 

1s AO is omitted!

• 6 VEs

2𝐩𝒛 𝐀2

Boron

AOs

Hydrogen 

AOs/SOsBH3 VMOs

2𝒔 𝐀1

2𝐩𝒙 𝑬
2𝐩𝒚 &

𝐀1
𝑬



The form of  the MOs of  BH3

A2 2pz
1a2

A1

2s

𝜃𝐴1

1a1

2a1

In-phase
combination

out-of-phase
combination

Non-bonding

E

2px

𝜃𝐸,𝑥 out-of-phase
combination

In-phase
combination

1e

2e

2py

𝜃𝐸,𝑦

In-phase
combination

out-of-phase
combination 2e

1e

D
eg

en
ar

at
e

p
ai

r 
D

eg
en

ar
at

e
p

ai
r 

Exs.15-17



5.3.4 SOs in ‘OH4’

• Example: a hypothetic molecule OH4 in a square planar geometry (D4h).  

(4H1s) 4

4xH1s  4 SOs

0 0 0 2 0 0 4 0 2 A1g  B2g  Eu

• We encounter 2-dimensional IR

again. 

• A1g ~ totally symmetric IR. 

𝜽𝑨𝟏𝒈 = s𝑨 + sB + s𝑪 + s𝑫

(Note: (x2+y2) transforms as A1g.)

• (x,y) transforms like Eu and xy

transforms like B2g.

• Now make the coefficients 

match the corresponding 

functions.

AB

C D



5.3.4 SOs in ‘OH4’

• We first identify the x- and y-coordinates of each of the hydrogen atoms.

𝜽𝑬𝒖.𝒙 = +𝟏 × 𝒔𝑨 + −𝟏 × 𝒔𝑩 + −𝟏 × 𝒔𝑪 + +𝟏 × 𝒔𝑫

𝜽𝑬𝒖.𝒚 = +𝟏 × 𝒔𝑨 + +𝟏 × 𝒔𝑩 + −𝟏 × 𝒔𝑪 + −𝟏 × 𝒔𝑫

• One of Eu SO ‘like x’ is  

• One of Eu SO ‘like y’ is  

Eu

• The B2g SO ‘like xy’ is  𝜽𝑩𝟐𝒈
= +𝟏 × 𝒔𝑨 + −𝟏 × 𝒔𝑩 + +𝟏 × 𝒔𝑪 + −𝟏 × 𝒔𝑫

• The normalized SOs are 𝜽𝑨𝟏𝒈 = (𝒔𝑨 + 𝒔𝑩 + 𝒔𝑪 + 𝒔𝑫)/2 𝜽𝑩𝟐𝒈
= (𝒔𝑨 − 𝒔𝑩 + 𝒔𝑪 − 𝒔𝑫)/𝟐

𝜽𝑬𝒖.𝒙 = (𝒔𝑨−𝒔𝑩 − 𝒔𝑪 + 𝒔𝑫)/𝟐 𝜽𝑬𝒖.𝒚 = (𝒔𝑨 + 𝒔𝑩 − 𝒔𝑪 − 𝒔𝑫)/𝟐

B2g

The coefficients

match the x

coordinates

The coefficients

match the y

coordinates

The coefficients

match the values 

of xy.



5.3.4 SOs in ‘OH4’       -- MO diagram

• O: 2pz

(2px,2py) 

2s 

• 4H 1s SOs：A1g, B2g, Eu;

1a1g

2a1g

1eu

2eu

1b2g

1a2u

A2u

Eu

A1g

 8 VMOs

10  VEs

2px &
2py Eu

Oxygen 

AOs

Hydrogen

AOs/SOs

2pz A2u

VMOs

Eu

A1g

2s A1g

B2g

Both O and H 
atoms have 
VAOs and 
VEs unused 
for bonding！
Unstable!

Q: 请画出各分子轨道组成的简图。



2pz
2px

2py

• Example: BF3 (point group D3h). F: 2s, 2px, 2py,2pz

5.3.5 Constructing SOs in an intelligent way

• Three F 2s AOs  three SOs (A1  E );  three F 2pz AOs  three SOs.  （Q11!)

• Now the SOs for set 1 is similar to 

those for the 2s AOs.

• The situation can be simplified by 

using a different local axis system. 

producing an annoying ?-D rep.!

How to simplify the situation？

Set 1 Set 2

• However, the 2px and 2py AOs are all mixed together in a rather complicated way by the 

operations of  the group, 



• Now find the characters of  the 

representation in the basis of  

the three 2pz AOs. (Q11)

Finding the SOs

 3 0 -1 -3 0 1 =  A2  E

• 𝜽𝑨𝟐 = 𝒑𝒛,𝑨 + 𝒑𝒛,𝑩+ 𝒑𝒛,𝑪

• 𝜽𝑬𝒙𝒛= 𝒑𝒛,𝑩– 𝒑𝒛,𝑪

• 𝜽𝑬𝒚𝒛 = 𝒑𝒛,𝑨 − (𝒑𝒛,𝑩+𝒑𝒛,𝑪)/2



• Now find the characters for set 2.

（three px AOs)

Finding the SOs

• The 𝐸′ SOs:

 3 0 -1 3 0 -1 =  A2 E

𝜽𝑬,𝒙 = p2,B – p2,C

𝜽𝑬,𝒚 = p2,A – (p2,B + p2,C)/2

• A good guess for the 𝑨𝟐
′ SO,

𝜽A
𝟐
 = p2,A + p2,B + p2,C

Ex.  18



xy-like B1gy-like B2u

x-like B3u
Ag

• Constructing the SOs arising from 

the four hydrogen 1s AOs in C2H4.

5.3.6 One last example

 4 0 0 0 0 4

=  Ag  B1g  B2u  B3u

0 0

• C2H4,  point group  ?D2h



• Suppose that we have a set of  basis orbitals {i} which are being used to construct SOs. 

The SO transforming as the irreducible representation k, θ(k), can be found by applying 

the projection operator  𝑷(k) to one of  the basis functions, 

5.4  Projection operator

𝜽(𝒌) =  𝑷(𝒌)𝒊

 𝑷(𝒌) =
𝟏

𝒉
 
 𝑹

 𝒌  𝑹
∗  𝑹

in which the projection operator  is

Sum over all symmetry operations

~ Projection formula

• A more formal way of  finding the symmetry orbitals is using the projection operator.  

• However, using projection operator is laborious and in addition it does not work 

straightforwardly for two- and higher-dimensional IRs. 



• The two hydrogen 1s AOs together transform as  A1⊕B1. 

• Now work out the effects of  all operations on sA.

5.4.1 SOs in H2O

 𝑪𝟐
𝒛𝒔𝑨 = 𝒔𝑩 𝑬𝒔𝑨 = 𝒔𝑨  𝝈𝒚𝒛𝒔𝑨 = 𝒔𝑩 𝝈𝒙𝒛𝒔𝑨 = 𝒔𝑨

 𝑷(𝒌)𝒔𝑨 =
𝟏

𝒉
 

𝑹

 𝒌 𝑹
∗  𝑹𝒔𝑨

=
𝟏

𝟒
 𝒌 𝑬  𝑬 +  𝒌 𝑪𝟐

 𝑪𝟐 +
𝒌 𝝈𝒙𝒛  𝝈𝒙𝒛+  𝒌 𝝈𝒚𝒛  𝝈𝒚𝒛 𝒔𝑨

=
𝟏

𝟒
 𝒌 𝑬 𝒔𝑨 +  𝒌 𝑪𝟐 𝒔𝑩+

𝒌 𝝈𝒙𝒛 𝒔𝑨 +  𝒌 𝝈𝒚𝒛 𝒔𝑩



• For the SO that transforms as A1,  

5.4.1 SOs in H2O

 𝑷(𝒌)𝒔𝑨 =
𝟏

𝒉
 

𝑹

 𝒌 𝑹
∗  𝑹𝒔𝑨

=
𝟏

𝟒
 𝒌 𝑬 𝒔𝑨 +  𝒌 𝑪𝟐 𝒔𝑩+

𝒌 𝝈𝒙𝒛 𝒔𝑨 +  𝒌 𝝈𝒚𝒛 𝒔𝑩

 𝑷(𝑨𝟏)𝒔𝑨 = (s𝑨 + s𝑩)/𝟐

• For the SO that transforms as B1,  

 𝑷(𝑨𝟐)𝒔𝑨 =
𝒔𝑨+ s𝑩 − 𝒔𝑨− 𝒔𝑩

𝟒
= 𝟎

• Using the projection operator for the IR A2 gives

 𝑷(𝑩𝟏)𝒔𝑨 = (s𝑨 − s𝑩)/𝟐



• The four hydrogen 1s AOs in ethene

transform as Ag⊕B1g⊕B2u⊕B3u.

• The effects of  operations on sA

5.4.2 SOs in ethene

 𝑪𝟐
𝒛𝒔𝑨 = 𝒔𝑪

 𝑬𝒔𝑨 = 𝒔𝑨  𝑪𝟐
𝒚𝒔𝑨 = 𝒔𝑩

 𝑪𝟐
𝒙𝒔𝑨 = 𝒔𝑫

 𝝈𝒙𝒛𝒔𝑨 = 𝒔𝑫  𝝈𝒚𝒛𝒔𝑨 = 𝒔𝑩 𝝈𝒙𝒚𝒔𝑨 = 𝒔𝑨 𝒊𝒔𝑨 = 𝒔𝑪



Operation

5.4.2 SOs in ethene

Effect on sA

E      C2
z C2

y C2
x i xy xz yz

sA sC sB sD sC sA sD sB

Characters for Ag 1       1       1      1       1      1       1       1

Result sA sC sB sD sC sA sD sB =(2sA+ 2sB + 2sC + 2sD)/8

Characters for B1g 1       1      -1     -1       1      1      -1      -1

Result sA sC -sB -sD sC sA -sD -sB =(2sA – 2sB + 2sC – 2sD)/8

Characters for B2u
1      -1       1     -1      -1      1      -1       1

Result sA -sC sB -sD -sC sA -sD sB =(2sA + 2sB – 2sC – 2sD)/8

Characters for B3u
1      -1      -1      1      -1      1       1      -1

sA -sC -sB sD -sC sA sD -sBResult =(2sA – 2sB – 2sC + 2sD)/8

Ex.19&20

Q:  How can we make the process less tedious?

D2 ~ a subgroup of  D2h

Use a subgroup that keeps the equivalence of  atoms!



• The three hydrogen 1s AOs in BH3 (point group D3h) transform as 𝑨𝟏
′⊕𝑬′. 

5.4.3 SOs in BH3

Operation

Effect on sA

E      C3 C3
2 C2

(a) C2
(b) C2

(c) h S3 S3
5 (a) (b) (c)

sA sC sB sA sB sC sA sC sB sA sB sC

Characters for A1 1       1       1      1        1        1        1      1      1        1        1       1

Result

• 𝜽𝑨
𝟏
=    (4sA+ 4sB + 4sC)/12

sA sC sB sA sB sC sA sC sB sA sB sC

Characters for E 2      -1      -1      0        0        0        2     -1     -1        0        0       0

Result 2sA -sC -sB 0        0         0      2sA -sC -sB 0          0        0 

• 𝜽𝑬=    (4sA – 2sB – 2sC)/12 (like ‘y’)

• Another SO of 𝑬′ can not be found by using the PO!

• Similar problem will be encountered for 3-D IRs. 



PO problem with a degenerate IR: the way-out 

• Alternatively, lower the symmetry of the 

molecule from D3h to its pure rotation 

subgroup, Cn, for which the degenerate E IR 

becomes two associate 1-D representations.  

BC

• Again for BH3, 3H 1s SOs 
 3 0 0

 = A  E

Operation

Effect on sA

E      C3 C3
2

sA sC sB

Characters for E(1) 1        *

Result sA *sC sB

Characters for E(2) 1       * 

Result sA sC *sB

𝜽𝑬 ,𝟏= (sA + *sC + sB)/3

𝜽𝑬 ,𝟐= (sA + sC + *sB)/3

→ 𝜽𝑬 ,𝒂= 𝑵(𝜽𝑬 ,𝟏+ 𝜽𝑬 ,𝟐) = N(2sA –sB –sC) 𝜽𝑬 ,𝒃= 𝑵(𝜽𝑬 ,𝟏– 𝜽𝑬 ,𝟐) = N(sB –sC)

 𝑷(𝒌)𝒔𝑨 =
𝟏

𝒉
 

𝑹

 𝒌 𝑹
∗  𝑹 𝒔𝑨

(note:    * = 2 )



• Transition metals form an astounding number of coordination compounds, or complexes, 

in which a central metal atom is surrounded by a number of ligands. 

• The ligands are anions, such as Cl–, or small molecules, such as H2O and CO. 

5.5 Transition metal complexes

• Some frequently encountered coordination geometries: (a) is tetrahedral (point group Td),  

(b) is square planar (point group D4h) and if we concentrate on just the ligating atoms, (c) 

is octahedral (point group Oh). 



• Suppose an octahedral complex in which the central metal ion is surrounded by six 

structureless ligands, each directing a σ-type orbital towards the metal atom. 

• Typically these ligand orbitals will be those occupied by lone pairs, such as in NH3.

Key symmetry operations of the Oh group:

5.5.1 MO diagram of an octahedral complex with σ-only ligands

HOMO of NH3



4s

5.5.1 MO diagram of an octahedral complex with σ-only ligands

VAOs of the 

central metal 

Cartesian function orbital IR

A1g

4px,  4py,  4pz(x,y,z) T1u

(xz,xy,yz) 3dxz,  3dxy,  3dyz T2g

3𝑑𝑧2,  3𝑑𝑥2−𝑦2 Eg(2z2-x2-y2, 3(x2-y2))

r2=x2+y2+z2



• The six σ-type ligand MOs transform as

5.5.1 MO diagram of an octahedral complex with σ-only ligands

 6 0 2 2 0 0 0 4 0 2

A1g⊕Eg⊕T1u.



• The six σ-type ligand MOs transform as A1g⊕Eg⊕T1u.

5.5.1 MO diagram of an octahedral complex with σ-only ligands

A1g

Like x2-y2

T1u

Like 2z2-x2-y2

Eg

Larger 

coefficient

Ex. 21



• The metal 3d electrons should go 

to 1t2g and 2eg MOs; the energy 

gap between them is called the 

ligand-field splitting, ∆o. 

• The size of ∆o depends on the 

strength of the M-L bonding 

interaction. why?

MO diagram for an ML6 complex. 

• Now work out the MOs using the 

symmetry principle.

• Then the occupations of MOs.

antibonding MOs –
main contribution 
from metal

Bonding MOs – main 
contribution from ligands 

antibonding 
MOs – main 
contribution 
from metal

nonbonding 
MOs from metal

Metal 3d-
based  MOs



• For a fixed set of ligands, ∆o increases as the oxidation 

state of the metal increases and also as we move across 

the first transition series. Why?

i) Both increasing the oxidation state and increasing the 

atomic number will result in the 3d AOs falling in energy 

and so becoming more closely matched in energy to the 

ligand orbitals. 

ii) The result is a stronger M-L -interaction, and hence a 

greater shift of the antibonding MOs (2eg).

• The way in which ∆o varies with ligand is rather more 

complex, and is a point deserves further discussion.

Ligand-field splitting



• Now let us focus on how the electrons which derive from metal 3d orbitals are accommodated in the 

non-bonding 1t2g and antibonding 2eg MOs –Ligand field theory.

5.5.2 High- and low-spin complexes

• Assume that the energy of the 1t2g MOs is 0, the energy of the 2eg MOs is 0, and each pair of 

electrons of parallel spins lowers the energy by an amount of K (exchange energy).

(Note: for d1-d3 or d8-d10, there is only one electronic configuration!)  

Ehigh-spin = (3x0+ o) – 6K = o – 6K

Elow-spin = (4x0) – 3K = –3K

If o < 3K, high spin is favored!

Ehigh-spin = (3x0+ 2o) – 10K = 2o – 10K

C4
2

Elow-spin = (5x0) – 4K = –4K

If o < 3K, high spin is favored!



5.5.2 High- and low-spin complexes

• For large O, the d4-d7 may favor low spin state. 

Ex. 22

Similarly, we can tabulate the exchange energy and orbital energy for each state:

ii) For large O, orbital contribution dominates.

• For small O, the d4-d7 may favor high spin state. 

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

High-spin  Orbital   (0) 0 0 0 0 1 2 2 2 2 3 4

Exchange(K) 0 0 1 3 6 10 10 11 13 16 20

Low-spin Orbital(0) - - - - 0 0 0 1 - - -

exchange(K) - - - - 3 4 6 9 - - -

i) For small O, exchange contribution dominates.

0

o

1t2g

2eg



• Naively, we might think that a transition in which an electron is promoted 

from the 1t2g to the 2eg would give us a direct measure of ∆o. 

• Unfortunately this is not the case since the act of promoting an electron 

from one orbital to another alters the energy of all of the orbitals due to 

changes in the electron–electron repulsion. 

• Yet, it is possible to infer the value of the ligand-field splitting from the 

electronic spectra of these complexes, but the details of how this can be 

done are beyond the scope of this course.

5.5.3 Spectroscopic and magnetic properties

• Electronic spectroscopy, in which the transitions can be thought of as involving electrons 

moving from one orbital to another, is an excellent way of studying the electronic structure 

of transition metal complexes and the energies of the orbitals involved. 

0

o

1t2g

2eg

hv

v ~ Visible light

We observe the 

complementary 

color of light 

absorbed!



• The presence of unpaired electrons in a complex leads to paramagnetism. 

5.5.3 Spectroscopic and magnetic properties

• For first-row transition metal complexes it turns out that the effective magnetic moment, µeff, 

which is a measure of the degree of paramagnetism, is given by

𝝁𝒆𝒇𝒇 = 𝟐 𝑺(𝑺 + 𝟏) in Bohr magnetons, B.M. (B).

S is the quantum number for the total spin angular momentum. --总自旋(角动量)量子数

• As S =n/2, where n is the number of unpaired spins. The expression can therefore be re-

written as

• A complex containing Mn2+ in high-spin state, n = 5 and 𝝁𝒆𝒇𝒇 = 𝟓(𝟓 + 𝟐) = 𝟓. 𝟗 B.M.. Its 

low-spin state has only one unpaired electron, 𝝁𝒆𝒇𝒇 = 𝟏(𝟏 + 𝟐) = 𝟏. 𝟕 B.M.. 

Ex. 23

𝝁𝒆𝒇𝒇 = 𝒏(𝒏 + 𝟐) B.M.



• This figure shows how the hydration enthalpies (水合热)  of M2+ and M3+ ions and the lattice 

energies (晶格能) of divalent chlorides vary along the first transition series. 

5.5.4 Thermodynamics properties

• If on the plot we connect the values 

for d0, d5 and d10 configurations we 

see that all the other data fall beneath 

these lines in two dips, one between 

d0 and d5, and the second between d5

and d10. 



• The predominately ligand-based 1a1g, 1t1u and 1eg bonding MOs are fully occupied regardless of the 

number of d electrons. 

Assume that the reduction in energy due to the occupation of these MOs as –EL and that each 

electron in the 2eg MOs increases the energy by an amount Eσ. 

5.5.4 Thermodynamics properties

• Then overall the energy change upon forming the complex is 

− 𝑬𝑳 + 𝒏𝑬𝝈 × 𝑬𝝈 (𝒏𝑬𝝈 ~ the number of electrons in the 2eg

MOs).

• For high-spin complex, the energy change solely depending on 

the occupation in the 2eg MOs  is given here.   

high-spin

nE



• As the interaction between the metal and ligand MOs becomes stronger as we go across the 

first row, i.e., EL is expected to increase across the row. 

• The overall energy change on forming the complex is the combination of two effects: the 

increase in energy due to the occupation of the 2eg MOs, shown in (a) below; and the general 

decrease in energy due to the increase in EL, shown in (b).

5.5.4 Thermodynamics properties

–EL

high-spin

nE



• We have assumed that Eσ is constant across the row, whereas in reality it should increase for 

the same reasons that EL increases. However, this extra subtlety does not alter the basic 

picture.

• Historically, the lowering in energy of the complex beneath the d0–d5–d10 line has been 

called the crystal-field or ligand-field stabilization energy (CFSE or LFSE). Our analysis 

here shows that this characteristic behavior is entirely understandable from the form of the 

MO diagram for these complexes.

5.5.4 Thermodynamics properties



• In general we should expect ligands to have other orbitals of suitable 

symmetry to interact with the metal. 

• For example, in the case where the ligand is a simple anion (e.g. Cl–) 

the p orbitals which are perpendicular to the M–L axis can interact 

with some of the metal orbitals as shown below. In general, this type 

of interaction is described as  interaction.

5.5.5 Effect of  interactions with the ligands

• If each ligand L has a pair of p (or ) orbitals pointing 

perpendicular to the M–L bond, then the resulting set of 12

orbitals can be shown to transform as T1g⊕T2g⊕T1u⊕T2u.

(after-class Ex.: prove this! ) 
d AO p AO p AO 

x

z
y



• Now there are ligand SOs with T2g symmetry which can interact with the T2g metal orbitals: 

the latter will therefore no longer be non-bonding.

• The diagram below shows the effect of introducing these T2g SOs. For simplicity, only the 

MOs involving the metal 3d AOs are shown.

5.5.5 Effect of  interactions with the ligands

No -interaction -interaction



• Such -interaction gives bonding 1t2g and antibonding 2t2g MOs.

• As a result the separation between the two predominantly metal-based sets of  orbitals 

(here the 2t2g and the 2eg) has been decreased, i.e. ∆o is decreased. 

5.5.5 Effect of  -interactions with the ligands

• The ligand T2g SOs are filled, so in the complex the 1t2g bonding MOs are filled as well.

• The extent to which the antibonding 2t2g

are occupied depends on the number of  

3d electrons present. 

• Ligands which interact in this way so as 

to decrease ∆o are called  donors.



• Ligands such as CO and CN– also have empty π-type orbitals, generally  the π* MOs, available 

for interacting with the metal. 

• Such type of  π-interactions results in an increase in ∆o, and transfer of  electron density from the 

metal to the π-acceptor ligands. 

π-acceptor ligands Ex. 24

• The aforementioned - and -bonding 

between transition metal and -acceptor 

ligands (e.g., CO, CN, alkene, and alkyne) 

thus result in -donation of  electron density 

from the ligands to mental and -

backdonation of  electron density from metal 

to the ligands! (i.e., Dewar-Chatt-Duncanson

model -- widely used in organometallics and 

catalysis!)



For a given metal and oxidation state, altering the ligand changes the value of ∆o. ∆o increases from 

left to right in the following sequence of ligands, called the spectrochemical series.

5.5.6 Spectrochemical series

Resulting from a subtle balance between σ- and π-type interactions: 

• The stronger σ-type interaction  the greater the value of ∆o. 

• The ligating atom going from O → N → C  increasing energy of ligand σ orbital  better 

matching the energy of metal 3d AOs  stronger σ-type interaction. 

• Enhanced σ-type interaction leads to shorter M-L bond length and thus facilitates a stronger -

backbonding interaction, further increasing ∆o.

• CN– and CO lead to particularly large values of ∆o:  strong σ donor & strong π acceptor.

Weaker -interaction

stronger -donors

Stronger -interaction

stronger -acceptors



• In an octahedral complex with π-acceptor ligands, 

there are a total of nine bonding MOs: 1a1g, 1t1u(triply 

degenerate), 1eg(doubly degenerate) and 1t2g(triply 

degenerate).

• It takes eighteen electrons to fill completely all of 

these bonding MOs, so we can say the maximum 

amount of bonding is achieved when there are 

eighteen valence electrons present.

• Alternatively, this is to say that the metal atom has 

nine valence orbitals: the five 3d, the 4s and the three 

4p. If suitable ligand orbitals are available, all these 

metal orbitals will be involved in the formation of the 

nine bonding MOs, which can be occupied by up to 

eighteen electrons.

5.5.7 Eighteen-electron rule



• It has been observed that many transition metal complexes which involve π-acceptor 

ligands do indeed have eighteen valence electrons, whereas complexes with fewer or 

more valence electrons are much less common. 

• This has lead to the formulation of the eighteen-electron rule which says that the most 

stable complexes are likely to be those with this full compliment of bonding electrons. 

• Classical complexes involving ligands which are not π acceptors are not likely to obey 

the eighteen electron rule since the metal-based t2g MOs are either non-bonding or 

antibonding.

5.5.7 Eighteen-electron rule



i)  Tetrahedral coordination 

5.5.8 Other coordination geometries
• 4  -type ligand orbitals (each like a s-type AO)

{4 Ligand- }   4 1 0 0 2 =  A1  T2

IR of metal AOs

A1

T2

T2

E

(Q: plz write out their forms after class!) IRs of 4 ligand-SOs

A1

T2
1a1

2a1

1t2

2t2

3t2

1e

13  MOs

bonding, ligand-based

antibonding, M ns-based

nonbonding, M (n-1)d-based

bonding, ligand-based

wab/nb, M (n-1)d-based

antibongding, M np-based

Ex. 25

z, S4, C2

x

y

a
b

c
d

(1,1,1)

(-1,1,-1)
(1,-1,-1)

(-1,-1,1)



MO diagram of tetrahedral metal complex, ML4

z, S4, C2

x

y

a
b

c
d

(1,1,1)

(-1,1,-1)
(1,-1,-1)

(-1,-1,1)

z-like x-like y-like
A1

ML4 （Td) SOs 4xLAOs of M

3d

4s

4p

E

T2

A1

1a1

2a1

1t2

2t2

3t2

1e
t

T2

T2

Antibonding, 

M 3d-based

Bonding 

Ligand-based

antibonding, M 4s-based

antibonding, M 4p-based

Non-bonding, 

M 3d-based



• In the octahedral complex the lobes of the 3d AOs (2eg) 

point directly at the ligands, whereas this is not for the 

tetrahedral complex. The former therefore has a stronger 

bonding interaction and, hence, an elevated energy of 2eg.

• In the tetrahedral case, the separation between the metal-

based orbitals is denoted ∆t.  ∆t≈ 0.44∆o

• This smaller value for ∆t means that the exchange term 

dominates and high-spin complexes are invariably found, 

e.g., [FeCl4]
2.

5.5.8 Other coordination geometries

metal-based MOs of the octahedral 

and tetrahedral complexes. 

(𝒅𝒙𝒚, 𝒅𝒚𝒛, 𝒅𝒙𝒛)

(𝒅𝒙𝟐−𝒚𝟐 , 𝒅𝒛𝟐)

(𝒅𝒙𝟐−𝒚𝟐 , 𝒅𝒛𝟐)

(𝒅𝒙𝒚, 𝒅𝒚𝒛, 𝒅𝒙𝒛)

z

x

y

Q:  1) estimate the effective magnetic moment of  [FeCl4]
2;  

2) Most tetrahedral transition mental complex prefer a d10 electronic 

configuration on its central metal atom. Why?



• The point group D4h:
Square-planar 
coordination 

• The four σ-type ligand 

orbitals.

= A1g⊕ B1g⊕ Eu(4) 4 0 0 2 0 0 0 4 2 0

IR of metal AOs

A1g

Eu

A2u

Eg

B2g

B1g

A1g

IR of ligand SOs

A1g

Eu

B1g

MOs &main contribution

1a1g

2a1g

3a1g

bonding, ligand-based

wab/nb, M (n-1)𝑑𝑧2-based

antibonding, M ns-based

1eu

2eu

bonding, ligand-based

antibonding, M np-based
1b1g

2b1g

bonding, ligand-based

ab, M (n-1)𝑑𝑥2−𝑦2-based

non-bonding

C2

z, C4, S4



• The 𝒅𝒙𝟐−𝒚𝟐 (B1g) AO has a stronger interaction with the ligands than the 3𝒅𝒛𝟐 (A1g).

Square-planar coordination 

• If π interactions with the ligands are also present, the 1eg 

and 1b2g orbitals separate, with the 1b2g moving higher in 

energy, possibly above the 2a1g.

（Is the ligand -donor or -acceptor?）

• As a result, among all the metal (n-1)d-based MOs, the 

antibonding 2b1g MO is the highest in energy, followed 

by the antibonding 2a1g MO, and the non-bonding 1eg

and 1b2g MOs.

Ex. 26

Q: Why does the central metal cation in a stable square-planar 

coordination complex  prefer a (n-1)d8 configuration?

(𝒅𝒙𝟐−𝒚𝟐 , 𝒅𝒛𝟐)

(𝒅𝒙𝒚, 𝒅𝒚𝒛, 𝒅𝒙𝒛)

(𝒅𝒙𝟐−𝒚𝟐)

(𝒅𝒛𝟐)

(𝒅𝒙𝒚) & (𝒅𝒚𝒛, 𝒅𝒙𝒛)



1. When two AOs interact, a bonding MO is formed which is lower in energy than the lowest 

energy AO and an antibonding MO is formed which is higher in energy than the highest 

energy AO.

Summary



2. When several AOs interact to form MOs, the number of the MOs is the same as the 

number of the AOs.

Summary

• In this more complex case it remains true that a particular MO will have the greatest 

contribution from the AOs which are closest to it in energy.



Summary

• In constructing SOs, it is important to spot which groups of  AOs are mapped onto one 

another by the operations of  the group, as well as any further simplification which can 

arise as a result of  a judicious choice of  a local axis system.

• SOs can be generated using the projection formula, but this is rarely a convenient process 

and it fails for degenerate representations.

3. A symmetry orbital (SO) is a combination of  (usually) atomic orbitals designed so that 

the combination transforms as a single irreducible representation.

• The form of  a particular SO can usually be found by drawing an analogy between its 

orbital coefficients and a cartesian function which transforms in the same way as the SO.



4.  In transition metal complexes there exist high- and low-spin configurations depending 

on how the electrons are arranged in the predominately metal-based MOs; which is the 

lower in energy depends on the comparison between the ligand field splitting and the 

exchange interaction.

• The characteristic ‘double dip’ behaviour of  various properties of  transition metal 

complexes can be understood by thinking about how the metal-based MOs are filled.

•  donor ligands generally reduce ∆o, whereas  acceptor ligands generally increase ∆o.

• Ligands can be arranged into a spectrochemical series according to the ∆o values of  the 

complex.

Summary



More considerations

1. How to understand the so-called octet rule, eighteen-electron rule or even the 

generalized octet rule in terms of  MO theory？

Rules Oi i VOs Examples

2e 1 2 s LiH, LiR, Li2

4e 2 4 sp BeR2,  R-Mg-Cl

6e 3 6 sp2 BEt3, La(Ph)3

8e 4 8 sp3 CH4, NF3, H2O

10e 5 10 sp3d PF5, SF4, XeF2

12e 6 12 sp3d2 SF6, MoF6, PF6
-, SiF6

2-

14e 7 14 sp3d3/d5sp IF7/ AgI2
-, Au(CN)2

-

16e 8 16 d5sp2 Cp2Cr, Au(CN)4
-

18e 9 18 d5sp3 Ni(CO)4, Fe(CO)5, Cr(CO)6



More considerations

2.  How to understand the concept of  Molecular fragment and isolobal analogy (等瓣相似，

proposed by  Roald Hoffmann) in terms of  Molecular orbital theory?

• A molecule can be regarded as a combination of  molecular fragments chemically 

bonded with each other, e.g, C2H2 as two CH fragments. 

• Molecular fragments having same number of  VEs (or VEa = VEb-10) and similar 

frontier orbitals are isolobal.

• A fragment  in a molecule can be substituted with an isolobal fragment. e.g.,  CR2 vs 

Fe(CO)4,  Metal-carbene complexes:  (L)nM=CR2

• Isolobal analogy has been widely exploited in synthetic chemistry and led to the 

production of numerous cluster compounds.



Early experimental evidences of  isolobal AuPR3 ~H analogy.

• isostructural [Co(CO)4X] (X=H, AuPR3)

• isostructural [FeCo3(CO)12(3-X)] (X=H, AuPR3) compounds

• Blundell and Powell, J. Chem. Soc. A, 1971, 1685; 

• McNeil and Scholer, J. Am. Chem. Soc. 1977, 99, 6243. 

• Lauher and Wald, J. Am. Chem. Soc. 1981, 103, 7649.



3. Polyhedral Skeletal Electron Pair Theory (PSEPT)

--also known as Wade’s rules or Wade-Mingos rules

• PSEPT provides electron counting rules useful for predicting the structures 

of clusters such as borane and carborane clusters. 

• The rules were originally formulated by Kenneth Wade and were further developed 

by Michael Mingos and others; 

• The rules are based on a molecular orbital treatment of  the bonding.

• These rules have been extended and unified in the form of  the Jemmis mno rules.

Wade, K. J. Chem. Soc. D. 1971: 792–793.

Mingos, D. M. P. Nature Physical Science. 1972, 236: 99–102.

Jemmis, E. D. et al. J. Am. Chem. Soc.2001, 123 (18): 4313–4323

https://en.wikipedia.org/wiki/Carborane


MOs of  linear AH2 (D∞h)

• A: 1s  ~𝒈
+ (core AO) 

2s~𝒈
+

2pz ~𝒖
+

(2px,2py)~ u

2H 1s:  

(sA +sB) ~𝒈
+

(sA - sB) ~𝒖
+



MOs of  linear AH2 (D∞h)

2g

3g

1u

2u

1u

H AOs/SOsA AOs AH2 MOs

H 1s AOs

2p

2s

linear

𝒖
+

𝒖



AH2 : linear (D∞h)  vs. bent(C2v) 

• BH2:   4 VEs

1b2

1b1

2b1

L:  2g
21u

2

B:  2a1
23a1

2

BH2 prefers the linear 

structure.

• H2O:  8 Ves

 4 occupied VMOs. 

The bent structure 

has 3 bonding MOs.
104.5



SOs arising from the six s-type ligand orbitals. 

𝜽𝑨
𝟏𝒈

= (sA + sB + sC + sD + sE + sF )/ 𝟔

𝜽𝑻
𝟏𝒖,x= (sC - sE)/ 𝟐 𝜽𝑻

𝟏𝒖,y= (sB - sD)/ 𝟐

A

BC

D E

F
𝜽𝑻

𝟏𝒖,z= (sA - sF)/ 𝟐

𝜽𝑬
𝒈,1= (sC + sE -sB - sD)/𝟐 𝜽𝑬

𝒈,2= (2sA + 2sF - sC - sE -sB - sD)/ 𝟏𝟐



PO problem with a degenerate IR: the way-out 

• C6H6

• For cyclic group, the six equivalent AOs span as   

 = A  B  E1  E2

Operation

Effect on pz,1

E    C6 C3     C2 C3
2 C6

5

1 2 3 4 5 6

 = exp(2i/6)

 𝑷(𝒌)𝒔𝑨 =
𝟏

𝒉
 

𝑹

 𝒌 𝑹
∗  𝑹 𝒔𝑨

• Reduce the symmetry of  the molecule to pure rotational symmetry C6.

D6h • –MOs formed by six pz AOs  

A=A =  (1 + 2 + 3 + 4 + 5 + 6)/6 

B= B =  (1 - 2 + 3 - 4 + 5 - 6)/6 

(E1
a) =  (1 +52 +43 + 34 + 25 + 6)/6 

(E1
b) =  (1 +2 +23 + 34 + 45 + 56)/6 

(E2
a) =  (1 +42 +23 + 4 + 45 + 26)/6 

(E2
b) =  (1 +22 +43 + 4 + 25 + 46)/6 

(E1
a) = N[(E1

a) + (E1
b)]=(21 +2 -3 -24 - 5+6)/√12 

(E1
b) = N[(E1

a)  (E1
b)]= (2 +3 -5-6)/2

(E2
a) = N[(E2

a) + (E2
b)] = (21 -2 -3 +24 - 5-6)/√12 

(E2
b) = N[(E2

a)  (E2
b)] = (2 -3 +5-6)/2 



PO problem with a degenerate IR: the way-out 
• C6H6  = A  B  E1  E2D6h • –MOs formed by six pz AOs  

A=A =  (1 + 2 + 3 + 4 + 5 + 6)/√6 

B= B =  (1 - 2 + 3 - 4 + 5 - 6)/√6 

(E1
a1) =  (21 +2 -3 -24 - 5+6)/√12 

(E1
b1) =  (2 +3 -5-6)/2

(E2
a1) =  (21 -2 -3 +24 - 5-6)/√12 

(E2
b1) =  (2 -3 +5-6)/2

E



More considerations: 

1. Use the MO theory to understand the bonding in electron-deficient boranes and 

carboranes, e.g., B2H6 , as well as the topological rules, e.g., Lipcomb’s styx method and 

Tang’s rule for boranes, Wade’s (n+1) rule for closo-boranes and carboranes. 

2B(2s)+2H(1s)

2B(2pz) + 2H(1s)

Mainly 2B(2py)

+ minor 2H(1s)

+minor 4H(1s)

2B(2px)+4H(1s)

Mainly 2B(2s)  

+minor 4H (1s)


