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6. Hiickel molecular orbitals (HMO)
INFE/R> 4B

* So far we have just been drawing up qualitative MO diagrams aided by symmetry

considerations without computing the energies and forms of any molecular orbitals.

» Of course, 1t 1s now possible to compute the detailed form and energy of the MOs
using a computer program such as Hyperchem, G16 , Dmol3, ADF, Molpro etc.

* Anyway, it 1s both useful and instructive to do some MO calculations ‘by hand’. This
topic will be talked about 1n this chapter.



6.1 The LCAO method

* The simplest and most intuitive way to construct molecular orbitals 1s to use the linear
combination of atomic orbitals (LCAQO) method, which we have been doing up to now.

Each MO 9 is expressed as a linear combination of atomic orbitals, @4, @, .. .,
1/) = C1¢1 + C2¢2 + C3¢3 + .-
@; ~ ith AO (also known as one of the basis functions) used to construct the MO.

¢; ~ the coefficient which indicates the relative contribution of an AO @; to the MO.

* The problem we have to solve 1s finding the values of the coefficients and the
corresponding energy for each MO.

The key principle to solve such a problem 1s the variation theorem.



16.1.1 Derivation of the secular equations — Variation Theorem

N
» For a MO expressed as an LCAO sum: Y = z C;P;
i=1

the expectation value E of the Hamiltonian 1s calculated in the usual way:
E = (FI) _ fll)ﬁ ll)d’l' . I(Zl Ci¢i)ﬁ (2] C](b])d‘[ . Zi,j Cicj f d)lH(D] dt
J ¥ pdz JGici®y) (2jci®;)dr ij CiCj J ¢i¢f7\

which involves computation of the following two types of integrals : end up here with a
H;; = f¢iﬁ¢jdr Sij = f¢i¢jdr certain value of E if

we knew every terms

Si]' ~ the overlap integml between the two basis ﬁll’lCtiOl’lS ¢i and ¢] within this expression.
H;; ~ a matrix element of the operator H (the Hamiltonian for the system).
* According to the variation principle, we need to minimize E with respect to the

coefficients c, 1.e. JE/ o&;=0.

 Now we rewrite the equation as, Ezi,j CiCjSij = Lijj CiCjHij



6.1.1 Derivation of the secular equations

* We then take the (partial) derivative of both sides with respect to the coefficient c..

EZCLC] ij aC lz CiCjHij
l .

Lj

0E
achClCJSUJ“EZCJ ij ZC] ij

* Demanding JE/ cr;=0, then we have

EZCJ ij ZC] ij — z(HU ESij)cj =0

=1,2,...,N; L.e., a total of N equations!)

(i=1,2,...,N; I.e., a total of N equations!)

dc;



 The N equations can be conveniently expressed in matrix form (N 1s the number of
basis functions):

( HW Hy, Hyz ... Hiy ) (S11 S Sz ... Siv )l / 0

Hy Hx» Hyy ... Hyy So1 S22 S23 ... Son \ /O\

H3 Hz Hzz ... Hav |—g| Sai S32 833 ... Ssn ={ol=0
\ Hyi Hyo Hysz ... Hyy ) L Sv1 Sv2 Snz ... Saw /] \CN/ \O/

N? Htype integrals and N §-type integrals to be computed!!!!

* These are called the secular equations ((AERF#2) and in general their solution will lead
to N different values of E , each corresponding to a MO.

* By substituting the corresponding value of the energy E back into the secular equations, the
coefficients {c; } corresponding to a particular MO can be found.



6.1.2 The Hiickel approximations

* The Hiickel approximations: 1) set S,= [ ¢;p;dt = 0 (i=)) or 1 (i=;))

Then the secular equations look simpler, /

( H11 H12 H13 HlN \ (1 O 0 ... 0O 1 ( Cl \
H21 sz H23 co HQN 0 1 ... 0 (69)
Hyy Hiy» Hiyz ... Hiy |_— E O 01 ... 0 c3 | =0

\ Hyi Hn> Hys ... Hyn ) L 00 0 ... 1T /fUen )

and can be rewritten as ! Secular matrix

f ™~ (AHBER%)

Hy-E  Hp Hys ... Hiy Y[ ca ) .
Hyy Hpn-E Hy ... Hny e These equations can be solved by
Ha Hy Hua—E ... Hay e |- o firstly setting the determinant of the

secular matrix, namely the secular

determinant ((AEB{THITL), to be zero.

\HNI Hpy» Hys ... HNN__E/ \ CN )



6.1.2 The Hiickel approximations

2) Calculating the actual values of the matrix elements H; 1s itself a formidable task, so
we sidestep this by simply leaving them as parameters,

H; = f¢iﬁ¢idr = a; (approx. as the energy of the AO ¢ } Hickel

H;; = fqbiﬁqudr = Bij (resonance integral) approximations

B;; is zero unless the two orbitals are on adjacent atoms, i.e., directly overlapping!

 Accordingly, the secular equations become * Some of the f; terms can be
p N zero case by case!
(@1 —E P12 Biz .- Biv Y[[c1)
* The values of «; B, can be
P2 ax—E  Poz |... fon C2 . A
determined semi-empirically!
_ B31 P a3—E)... B3N ¢ |l =o. , o
- , . , . — * Quite easy for dealing with &-
' ' ' ' ' : conjugation systems!
... ay—FE C .
ey P2 P N /N CN * QI: how to determine a, & .7

Q2: For an allylic = system, write out the secular equation!



The secular eqs. are

1 ar—E P IGE G
3 Bar ax—E  [fp3 C2 | =
out of plane 2p orbitals ﬂgl B3 2 a3 —_— E C3

Can the egs. be further simplified?!

framework of atoms

* These are C 2p, orbitals. Set a,= a,= a;= a, B;,= B = B3 = B, = B (Hiickel approx.).
The secular eqs. thus become

(a —E)/p 1 0 C1
1 (a —E)/p 1 <C2>=O
0 1 (a —E)/B) \C3

Now set x = (a-E)/B!



6.1.3 The allyl system

C
 Now we have the simplified secular equations as (316 91c 2) ( C;)
(with x = (a-E)/ ) 0 1 x/ \C3
» Asusual, set the corresponding secular determinant to zero:

x(x?—-1)—1x(x—-0)+0x(1-0)=0

x 1 O ,
det|1l x 1|=0 — x(x*—1)—x=0
0 1 x x(x*=2)=0 —— x=0,+/2

) E1=a+\/23, E2=a, E3=a_\/zﬁ

e Let us start with x = —/2 that gives E; = a + V2 and the secular equations as

=0

-2 1 0 C1 —V2¢1 +¢;, =0 A] Th
. ree eqgs. are
_ C = — —
1 2 1 <C2> 0w c;—V2c,+€3=0 -_B_- not independent!
0 1 —/2 3 Cy — \/fcg =0 C




") 6.1.3 The allyl system

* The normalization relationship can be introduced to make the egs. solvable,
ci+cs+cs=1
» There are two practical approaches to find the coefficients.
* First method: use the equations to write all of the coefficients in terms of one of them.
From eq. [A] we have: —v2c¢q+ ¢, =0 hence ¢, =+/2cy.
Now use eq. [C]: c; —V2¢3 =0 [C]
Substitute ¢, = V2¢; 2 V2¢; —V2¢3=0 D ¢35 = ¢,
now insert these values into the normalization condition, and hence find c¢;:

ci+cs+c5=1 Dci+ (V2 +cf=1 D4ct=1 ->c=1/2

3¢, =V2/2, ¢3=1/2; DY, = (P +V2P, + D3)/2 withE; = a +V2p



") 6.1.3 The allyl system

* The second method. as we know the relationship between the coefficients, we might just
set one of them to have the value 1 and work out the rest, then normalize at the end.

* Letus set ¢,= 1; from [A] we have:
—\/Ecl + Cyp = O, put cq = 1 , glVll’lg Cr = \/E

« Now we use this value for ¢,in [C]: ¢, —V2¢c3 = 0, giving c3 = 1

» The coefficients are therefore: c1=1 c;=V2 ¢3=1

« Now normalize the coefficients: \/ ci+cs+cs=vV1+2+1=2

o The normalized coefficients are: ¢ = 1/2 c; =V2/2 c3=1/2

Which method do you recommend?



6.1.3 The allyl system

 The final results are summarized in the table.

MO number energy MO wavefunction
1 Ei=a+ V2B 1 =361+ 52+ 3¢5
2 Er=a Uy = ¢y — =3
Ex.27 i e
3 Es=a- V2B U3 =361~ 562+ 1¢;

(please recall that we once employed a graphical method to
deal with the nt-MOs of this molecule in the first semester! )

|
ol |

- C H H

H Allyl cation (2re) H H Allyl anion (4re)
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e The 1 system of butadiene comprises e The secular equations are:
four p orbitals in a row:
||—| T (a—-FE 0 0 \( c1 )
2 B a—FE B 0 Co
H/1\(|:/3%(|3/ 0 g a-E B €3
¥ ¥ . 0 0 B a—-E )\ ¢4 )

* To solve this problem, we would first need to find the determinant of the 4 X 4 matrix,
set it to zero and then solve the resulting quartic in E.

» This already sounds like very hard work and although in this case it might just be
possible to do this by hand.

» Luckily, symmetry comes to our aid and reduces this problem to something very much
easier.



6.2 Using symmetry to simplify the calculations

6.2.1 Butadiene
D A

* The point group is C,,. Ta o, 9,
Con E ¢ i oV  The four p_ (p,) AOs can be divided into
Ag 11 1 1 R,  x%y% 7% xy two sets of basis, (¢, ¢,) and (¢, ¢), and can be
B, 1 -1 1 -1 R, R, XZ; Y2 dealt with separately.
Ay L b -1 -l < - Both sets transform as A @B,
B, I -1 -1 1 X,y _

* For the basis (¢, ¢,),

I 2 0 0 -2 =A@ Bg z transforms like A ; HAu:(¢1+¢4) Is z-like.

yz transforms like B; BBg:(—¢1+¢4) IS yz-like!

- Similarly the basis (¢, ¢,) gives rise to two SOs, 04 = (d,+¢;) & Op = (—d,+ )

Note: The normalization coefficients for these SOs have the same value, 1/+/2.




* Only SOs of the same symmetry = — ---=—- o ________.
interact. The symmetry analysis ) ®
has reduced the problem to the ® @
two-way overlap of 8, and 8,, and B, g, = \/_15 (-®, + D) 6, = \/_15 (—D, + D,)
the two-way overlap of 8_.and 6,.

At this stage, the secular equations can be developed by thinking about forming
MOs by the linear combination of any other kind of orbitals, such as symmetry orbitals.



6.2.1 Butadiene

* Generally we may write an MO as a linear combination of symmetry orbitals 8, 8,, . . .
Y =c¢c,0,+cp0p +c.O0,+ -

We will consistently use 7,2,3, . . . as the label for AOs and a,b,c, . . . as the label for SOs.

Written 1n terms of SOs, the secular equations upon Hiickel approx. are:

/Haa —F ab Hac HaN \ / \
Hba be E Hbc HbN Cb R

H, H.,—E .. H.y — 0 with H,, = [ 0,H6,dt
\ Hyq Hyp Hy.  Hyg Hpy —E/ \CN/

» For butadiene, we therefore have two sets of secular equations to solve: a 2x2
problem for the 4, SOs 8, and 8,, and another 2x2 problem for the B, SOs 6, and 6,,.



6.2.1 Butadiene = 4,50s:6, = (@1 + ®,), 6, = 55(d, + ®3)

* For the 4, SOs, the MOs are written as: ¥, = c,0, + c,0)

Ch

and the corresponding secular equations are: (Haa —E Hgp ) (Ca) —0

* Now compute the matrix elements by
applying the Hiickel Approx.:

H,, = reaﬁea dr
J
= f 75 (@1 + ¢) H5 (1 + p4) dr

= %(Hn + Hig + Hyy + Hyy)

1
= 5 (a1 + B4 + P41 + a4)

= .

Hp,  Hpp —E
Hpp = J 0,H 0,dt = 5 (Hx + Hys + Hsp + H33)

1
=§(“2 + P33+ P2 taz) =a+pf

H,, = f 0,H0), dr

=f%(¢1+¢4)ﬁ%5(¢2+¢3) dr
= 3 (Hi2 + Hi3 + Hy + Hu3)
= 3 B2+ P13 +Pax +B43) =p



6.2.1 Butadiene

. Now the secul, tions b - (“_E B )(C“)=o
ow C secuiar equa ons pccome. ﬁ a _I_ ﬁ . E Cb

_ 1
 Divide both sides by 8 and then setanzx: ( )lc el )( EZ ): 0]

X 1

* Demand the determinant to be zero: det ( ) 1
X

):x(x+1)—1 =0

D> x2+x-1 =0 m) x=(—1FV5)/2 =—-1.618 or 0.618
=) E, ; =a+ 16188 Ep »=a—0.618p
 Now we have two equations to solve with x being known:

xc, +cp =0 [A] c,+(1+x)cp, =0 [B]



6.2.1 Butadiene

* The first value of x 1s 0.618; putting this into [A] enables us to find ¢, in terms of ¢,;
0.618c, +c, =0 - cp=—0.618¢c,

» Now make use of the normalization condition: ¢ +c; =1
 Hence ¢, =0.851 - ¢, = —0.526.
Ya,2 =0.8516, —0.526 6,
= 0. 851— (¢1 + ¢a) — 0. 526— (2 + ¢3)
=0.602¢; —0.372 ¢ — 0.372 ¢p3 + 0.602 ¢4

* To find another 4, MO, we repeat the process with x = -1.618.
Ya,1 =0.5266, +0.8516,

= 0.526-L (¢1 + ¢a) + 0.851 \f(¢2+¢3)
= 0.372 gbl + 0.602 ¢2 + 0.602 ¢3 + 0.372 ¢4



6.2.1 Butadiene Ex. 28

* We now need to repeat the process for the B, SOs. The MOs are written as
II}Bg —_ CCBC + Cded B SOS 0 \/—( ¢1 + @4) Qd —_ \/—( @2 + @3)

i ) ()

and the secular equations are (

* Compute the matrix elements; then fo — E B Cc 1 Cc
(o> (1))
(H, = o, Hy=0—p, H,= Hy= p) papE)\ 1 x=1
1 (x = (a-E)/p)
det (1 v 1) =0 X = (1FV5)/2

e The solutions are x = -0.618 and 1.618. The corresponding MOs are
YB,1 = —0.602 1 — 0.372 ¢ + 0.372 3 + 0.602 ¢4 EBg,l =a+0.61805

Yp,2 =—0.372¢1 + 0.602 ¢ — 0.602 ¢p3 + 0.372 ¢4 Ep,» =a—1.0618p6.



' 29 (allyl
6.2.1 Butadiene £ Ex.29 (allyl)

* The complete set of four MOs are shown below.

HOMO ’
2a, E,=a—0.6188
ok - - - - - - _ _
—H— 1, E,=a+06188

. Occupied
y(Ay1) E1 = a+ 16188 (B, 1) E, = a + 0.6188
S — —tH— 1a, E;=a+1618p

Results from Computer-based calculations

LUMO unoccupied
V(Ay,) Es = a—0.6188 w(By2) Es = a— 16188 ) )

* n-electron population on 7th atom:

P, = z njcl?j regioreactivity of butadiene?

J (sum over all occupied MOs)




+ -~
6.2.1 Butadiene Vi =Pt o B = [ uslpdr= ot f
n-MOs of 1,3-butadiene + n-MOs of a localized C-C ~ E¢ N

n-bond (e.g., in CH,=CH,):

oh. E,=a—1.6188

Y, /1
LUMO 5 3 Ynz = 191 + 29 @
a, E;=a—0.618p3 .
alb ---—- - ___ Secular egs. (set x=—) : —H— Ern=a+p
B
HOMO .
—H— 1b, E,=a+06188 (cx -E B )(cl)z9 (x 1)( 1)=o
—t— 1, Ei=a+1618p pa—E)\ 1 x/\C2
. 0 > x=+1, E=a#p
 Total & electron energy of butadiene: * Total & electron energy of two localized C-C n-bonds:
4 _
Eqclocatizea= 2E1 + 2E; Ei‘gxllized = 2X2E;=4(a+ p)
= 4a + 4.4728

* Delocalization energy: the difference between the energy of electrons in the delocalized m system

(e.g., butadiene) and the energy of the electrons in hypothetical localized rm-orbitals (e.g., of ethene).

Delocalization energy =E 75 1ized —Eir iveq = 0.472 p <0 Q: plz derive the delocalization

Delocalization of the electrons lowers the energy! energy for allyl anion!



6.2.2 Carboxylate anion ) o

/4 /
R—C - R—C
\ o ‘~1\
« This species has a delocalised 1 system (5) carboxylate anion
involving the two oxygen atoms and the
carbonyl carbon. T '
¢ b3
* The carboxylate fragment has C,, symmetry. 9 Q
¢ Zpy AQOs: C~ ¢2 (BZ)’ framework of atoms out of plane 2p orbitals
OlaO3 ~ (¢1) ¢3) C», E C; gz g2
. Al 1 | | 1 Z x%: yz;z2
* The basis (¢,, ¢;) transforms as 4, ® B,. | o "
2 -1 - Xy
B,SO (y-like): 0. = B -1 I -1 x R, X7
2 ¢ ) a (1 + @3) /2 B, L1 a1 1|y R -

A,S0 (xy-like): O = (—¢1+ $3) /2 ' 2 0 -2 0 =A4,8B,



SOs of carboxylate anion

Bz

Ty A S

= (1AN2)(d¢ + dg) 0 = b = (1N2)(-04 + d3)

- The 4, SO (0) itself gives a non-bonding MO, Y(A4,) = 0, = (—¢1 + ¢P3)/+/2

MOs of IR B,: w(B,) =c,0,+c,0,



6.2.2 Carboxylate anion H, - f 0,10, dr

* Now consider the overlap of the two B,
SOs and define 6, = ¢,. Then f 75 (@1 +63) H(PZ dr

(Haa o ) (C ) =0 = 5 (Hio + Hy) = T(ﬁlz + B32)=2p

Hy, Hy, — E ro. (B12 = B32 = Boc = B)
» Now compute H,,, H,;,, H,, etc. Hyp = | 6,H6, dv
N .
Haa = | 6aH00 dr — [ At dr —H,=a,
J
-
= (¢ +¢’?)H s (91 + ¢3) dr —E 2
J \/_ ! 3 : 3 —) <a0 \/_:B )(Ca) =0

= 3 (Hi1 + Hi3 + H31 + H33)

= (@1 + P13 + P31 + a3)/2 * Now suppose ap=ac+f=a+p.

= (ap +0+0+ay)/2 (oc+,B—E \/Eﬁ>(ca)=o
=4 V28 a—E)\C




6.2.2 Carboxylate anion

* Define x = (a—E)/B and solve the secular equations,

A [ R A B
V2 x ) \Cb V2 X X1 =—2,x,=1

* The resulting normalized MOs of B, symmetry are

= a+2B (x=-2) Vg, =0577¢,+0.577¢,+ 0.577¢;  Bonding
Ep,,=a—-B (x=1) Vp,, = 0.408¢; — 0.816¢, + 0.408¢; Anti-bonding

* The energy of the MO of 4, symmetry 1s simply given as

H. = f 0.HO, dr

Qo 0 0 Qo

:f%(_ﬁﬁl +¢3)Ff% (=p1+¢3)dt = L (H)y —Hi3—H3 + H33) =ap =a+f

Wa,1 = —0.707 ¢1 + 0.707 ¢3 Ea = a+p. non-bonding



6.2.2 Carboxylate anion

* The diagram below shows the energy levels and MOs with the contributions from

each p orbital drawn roughly to scale.

VY1p, = 0.408¢; — 0.816¢, + 0.408¢,

Es = Ep,2 = a—p
VY1q, = —0.707¢, + 0.707¢;3 (nonbonding)

EZ :EAz,l — 0(+,3
Vip, = 0.577¢; + 0.577¢, + 0.577¢,

El — EBz,l =a+ Zﬁ

 The total n electron energy is
E. = 2F, + 2F,
=2(a+20) + 2(a+ P)
=4a + 6f

2b, Ez=a-p

} la, O Va1 O
i 7 Famies

Vg, 1

E1=CZ+2,3

Ex.30-31



Delocalization energy

» Of great interest is the energy difference between the electrons in the delocalized
1t system and the energy of the electrons in hypothetical localized orbitals.

O
* A localized picture of the carboxylate anion: /4
R—C
two m-electrons in the C-O m bond, and the remaining two 7-electrons in a p, \ O
orbital on the other oxygen. O

* For the localized C-O m bond, the secular equations become

— a,=a+pf
(0" )@= = (1 D)

SE, =a+1.618, E,=a—0.618p x=(a=E)/p
1 ' » 2 ' ' 2e of a C-O -MO O p, lone pair

* The total localized electron energy is E,, =2(a +1.618p) + 2(a+f) = 4a + 5.236f
* Delocalization energy = E ;. — E,, = (da +6f) —(da + 5.236B) = 0.764f3




6.2.3 Relationship between the energies of the AOs and MOs

* A consequence of the Hiickel approximations 1s that the sum of the energies of the AOs (1.¢.
the H;) must be equal to the sum of the energies of the MOs.

* Example: carboxylate anion. E(n-AOs) = 2E g4 + Ecap)
= 2(0(,+B) +Q
= 30(,+2l3
+E % E(TC"MOS) :E1+ E2 +E3
2, o = (a+2B)+(at+B)+(a-p)

I

_ iene?
E,=a+p for 1,3-butadiene”

@ = 3a+2f3
——1a
"_1 b2 i) m Q1: please check if this statement holds true
v 2 WVas 1

Ve 1 Q2: How to make use of this relationship?

E1:a+2ﬁ



17\

4
(04
(D4h) z\®
Basis set: 4 2pZ(C) AOs!

Dy, | E 2C4 C; 2C, 2C, i 254 o

A, |t 1 1 1 1 1 1 1 1 1 x*+y5z2 e A, SO ~ zlike

Aye |1 1 1 -1 -1 1 1 1 -1 ~I R,

B, 1 -1 1 1 -1 1 -1 1 1 -1 xt —y?

B, 1 -1 1 -l 1 -1 1 - 1 xy e+ E, SOs ~ xz- & yz-like
E, 2 0 -2 0 0 2 0[=2] O 0 | (R.R) (xzy2)

Aw | T T T T T -T -T[-I[ T -1

A, 1 ~1 [=1] -1 -1 f-1] 1 | 1 Z * B,,SO xyz-like?
B, | L -1 1 1 [-1] -1 1[-1] -1 [1 xyz

By, | 1T -1 1 -1 1 -1 T1[|-1] 1 -1 Indeed B, = B,,& 4,,
E, 2 0 -2 o -2 o f2 0 0 (x,)
XR) 4 0 0 0 -2 0 04 0 2 =E,PA4,0B,



6.3 Cyclobutadiene

2u~z-11ke E ~xz & yz—hke B,,~xyz-like
‘like xz' SO ‘like yz’ SO

% ke 2250

e The normalized SOs are e These SOs are themselves t-MOs.

A, likez 0,= (01 +0, +d3+0bs)/2 E,=H, :feaﬁea dr

E likexz 0, = (01— 02 — 03+ 04)/2 = f%(tbl +¢2+ @3+ ¢a) H (b1 + ¢ + ¢3 + ¢4) dT

1
= Z(H11 + Hyy + Hi3 + Hiy + Hyy + Hyy + Hys + Hyy

E likeyz 0,= (01 + 2 — 93— 04)/2
+H3y +H3, +H33 +Hzy +Hyy +Hypy +Hyz+Hyy)

B, likexyz 0;= (01— 02+ 3 —4)/2 =%(a+,8+0+,8+,8+a+,8+0
+0+p+a+p+p+0+p+a) =a+2p



s E

~Xz & vyz-like -
y xyz-like o-2p 1b,,
o —— —t—1e,
OH-ZB _ﬂ_ 102u
P3  Yike 2SO 04 ‘like xz" SO ‘like yz’ SO

: Diradical! Anti-aromatic!
e The normalized SOs are

AZu 9a=(¢1+¢2+¢3+¢4)/2 EIZHaa:a+2B
Egll.kexz Hb — ((I)l — (I)z — (|)3 + (|)4)/2 EZ :be = f Hbﬁ9bdr -

} Indeed
E likeyz 0, = (01 +02—93—04)/2 E,=H_= Jr 0.H6.dt = a degenerate!

Blu Hd:((l)l_(l)2+¢3_(l)4)/2 E4:Hdd:f9dﬁ8dd'f:a_2,8

* The total m energy 1s 4a+4f. (Is it stable than two localized C=C n-bonds?)



6.4 benzene (C.H,) -- m¢ n-MOs ( by p, AOs)

. cubic
E 2C¢ 2C; C; 3C, 3C, i 283 2S¢ op 364 36, | linear quadratic

Aje 1 1 1 1 1 1 1 1 1 1 1 x? 43727
A>g 1 1 1 1 -1 -1 1 1 1 1 —=1 -1 R-
Big 1 —1 1 -1 1 -1 1 —=-1 1 [1 —1
B>, 1 —1 1 =1 [=1] 1 1 =1 1 |=1| =1 | 1] | By=By®A, x(x*-3y’)z
Elo 2 1 -1 =2 0 0 2 1 -1 2] 0 0 | (Re.R) (xz,y2)
Eng 2 -1 -1 2 0 0 2 -1 -1 2 0 0 (x% =37, 2xy)
Al 1 1 11 1 1 -1 -1 -1 [-1] -1 =
A, 1 1 1 1 |=1 -1 -1 —=-1 -—=1 |-1 1 z
Bl 1 —1 1 —1 1 -1 -1 1 -1 1 -1 1 X(x2-3y?)
B, 1 —1 1 -1 -1 1 -1 1 -1 1 1 —1 y(3x*-y?)
El, 2 1 -1 =2 0 0 =2 -1 1 2 0 o0 (x,)
Ea, 2 -1 -1 2 0 0 =2 1 1 |=2] 0 0 [E=E®A, [(xy)z 2xy]

r6p) 6 0 0 0O -2 0 0 0 0 -6 0 2 Ay®By®dE OE,,
Please complete the character tables (given in the databook) with additional cubic functions!



6 (-1v3) 3,
C6H6 --Tlg A,, OB, ®E, ®E,, (-2,0) 4 @_.

- - - (_11_\/§) 5
(Note that p, ifself is z-like!)

Ay, zlike, Oy, = (@1t P2 + 3+ Py + Ps + $6)/V6
(T =0) E(az,) = j 04, HO4, dr = a + 28

E,, xz-like, Or, oz = 21 + P2 — b3 — 204 — b5 + P6) V12

| (BT =1)
Elg’ yz_hke’ HElg,yz = (@2 + ¢35 — s — Pg)/2 E(91g) = J 9E1gﬁ951gdf =a+p
By, (FPy)zlike,  Op,, (2 y2y, = 21 — b2 — ¢3 + 204 — b5 — $6)/V12

| (BEL =2)

By, apzlike, Ok vz = (P2 = b3+ bs = 06)/2  Elen) = [ 0, s, dr =~ §

BZg? x(x2-3y?)z-like, Op,, = (P1 — P2+ P3 — Ps + ¢5 — $6)/V6
(E =3) B(bag) = | 65, 105,,dt =~ 28

MOTEZUEN, BEE LF!



1v3) 3o @V3)
A2u EI_>BZg EI_DElg @Ezu (-2,0) 4 @—» (2,0)
(-1,—V3) s (1-,—V3)
Q ’:bbzg = (1 — P2 + 3 — Py + Ps — ) /V6

C{:}Dweml—(wl bs — D3 + 24 — 5 — Pg)/V12

a—p
* “ Q Ve, 2 = (2 — P3 + Ps5 — ) /2

{ED Verg1 = (201 + b2 = b3 — 204 — s + p6)/V12

@lpelgz—(ﬁbz"‘(% b5 — Pe)/2
a+28| - ‘ Q lpazu_(¢1+¢2+¢3+¢4+¢5+¢6)/\/_

Delocalization energy = ES%6, qiizea — Efrerizea = [2(+2B)+4(0+p)] - [3x2(c+B)] = 2p

a+pf




6.4 benzene -- °

using the projection operator

3
©-MOs (by ». AOS) 4 @L
5

* Reduce the symmetry of the molecule from D, to purely rotational symmetry C,. (@ =exp(27i/6))

G6 C E Co C3 C C; C
Ry A 1 1 1 1 1 1
R3 B 1 -1 | | | 1
R, E{ | W w* w Wt W
Rs E':’ | > ot W w? W
R, Ej | w*  w? | w*
R4 EE,H’ | wt  w? | w* W
&6 O & 9 P P

—~ 1 . =~
PW ¢, = E{Z [ (R)] R} b1

W =0, =

(6 + Pyt &5+ P+ &5+ B9 N6

V=0 = (- + @5- Py + P5- @) /V6

» For cyclic group, the six equivalent AOs span as

I =A®B®E, ®F,

0 = (¢; +@’d, +@*d; + 0, + 0?5 + 0)/6
O0(E ") = (¢; Tod, +@?d; + 0’dy + )5 + ©°y)/6 }

¥(e®) = N[O(E®) + 6(ED)]=(2¢; +¢, -O3 -2, - ds+0¢) /V12
¥(e,”) = N[O(E;?) — O(E")]= (¢ + d3 — ds — dg) /2

0(E,?) = (¢; +0%d, +0*d; + ¢y + 0%5 + 0°(4)/6
O(E,) = (¢ +o?h, +oh; + dy + 0’5 + 0d)/6 }
P(e,®) = N[O(E,?) + 6(E,D)] = (20, -0, ¢35 +2¢,4 - d5-05) /V12
Y(e,) = N[O(E,?) — O(E,")] = (¢, 05 +ds-d5) /2



l&,\%@i

1. IERARRD FINEEICHSZT\ [n]| ERiEE o FIIERIIEZ R AR
kK A5 FEHIERER (k=1,2,3,...n)
BRNEERHIGEEN: E= a+2Bcos(kd HA o= a(n+l)

L

BRI S FHER: YT = z b, sin(mk0)
m=1

T

2. IBRARR/RD FHEEICHESIA n) IR R o FEHNERIBEEAMR /I :
0=2n/n rSEEREGXK, k=0, 1,2, ..., (n-1)/2 (for n=odd) or n/2 (n=even)

E, = a + 2fcos(kB) p.o = z b cos[(m — 1)k0] W’S(in — z & sin[(m — 1)k0]
(when k6 = 0 or mt, no yi'™) m=1 m=1




6.4 Summary

* The energies of MOs and the particular combinations of AOs from which they are
formed can be found by solving the secular equations.

* The solution to these equations 1s simplified by adopting the Hiickel approximations:
(1) the overlap between orbitals is neglected, 1.e. §;= 0,
(2) AOs are assumed to be normalized 1.e. §;;= I;
(3) only adjacent orbitals have an interaction i.e. H;= 01t i and j are not adjacent.

* In the secular equations H; 1s written «;; this 1s approximately the energy of orbital 7,

and 1s negative.

* In the secular equations His written ,; this is the energy of interaction of adjacent

orbitals 7 and j; it 1s negative.



H{ckel

6.5 Summary approximations
* The secular equations are of the form: Sij = quiqb,-dr =0;j =1 (i =j)
=0 +))
ar—E Pz B3 w  Pin \ /Cl\ : (
P21 a; —E [ w Pon . H;; = |p;Hp;dt = a;
B31 32 az —LE .. B3n ¢z 1=0 JF
\ B B> B3 e AN T E/ \CN/ T .l. ] ) .
= 0 (i-j non-bonding )

* The solution to the secular equations can be simplified by first constructing symmetry
orbitals (SOs); only SOs of the same symmetry overlap, thereby reducing the dimensionality

* However, the forms and energies of HMOs solely depend on the atomic connectivity!

* The delocalization energy of a  system 1s the difference between the energy of
electrons 1n delocalized orbitals and the energy of the electrons in localized orbitals.



6.5 More considerations —graphical method for for linear [n[polyenes

Graphical method to predefine the coefficients of HMOs for conjugated systems (developed by

Qianer Zhang et al.) n

i1 2 3 n-1 n Yr = z CiP;

o o—0—©O o—0—© -
« For alinear [n]polyene, we have n secular equations (x = (e-E)/f) :
+ + C,=

/x 1 0 O\ / C1 \ CL+XC, +C3=0 " Ciyg T Cjg = —XCi

1 x 0 O C2 1 | el A 4 sinB = 2sin At cos ATB

- - e — O #" Cl-l + XC|+ C|+1 — O St TS B SlnTCOST
\0 0 x 1 / \Cn—l / (¢yclic formula) if A= (i+1)6, B=(i-1)6
C
00 X " C,p +XC,1+C,=0 then x=-2cos0

- C,;tXCc,=0 & c; =sini0



n

i O 1 2 3 n-1 n n+1 T
O---9 O O - y—— o O ®---O Y = cid;

i sin0  siné@ sin26 sin 36 sin(n —1)8 sinnf sin(n+ 1) =0 =1

For a linear [n]polyene, we have n secular equations (x = (a-E)/f8) :

XCy + C,=0; - ¢, = —XC,=sin26
set
C, + XC, +C,=0; ...... — gj
1 2 T L3 Y = —2c050 C; =SIn36
—_— - = P —
Ciy ¥ XC+ Gy =05 T =sing .
: c; =sinié@
(cyclic formula)

...... ; Chy tXC,=0 c,=sinné

Now recall the sine wave rule we learnt in the 15t semester!

Boundary condition:
Chiq =SIN(N+1)0=0

8. = kn/(n+1) (k=1,...,n)

E.= a+ 2f6cosf,

Wi =) disin(i0))
i=1

(k defines the energy level!)



cyclic [n]polyenes 7w MOs of Benzene
0=2n/n

b
k=0,1, ..., (n-1)/2 (forn cos(36) where is sin(36)??
=odd) orn/2 (for n= even)

E,=a+ 2fcos(k0)

pt = z b, cos[(m — 1) k6]
m=1

i = 2 b, sin[(m — 1)k0]
m=1

( when k6 = 0 or m, no l,ulsci")



* The method can be used for dealing with more complicated systems.

» Recent work developed by Prof. Zhenhua Chen can be found as “ Graphical representation
of Hiickel Molecular Orbitals” in J. Chem. Educ. 2020, 97(2), 448-456.

(https://pubs.acs.org/doi1/10.1021/acs.jchemed.9b00687)

« FYI. “Introduction to Computational Chemistry: Teaching Hiickel Molecular
Orbital Theory Using an Excel Workbook for Matrix Diagonalization”

in J. Chem. Educ. 2015, 92(2), 291-295.
(https://pubs.acs.org/doi/full/10.1021/ed500376q)


https://pubs.acs.org/doi/10.1021/acs.jchemed.9b00687

Work out SOs quickly by using trend & sinspection!

Trend in SOs arising from In—phase Out of phase
1) 2 equivalent AOs (Sa — Sg)

(Sa + sg)
o v e
1) 3 equivalent AOs (C5)

N AN

—Sg'l"SB'i'SC HE'X_SB Sc HE}'_SA 1/28g = 1/25¢

* The aforementioned trend of SOs consisting of 2,3,4-equivalent-basis-functions can

be used to quickly work out the SOs as well as the corresponding IRs by inspection.



* Example: Naphthalene (D,;) b | E G € ¢ i oY oF o
mio formed bylOp, AOs: 4, | 1 1 1 1 1 1 1 1 2532 22
, B, | 1 1 -1 -1 1 1 -1 -1 | R  x
o (1458)2367D09,10) 51 o 1 0 a1 | R om
By | 1 -1 -1 1 1 -1 -1 1| R 3
O, 10) Ac |11 1 1 -1 -1 -1 -] xyz
@ij OO B, | 1 1 -1 -1 -1 -1 1 1| z
z-like, B, © yz-like, B, By | 1 -1 1 -1 -1 1 -1 1| y B,®B,=A
O=(b+ 80/ 2 O=(h b/ V2 S I S S S S
(1,4,5,3): @@ @@ (2,3,6,7): mm
z-like, B,, " xz-like, B, zlike, B,, 5 xz-like, B,,
O=(9+ ¢+ o5 + 9)/2 G=(¢,% ¢— 95— 9)/2 O,=(9,+ @5 + 95 + 9)/2 6,=(9,+ 95— 95— $,)/2

yz-like, B3, © i i 0 " xyzlike, A, yz-like, B, mm xyz-like, A,

O.=(P— s~ 95 + 9)/2 O=(9,— Py + 05— 9)/2 O=(9y- 95— s + $7)/2 G=(9,— s+ ds— ¢)/2



* MOs of B, symmetry: (B, ) =c,0, + c0. + c,0,

H“IC_lI_ E . Hg . 11:11“9 “a 0 H,.=(Hgy + H;p19+Hy;o tHigo )/2= a+f3
—_ CC —
ca ce Cf Hcc:(Hll + H44+H55 +H88 )/4 =«
Hga ch Hgg E Cy
H,,= o +p

H, =(H,, + Hog+H, o, +H, (s )/2V2=2 B H,,=0 H,=8

x+1 V2 0 Cy x+1 V2 0
V2 x 1 ¢, =0 det| V2 « 1 |=0
0 1 x+1/ \C 0 1 x+1



