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6. Hückel molecular orbitals (HMO)
休克尔分子轨道

• So far we have just been drawing up qualitative MO diagrams aided by symmetry 

considerations without computing the energies and forms of  any molecular orbitals.

• Of course, it is now possible to compute the detailed form and energy of  the MOs 

using a computer program such as Hyperchem, G16 , Dmol3, ADF, Molpro etc. 

• Anyway, it is both useful and instructive to do some MO calculations ‘by hand’. This 

topic will be talked about in this chapter.



6.1 The LCAO method

• The simplest and most intuitive way to construct molecular orbitals is to use the linear 

combination of  atomic orbitals (LCAO) method, which we have been doing up to now. 

Each MO 𝝍 is expressed as a linear combination of  atomic orbitals, 𝜱𝟏, 𝜱𝟐, . . .,

𝝍 = 𝒄𝟏𝜱𝟏 + 𝒄𝟐𝜱𝟐 + 𝒄𝟑𝜱𝟑 +⋯

ci ~ the coefficient which indicates the relative contribution of  an AO 𝜱𝒊 to the MO.

𝜱𝒊 ~ ith AO (also known as one of  the basis functions) used to construct the MO. 

• The problem we have to solve is finding the values of  the coefficients and the 

corresponding energy for each MO.

The key principle  to solve such a problem is the variation theorem.



6.1.1 Derivation of  the secular equations – Variation Theorem

𝑯𝒊𝒋 =  𝜱𝒊
 𝑯𝜱𝒋𝒅𝝉 𝑺𝒊𝒋 =  𝜱𝒊𝜱𝒋𝒅𝝉

which involves computation of  the following two types of  integrals :

Sij ~ the overlap integral between the two basis functions 𝜱𝒊 and 𝜱𝒋.

𝑯𝒊𝒋 ~ a matrix element of the operator  𝑯（the Hamiltonian for the system). 

the expectation value E of the Hamiltonian is calculated in the usual way:

𝑬 =  𝑯 =
 𝝍 𝑯𝝍𝒅𝝉

 𝝍𝝍𝒅𝝉

𝝍 =  

𝒊=𝟏

𝑵

𝒄𝒊𝜱𝒊• For a MO expressed as an LCAO sum:

=
 ( 𝒊 𝒄𝒊𝜱𝒊) 𝑯 ( 𝒋 𝒄𝒋𝜱𝒋)𝒅𝝉

 ( 𝒊 𝒄𝒊𝜱𝒊) ( 𝒋 𝒄𝒋𝜱𝒋)𝒅𝝉
=

 𝒊,𝒋 𝒄𝒊𝒄𝒋  𝜱𝒊
 𝑯𝜱𝒋 𝒅𝝉

 𝒊,𝒋 𝒄𝒊𝒄𝒋  𝜱𝒊𝜱𝒋 𝒅𝝉

• According to the variation principle, we need to minimize E with respect to the 

coefficients ci, i.e. E/ ci=0.  

• Now we rewrite the equation as, 𝑬 𝒊,𝒋 𝒄𝒊𝒄𝒋𝑺𝒊𝒋 =  𝒊,𝒋 𝒄𝒊𝒄𝒋𝑯𝒊𝒋

end up here with a 

certain value of E if 

we knew every terms 

within this expression.



6.1.1 Derivation of  the secular equations

• We then take the (partial) derivative of  both sides with respect to the coefficient ci. 

• Demanding E/ ci=0, then we have   

𝐸 

𝑗

𝑐𝑗𝑆𝑖𝑗 =  

𝑗

𝑐𝑗𝐻𝑖𝑗  

𝑗

(𝐻𝑖𝑗−𝐸𝑆𝑖𝑗)𝑐𝑗 = 0

𝜕𝐸

𝜕𝑐𝑖
 

𝑖𝑗

𝑐𝑖𝑐𝑗𝑆𝑖𝑗 + 𝐸 

𝑗

𝑐𝑗𝑆𝑖𝑗 =  

𝑗

𝑐𝑗𝐻𝑖𝑗

(i = 1,2,…,N; i.e., a total of N equations!)

𝜕

𝜕𝑐𝑖
𝐸 

𝑖𝑗

𝑐𝑖𝑐𝑗𝑆𝑖𝑗 =
𝜕

𝜕𝑐𝑖
 

𝑖𝑗

𝑐𝑖𝑐𝑗𝐻𝑖𝑗

(i = 1,2,…,N; i.e., a total of N equations!)



Derivation of  the secular equations

• The N equations can be conveniently expressed in matrix form (N is the number of  

basis functions):

• These are called the secular equations (久期方程) and in general their solution will lead 

to N different values of  E , each corresponding to a MO.  

• By substituting the corresponding value of the energy E back into the secular equations, the 

coefficients {ci } corresponding to a particular MO can be found.

N2 Hij-type integrals and N2 Sij-type integrals to be computed!!!！

0
0
0
⋮
0

= 0

𝑐1
𝑐2
𝑐3
⋮
𝑐𝑁

E



6.1.2 The Hückel approximations

• The Hückel approximations:      1)  set Sij=  𝝓𝒊𝝓𝒋𝒅𝝉 = 0 (ij) or 1 (ij)

Then the secular equations look simpler,   

and can be rewritten as Secular matrix

(久期矩阵)

These equations can be solved by 

firstly setting the determinant of  the 

secular matrix, namely the secular 

determinant (久期行列式), to be zero.



6.1.2 The Hückel approximations

2) Calculating the actual values of  the matrix elements Hij is itself  a formidable task, so 

we sidestep this by simply leaving them as parameters,    

𝑯𝒊𝒊 =  𝝓𝒊
 𝑯𝝓𝒊𝒅𝝉 = 𝜶𝒊

𝑯𝒊𝒋 =  𝝓𝒊
 𝑯𝝓𝒋𝒅𝝉 = 𝜷𝒊𝒋 (resonance integral) 

（approx. as the energy of  the AO i)

ij is zero unless the two orbitals are on adjacent atoms, i.e., directly overlapping! 

• Accordingly, the secular equations become

Hückel

approximations

• Some of  the ij terms can be 

zero case by case!

• The values of  i, ij can be 

determined semi-empirically! 

• Quite easy for dealing with -

conjugation systems!

• Q1: how to determine c & cc?
Q2: For an allylic 𝜋3

𝑥 system, write out the secular equation! 



6.1.3 The allyl system

• The allyl fragment: the π-type MOs formed from these p orbitals, 

 

𝛼1 − 𝐸 𝛽12 0
𝛽21 𝛼2 − 𝐸 𝛽23

0 𝛽32 𝛼3 − 𝐸
  

𝑐1

𝑐2

𝑐3

 = 0 

• These are C 2p orbitals. Set  1= 2= 3=  , 12= 21 = 23 = 32 =  (Hückel approx.). 

The secular eqs. thus become              

The secular eqs. are

31

13

Can the eqs. be further simplified?!Can the eqs. be further simplified?!

1 2

3

 = c11 + c22 + c33

Now set x = (-E)/!

(𝛼 − 𝐸)/𝛽 1 0
1 (𝛼 − 𝐸)/𝛽 1
0 1 (𝛼 − 𝐸)/𝛽

𝑐1
𝑐2
𝑐3

= 0



6.1.3 The allyl system

• Now we have the simplified secular equations as

(with x = (-E)/) 

𝑥(𝑥2 − 1) − 1 × (𝑥 − 0) + 0 × (1 − 0) = 0 

𝑥(𝑥2 − 1) − 𝑥 = 0 

𝑥(𝑥2 − 2) = 0 
𝑑𝑒𝑡  

𝑥 1 0
1 𝑥 1
0 1 𝑥

 = 0 

 
𝑥 1 0
1 𝑥 1
0 1 𝑥

  

𝑐1

𝑐2

𝑐3

 = 0 

• As usual, set the corresponding secular determinant to zero:

x = 0,  𝟐

𝐸1 = 𝛼 + 2𝛽, 𝐸2 = 𝛼, 𝐸3 = 𝛼 − 2𝛽

• Let us start with 𝑥 = − 2 that gives 𝐸1 = 𝛼 + 2𝛽 and the secular equations as  

− 2 1 0

1 − 2 1

0 1 − 2

𝑐1
𝑐2
𝑐3

= 0

− 𝟐𝒄𝟏 + 𝒄𝟐 = 𝟎 [𝑨]

𝒄𝟏 − 𝟐𝒄𝟐 + 𝒄𝟑 = 𝟎 [𝑩]

𝒄𝟐 − 𝟐𝒄𝟑 = 𝟎 [𝑪]

Three eqs. are 
not independent!



6.1.3 The allyl system

• The normalization relationship can be introduced to make the eqs. solvable,

𝒄𝟏
𝟐 + 𝒄𝟐

𝟐 + 𝒄𝟑
𝟐 = 𝟏

• There are two practical approaches to find the coefficients.

• First method: use the equations to write all of  the coefficients in terms of  one of  them. 

From eq. [A] we have: − 𝟐𝒄𝟏 + 𝒄𝟐 = 𝟎 hence 𝒄𝟐 = 𝟐𝒄𝟏.

Now use eq. [C]:                𝒄𝟐 − 𝟐𝒄𝟑 = 𝟎 [𝑪

Substitute 𝒄𝟐 = 𝟐𝒄𝟏  𝟐𝒄𝟏 − 𝟐𝒄𝟑 = 𝟎 𝒄𝟑 = 𝒄𝟏

now insert these values into the normalization condition, and hence find c1:

→ 𝒄𝟏= 𝟏/𝟐𝒄𝟏
𝟐 + 𝒄𝟐

𝟐 + 𝒄𝟑
𝟐 = 𝟏  𝒄𝟏

𝟐 + ( 𝟐𝒄𝟏)
𝟐+𝒄𝟏

𝟐 = 𝟏  𝟒𝒄𝟏
𝟐 = 𝟏

 𝒄𝟐 = 𝟐/𝟐 , 𝒄𝟑= 𝟏/𝟐;  𝝍𝟏 = (𝜱𝟏+ 𝟐𝜱𝟐 +𝜱𝟑)/𝟐 with 𝐸1 = 𝛼 + 2𝛽



• The second method: as we know the relationship between the coefficients, we might just 

set one of  them to have the value 1 and work out the rest, then normalize at the end. 

• Let us set c1= 1; from [A] we have:

− 𝟐𝒄𝟏 + 𝒄𝟐 = 𝟎, put 𝒄𝟏 = 1 , giving 𝒄𝟐 = 𝟐

6.1.3 The allyl system

• Now we use this value for c2 in [C]: 𝒄𝟐 − 𝟐𝒄𝟑 = 𝟎, giving 𝒄𝟑 = 1

• The coefficients are therefore: 𝒄𝟏 = 𝟏 𝒄𝟐 = 𝟐 𝒄𝟑 = 𝟏

• Now normalize the coefficients: 𝒄𝟏
𝟐 + 𝒄𝟐

𝟐 + 𝒄𝟑
𝟐 = 𝟏 + 𝟐 + 𝟏 = 𝟐

• The normalized coefficients are: 𝒄𝟏 = 𝟏/𝟐 𝒄𝟐 = 𝟐/𝟐 𝒄𝟑 = 𝟏/𝟐

Which method do you recommend?



• The final results are summarized in the table.

6.1.3 The allyl system

Ex.27

Allyl cation (2e) Allyl anion (4e)

3

2

1 E1= + 𝟐

E3=  𝟐

E2=

(please recall that we once employed a graphical method to 

deal with the -MOs of this molecule in the first semester! ) 



小测验

I.  H3
+ 可能具有直线形和正三角形两种结构, 休克尔近似下,可令H = , H-H=, 

分别写出两种结构的久期行列式; 

II.  折叠苯C6H6的结构图右图所示, 其𝜋6
6由C原子pz轨道组成, 休克尔近似下有C = 

, C-C=.

1.  快速写出其分子轨道的久期方程(矩阵形式);

2.  运用对称性, 推导其分子轨道的能量及组成形式.



6.1.4 1,3-Butadiene

• The π system of  butadiene comprises 

four p orbitals in a row:

• The secular equations are:

• To solve this problem, we would first need to find the determinant of  the 4 × 4 matrix, 

set it to zero and then solve the resulting quartic in E. 

• This already sounds like very hard work and although in this case it might just be 

possible to do this by hand. 

• Luckily, symmetry comes to our aid and reduces this problem to something very much 

easier.



6.2 Using symmetry to simplify the calculations

6.2.1 Butadiene

• The four p (pz) AOs can be divided into

 2 0 0 -2 = Au  Bg

𝜽𝑨
𝒖
= (2+3)  & 𝜽𝑩

𝒈
= (2+3)

• The point group is C2h.

• Both sets transform as Au Bg.  

• For the basis (1, 4),

two sets of basis, (1, 4) and (2, 3), and can be 

dealt with separately.  

z transforms like Au; 

yz transforms like Bg; 

𝜽𝑨
𝒖
=(1+4) is z-like.

𝜽𝑩
𝒈
=(1+4)  is yz-like!

• Similarly the basis (2, 3) gives rise to two SOs, 

Note: The normalization coefficients for these SOs have the same value, 1/ 2.



6.2.1 Butadiene

• Now we have four normalized SOs:

• Only SOs of  the same symmetry 

interact. The symmetry analysis 

has reduced the problem to the 

two-way overlap of  θa and θb, and 

the two-way overlap of  θc and θd.

• At this stage, the secular equations can be developed by thinking about forming 

MOs by the linear combination of  any other kind of  orbitals, such as symmetry orbitals.

Au

Bg

𝜃𝑎 =
1

2
(𝛷1 + 𝛷4)

𝜃𝑐 =
1

2
(𝛷1 +𝛷4)

𝜃𝑏 =
1

2
(𝛷2 +𝛷3)

𝜃𝑑 =
1

2
(−𝛷2 + 𝛷3)



6.2.1 Butadiene

• Generally we may write an MO as a linear combination of  symmetry orbitals θa, θb, . . .

𝝍 = 𝒄𝒂𝜽𝒂 + 𝒄𝒃𝜽𝒃 + 𝒄𝒄𝜽𝒄 +⋯

We will consistently use 1,2,3, . . . as the label for AOs and a,b,c, . . . as the label for SOs. 

Written in terms of  SOs, the secular equations upon Hückel approx. are:

 

 
 

𝐻𝑎𝑎 − 𝐸 𝐻𝑎𝑏 𝐻𝑎𝑐 … 𝐻𝑎𝑁

𝐻𝑏𝑎 𝐻𝑏𝑏 − 𝐸 𝐻𝑏𝑐 … 𝐻𝑏𝑁

𝐻𝑐𝑎 𝐻𝑐𝑏 𝐻𝑐𝑐 − 𝐸 … 𝐻𝑐𝑁

… … … … …
𝐻𝑁𝑎 𝐻𝑁𝑏 𝐻𝑁𝑐 𝐻𝑁𝑑 𝐻𝑁𝑁 − 𝐸 

 
 

 

 
 

𝑐𝑎
𝑐𝑏
𝑐𝑐
…
𝑐𝑁 

 
 

= 0 with 𝑯𝒂𝒃 =  𝜽𝒂
 𝑯𝜽𝒃𝒅𝝉

• For butadiene, we therefore have two sets of  secular equations to solve: a 2×2 

problem for the Au SOs θa and θb, and another 2×2 problem for the Bg SOs θc and θd. 



6.2.1 Butadiene

 
𝐻𝑎𝑎 − 𝐸 𝐻𝑎𝑏

𝐻𝑏𝑎 𝐻𝑏𝑏 − 𝐸
  

𝑐𝑎
𝑐𝑏
 = 0 

• For the Au SOs, the MOs are written as: 𝝍𝑨𝒖
= 𝒄𝒂𝜽𝒂 + 𝒄𝒃𝜽𝒃

and the corresponding secular equations are:

• Now compute the matrix elements by 

applying the Hückel Approx.: 𝐻𝑏𝑏 =  𝜃𝑏  𝐻 𝜃𝑏𝑑𝜏

Au SOs: 𝜃𝑎 =
1

2
(𝛷1 + 𝛷4),     𝜃𝑏 =

1

2
(𝛷2 + 𝛷3)

=
1

2
(𝛼2 + 𝛽23 + 𝛽32 + 𝛼3)



6.2.1 Butadiene

• Now the secular equations become:  
𝛼 − 𝐸 𝛽
𝛽 𝛼 + 𝛽 − 𝐸

  
𝑐𝑎
𝑐𝑏
 = 0 

• Divide both sides by β and then set 
𝜶−𝑬

𝜷
= 𝒙:

• Demand the determinant to be zero: = 0

 x2 + x –1  = 0  𝑥 = (−1 ∓ 5)/2 = –1.618  or  0.618

𝐸𝐴𝑢,1 = 𝛼 + 1.618𝛽 𝐸𝐴𝑢,2 = 𝛼 − 0.618𝛽

• Now we have two equations to solve with x being known:



6.2.1 Butadiene

• The first value of  x is 0.618; putting this into [A] enables us to find cb in terms of  ca:

• Hence   𝒄𝒂 = 𝟎. 𝟖𝟓𝟏  𝒄𝒃 = −𝟎. 𝟓𝟐𝟔. 

𝟎. 𝟔𝟏𝟖𝒄𝒂 + 𝒄𝒃 = 𝟎 → 𝒄𝒃= −𝟎. 𝟔𝟏𝟖𝒄𝒂

• Now make use of  the normalization condition: 𝒄𝒂
𝟐 + 𝒄𝒃

𝟐 = 𝟏

• To find another Au MO,  we repeat the process with x = –1.618.



6.2.1 Butadiene

• We now need to repeat the process for the Bg SOs. The MOs are written as

𝝍𝑩𝒈
= 𝒄𝒄𝜽𝒄 + 𝒄𝒅𝜽𝒅

 
𝐻𝑐𝑐 − 𝐸 𝐻𝑐𝑑

𝐻𝑑𝑐 𝐻𝑑𝑑 − 𝐸
  

𝑐𝑐
𝑐𝑑
 = 0 

(x = (-E)/)

and the secular equations are

• Compute the matrix elements; then

Ex. 28

Bg SOs: 𝜃𝑐 =
1

2
(−𝛷1 +𝛷4),  𝜃𝑑 =

1

2
(−𝛷2 +𝛷3)

− 𝐸 

 𝐸

𝑐𝑐
𝑐𝑑

=0 
𝑥 1
1 𝑥 − 1

𝑐𝑐
𝑐𝑑

=0

• The solutions are x = –0.618 and 1.618.  The corresponding MOs are

(Hcc = , Hdd=–, Hcd= Hdc= )

det
𝑥 1
1 𝑥 − 1

=0 𝑥 = (1∓ 5)/2



6.2.1 Butadiene

• The complete set of  four MOs are shown below. 

Results from Computer-based calculations 

Occupied

unoccupiedLUMO

HOMO

Ex.29 (allyl)

1au

2au

2bg

1bg

𝐸1 = 𝛼 + 1.618𝛽

E



𝐸2 = 𝛼 + 0.618𝛽

𝐸3 = 𝛼 − 0.618𝛽

𝐸4 = 𝛼 − 1.618𝛽

• -electron population on ith atom:

𝑃𝑖 =  

𝑗

𝑛𝑗𝑐𝑖𝑗
2

(sum over all occupied MOs)

(𝐴𝑢,1) 𝐸1 = 𝛼 + 1.618𝛽

(𝐴𝑢,2) 𝐸3 = 𝛼 − 0.618𝛽

(𝐵𝑔,1) 𝐸2 = 𝛼 + 0.618𝛽

(𝐵𝑔,2) 𝐸4 = 𝛼 − 1.618𝛽

regioreactivity of  butadiene?



6.2.1 Butadiene

• Total  electron energy of  butadiene:  

𝐸𝑑𝑒𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑
4𝜋𝑒 = 2𝐸1 + 2𝐸2

1au

2au

2bg

1bg

𝐸1 = 𝛼 + 1.618𝛽

E



𝐸2 = 𝛼 + 0.618𝛽

𝐸3 = 𝛼 − 0.618𝛽

𝐸4 = 𝛼 − 1.618𝛽

HOMO

LUMO

• -MOs of 1,3-butadiene

= 4𝛼 + 4.472𝛽

𝐸 = 𝛼 + 𝛽

E



𝐸∗ = 𝛼 − 𝛽

• Total  electron energy of  two localized C-C -bonds:  

𝐸𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑
4𝜋𝑒 = 2 × 2𝐸𝜋 = 4 𝛼 + 𝛽

• Delocalization energy: the difference between the energy of  electrons in the delocalized π system 

(e.g., butadiene) and the energy of  the electrons in hypothetical localized -orbitals (e.g., of  ethene).  

Delocalization energy =𝐸𝑑𝑒𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑
4𝜋𝑒 −𝐸𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑

4𝜋𝑒
= 0.472𝛽 < 0

• -MOs of a localized C-C 

-bond (e.g., in CH2=CH2):

𝜓𝜋2
2 = 𝑐1𝜙1 + 𝑐2𝜙2

Secular eqs. (set x=
𝛼−𝐸

𝛽
) :

𝛼 − 𝐸 𝛽
𝛽 𝛼 − 𝐸

𝑐1
𝑐2

=

0  x= 1, E= 

Delocalization of  the electrons lowers the energy!

Q: plz derive the delocalization 

energy for allyl anion!


𝑥 1
1 𝑥

𝑐1
𝑐2

=0

𝜓± =
𝑝1 ± 𝑝2

2
→ 𝐸± =  𝜓±

 𝐻𝜓±𝑑𝜏 = 𝛼 ± 𝛽



6.2.2 Carboxylate anion

• This species has a delocalised π system (𝜋3
4) 

involving the two oxygen atoms and the 

carbonyl carbon. 

• The carboxylate fragment has C2v symmetry.

 2 0 -2 0 = A2  B2

• The basis (1, 3) transforms as A2  B2.

B2 SO  (y-like ):

A2 SO (xy-like): 

𝜃𝑎 = (𝜙1 + 𝜙3)

𝜃𝑐 = (−𝜙1 + 𝜙3) 

• 2py AOs: C ~  2 (B2);

O1,O3 ~ (1, 3)

/ 2

/ 2



SOs of  carboxylate anion 

MOs of  IR B2:       (B2) = caa +cbb

 The A2 SO (c) itself  gives a non-bonding MO,  𝜓 𝐴2 = 𝜃𝑐 = (−𝜙1 + 𝜙3) / 2



6.2.2 Carboxylate anion

• Now consider the overlap of  the two B2

SOs and define b = 2. Then  

• Now compute Haa, Hbb, Hab etc.

• Now suppose  O = C +  =  +  .

𝐻𝑎𝑎 − 𝐸 𝐻𝑎𝑏

𝐻𝑏𝑎 𝐻𝑏𝑏 − 𝐸

𝑐𝑎
𝑐𝑏

= 0

= H22 = C

= O

= (𝛼1 + 𝛽13 + 𝛽31 + 𝛼3)/2

= (𝛼𝑂 + 0 + 0 + 𝛼𝑂)/2

=
1

2
(𝛽12 + 𝛽32)

(𝛽12 = 𝛽32 = 𝛽𝑂𝐶 = 𝛽)

= 2𝛽

𝑂 − 𝐸 2𝛽

2𝛽 𝛼𝐶 − 𝐸

𝑐𝑎
𝑐𝑏

= 0

+ 𝛽 − 𝐸 2𝛽

2𝛽 𝛼 − 𝐸

𝑐𝑎
𝑐𝑏

= 0



6.2.2 Carboxylate anion

• The resulting normalized MOs of  B2 symmetry are

Bonding

Anti-bonding

• The energy of  the MO of  A2 symmetry is simply given as

𝑬𝑩𝟐,𝟏
= 𝜶 + 𝟐𝜷 (x = –2)

𝑬𝑩𝟐,𝟐
= 𝜶 − 𝜷 (x = 1)

𝐵2,1 = 0.5771 + 0.5772 + 0.5773

𝐵2,2 = 0.4081 − 0.8162 + 0.4083

non-bonding

• Define x = (–E)/ and solve the secular equations, 

𝑥 + 1 2

2 𝑥

𝑐𝑎
𝑐𝑏

= 0 det
𝑥 + 1 2

2 𝑥
= 0

𝑥2 + 𝑥 − 2 = 0

𝑥1 = −2, 𝑥2 = 1

𝛼𝑂 0 0 𝛼𝑂



6.2.2 Carboxylate anion

• The diagram below shows the energy levels and MOs with the contributions from 

each p orbital drawn roughly to scale.

• The  total  electron energy is

Ex.30-31

1b2

2b2

1a2

𝐸1 = 𝛼 + 2𝛽

E

𝐸2 = 𝛼 + 𝛽

𝐸3 = 𝛼 − 𝛽

𝐸1 = 𝐸B2,1 = 𝛼 + 2𝛽

𝐸3 = 𝐸B2,2 = 𝛼 − 𝛽

1b2 = 0.5771 + 0.5772 + 0.5773

1𝑏2 = 0.4081 − 0.8162 + 0.4083

1𝑎2 = −0.7071 + 0.7073 (nonbonding)

𝐸2 = 𝐸𝐴2,1 = 𝛼 + 𝛽

𝐸𝜋 = 2𝐸1 + 2𝐸2

= 2(𝛼 + 2𝛽) + 2(𝛼 + 𝛽)

= 4𝛼 + 6𝛽



Delocalization energy

• Of great interest is the energy difference between the electrons in the delocalized 

π system and the energy of  the electrons in hypothetical localized orbitals. 

• A localized picture of  the carboxylate anion:  

two π-electrons in the C-O  π bond, and the remaining two π-electrons in a py

orbital on the other oxygen. 

• For the localized C–O π bond, the secular equations become 

𝑶 − 𝑬 

 𝜶𝑪 − 𝑬
𝒄𝟏
𝒄𝟐

= 𝟎
+ − 𝑬 

 𝜶 − 𝑬
𝒄𝟏
𝒄𝟐

= 𝟎
𝛼𝑂 = 𝛼 + 𝛽

𝛼𝐶 = 𝛼

 E1 = α +1.618β,  E2 = α – 0.618β.

• The total localized electron energy is Eloc. = 2(α +1.618β)

(4α + 6β)

+ 2(α+β)  

• Delocalization energy = Edeloc. – Eloc. = 

= 4α + 5.236β

– (4α + 5.236β) = 0.764

2e of a C-O -MO O p lone pair

𝒙 + 𝟏 𝟏
𝟏 𝒙

𝒄𝟏
𝒄𝟐

= 𝟎

𝑥 = (𝛼 − 𝐸)/𝛽



6.2.3 Relationship between the energies of  the AOs and MOs

• A consequence of  the Hückel approximations is that the sum of  the energies of  the AOs (i.e. 

the Hii) must be equal to the sum of  the energies of  the MOs.

• Example: carboxylate anion.

1b2

2b2

1a2

𝐸1 = 𝛼 + 2𝛽

E



𝐸2 = 𝛼 + 𝛽

𝐸3 = 𝛼 − 𝛽

E(-MOs) =E1+ E2 +E3

=  (+2)+(+)+(-)

= 3+2

E(-AOs) =   2E(O-2p) + E(c-2p)

=  2(+) +

= 3+2

Q1: please check if  this statement holds true 

for 1,3-butadiene?

Q2: How to make use of  this relationship?



6.3 Cyclobutadiene

C4H4 point group?

(R) 4 0 0 0 = Eg  A2u B1u2 0 0 4 0 2

• A2u SO ~ z-like

• Eg SOs ~ xz- & yz-like

• B1u SO    ?   -like ?  

(D4h)  

Basis set: 4 2𝑝𝜋
𝑧(C) AOs!

xyz

(𝝅𝟒
𝟒)

xyz

Indeed B1u = B2g A2u



6.3 Cyclobutadiene

• The normalized SOs are 

A2u like z 𝜃𝑎 = (1 + 2 + 3 + 4)

Eg like xz  𝜃𝑏 = (1 − 2 − 3 + 4)

Eg like yz  𝜃𝑐 = (1 + 2 − 3 − 4)/2

B1u like xyz 𝜃𝑑 = (1 − 2 + 3 − 4)/2

A2u~z-like Eg~xz & yz-like B1u~xyz-like

E1 = Haa = 

• These SOs are themselves -MOs.

=
1

4
(𝐻11 + 𝐻12 + 𝐻13 + 𝐻14 + 𝐻21 + 𝐻22 + 𝐻23 + 𝐻24

+𝐻31 +𝐻32 +𝐻33 +𝐻34 +𝐻41 +𝐻42 +𝐻43+𝐻44)

=
1

4
(𝛼 + 𝛽 + 0 + 𝛽 + 𝛽 + 𝛼 + 𝛽 + 0

+0 + 𝛽 + 𝛼 + 𝛽 + 𝛽 + 0 + 𝛽 + 𝛼) = 𝛼 + 2𝛽

/2

/2



6.3 Cyclobutadiene

• The normalized SOs are 

E2 = Hbb = 

A2u 𝜃𝑎 = (1 + 2 + 3 + 4)/2

Eg like xz  𝜃𝑏 = (1 − 2 − 3 + 4)/2

Eg like yz  𝜃𝑐 = (1 + 2 − 3 − 4)/2

B1u 𝜃𝑑 = (1 − 2 + 3 − 4)/2

Indeed

degenerate!

A2u~z-like Eg~xz & yz-like B1u~xyz-like

=  𝜃𝑏  𝐻𝜃𝑏𝑑𝜏

E3 = Hcc =  𝜃𝑐  𝐻𝜃𝑐𝑑𝜏 = 𝛼

E4 = Hdd =  𝜃𝑑  𝐻𝜃𝑑𝑑𝜏 = 𝛼 − 2𝛽

E1 = Haa =  +2

1a2u

1eg

1b1u–2

+2



E

Diradical! 

• The total π energy is 4α+4β. (Is it stable than two localized C=C -bonds?)

Anti-aromatic! 



(C6H6)  -- 𝜋6
6 -MOs ( by pz AOs)  

(6 pz) 6 0

x

y

1
2

6

0 0 -2 0 0 0 0 -6 0 2 A2u B2g E1gE2u

E2u= E2gA2u [(x2-y2)z, 2xyz]

B2g= B1uA2u

x(x2-3y2)

y(3x2-y2)

linear quadratic
cubic

6.4 benzene  
3

4

5

x(x2-3y2)z

Please complete the character tables (given in the databook) with additional cubic functions! 



C6H6 -- 𝜋6
6

𝜃𝐴2𝑢
= (𝜙1 + 𝜙2 + 𝜙3 + 𝜙4 + 𝜙5 + 𝜙6)/ 6

y

A2u B2g E1gE2u

B2g, x(x2-3y2)z-like,

E1g, xz-like,  

E1g, yz-like,  

𝜃𝐸2𝑢,(𝑥2−𝑦2)𝑧 = (2𝜙1 − 𝜙2 − 𝜙3 + 2𝜙4 − 𝜙5 − 𝜙6)/ 12

𝜃𝐸2𝑢,𝑥𝑦𝑧 = (𝜙2 − 𝜙3 + 𝜙5 − 𝜙6)/2

𝐸 𝑎2𝑢 =  𝜃𝐴2𝑢
 𝐻𝜃𝐴2𝑢

𝑑𝜏 = 𝛼 + 2𝛽

𝐸 𝑏2𝑔 =  𝜃𝐵2𝑔
 𝐻𝜃𝐵2𝑔

𝑑𝜏 = 𝛼 − 2𝛽

𝐸 𝑒1𝑔 =  𝜃𝐸1𝑔
 𝐻𝜃𝐸1𝑔𝑑𝜏 = 𝛼 + 𝛽

𝐸 𝑒2𝑢 =  𝜃𝐸2𝑢
 𝐻𝜃𝐸2𝑢𝑑𝜏 = 𝛼 − 𝛽

x
1

2

6

3

4

5

A2u, z-like, 

𝜃𝐵2𝑔 = (𝜙1 − 𝜙2 + 𝜙3 − 𝜙4 + 𝜙5 − 𝜙6)/ 6

𝜃𝐸1𝑔,𝑥𝑧 = (2𝜙1 + 𝜙2 − 𝜙3 − 2𝜙4 − 𝜙5 + 𝜙6)/ 12

E2u, (x2-y2)z-like,  

𝜃𝐸1𝑔,𝑦𝑧 = ( 𝜙2 + 𝜙3 − 𝜙5 − 𝜙6)/2

E2u, xyz-like,  

(2,0)

(1, 3)(–1, 3)

(–1,− 3)

(–2,0)

(1-,− 3)

MO节面数增加, 能量上升!

(节面数 =0)

(节面数 =1)

(节面数 =2)

(节面数 =3)

(Note that pz ifself is z-like!)



C6H6 -- 𝜋6
6

y

A2u B2g E1gE2u

𝜓𝑒2𝑢,1 = (2𝜙1 − 𝜙2 − 𝜙3 + 2𝜙4 − 𝜙5 − 𝜙6)/ 12

𝜓𝑒2𝑢,2 = (𝜙2 − 𝜙3 + 𝜙5 − 𝜙6)/2

𝛼 + 2𝛽

x
1

2

6

3

4

5

𝜓𝑏2𝑔 = (𝜙1 − 𝜙2 + 𝜙3 − 𝜙4 + 𝜙5 − 𝜙6)/ 6

𝜓𝑒1𝑔,1 = (2𝜙1 + 𝜙2 − 𝜙3 − 2𝜙4 − 𝜙5 + 𝜙6)/ 12

𝜓𝑒1𝑔,2 = ( 𝜙2 + 𝜙3 − 𝜙5 − 𝜙6)/2

(2,0)

(1, 3)(–1, 3)

(–1,− 3)

(–2,0)

(1-,− 3)
E

𝛼

𝛼 + 𝛽

𝛼 − 𝛽

𝛼 − 2𝛽

𝜓𝑎2𝑢
= (𝜙1 + 𝜙2 + 𝜙3 + 𝜙4 + 𝜙5 + 𝜙6)/ 6

Delocalization energy = 𝐸𝑑𝑒𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑
6𝜋𝑒 − 𝐸𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑

6𝜋𝑒 = [2(+2)+4(+)] – [32(+)] = 2



-- 𝜋6
6 -MOs ( by pz AOs)  x

y

1
2

6
6.4 benzene  

3

4

5
using the projection operator   

• For cyclic group, the six equivalent AOs span as   

 = A  B  E1  E2

1 1 2 3 4 5 6

( = exp(2i/6))

 𝑷(𝒌)𝝓𝟏 =
𝟏

𝒉
 

𝑹

 𝒌 𝑹
∗  𝑹 𝝓𝟏

• Reduce the symmetry of  the molecule from D6h to purely rotational symmetry C6.

a=A =  (1 + 2 + 3 + 4 + 5 + 6) 

b= B =  (1 - 2 + 3 - 4 + 5 - 6) 

(E1
a) =  (1 +52 +43 + 34 + 25 + 6)/6 

(E1
b) =  (1 +2 +23 + 34 + 45 + 56)/6 

(E2
a) =  (1 +42 +23 + 4 + 45 + 26)/6 

(E2
b) =  (1 +22 +43 + 4 + 25 + 46)/6 

(e1
a) = N[(E1

a) + (E1
b)]=(21 +2 -3 -24 - 5+6)

(e1
b) = N[(E1

a)  (E1
b)]= (2 + 3 – 5 – 6)

(e2
a) = N[(E2

a) + (E2
b)] = (21 -2 -3 +24 - 5-6) 

(e2
b) = N[(E2

a)  (E2
b)] = (2 -3 +5-6) 

/ 6

/ 6

/ 12

/2

/ 12

/2



思考题

1.  运用休克尔分子轨道理论推导线式[n]共轭烯烃分子轨道的正弦波规律：

第k个能级的能量为：Ek=  + 2 cos(k) 其中 = /(n+1)   

k 为分子轨道能级 (k =1,2,3,…n)

𝝍𝒌
𝝅 =  

𝒎=𝟏

𝒏

𝝓𝒎𝒔𝒊𝒏(𝒎𝒌)第k个能级的分子轨道为：

2.  运用休克尔分子轨道理论推导环[n]共轭体系分子轨道的能量和组成为：

 = 2/𝑛 k与能级有关，k =0, 1,2, …, (n-1)/2 (for n=odd) or n/2 (n=even)

Ek = 𝛼 + 2𝛽cos(𝑘𝜃) 
𝑘
𝑐𝑜𝑠 =  

𝑚=1

𝑛

𝑚cos[ 𝑚 − 1 𝑘] 
𝑘
𝑠𝑖𝑛 =  

𝑚=1

𝑛

𝑚sin[(𝑚 − 1)𝑘]

( when k =  0 or , no 
𝑘
𝑠𝑖𝑛)  



6.4 Summary

• The energies of  MOs and the particular combinations of  AOs from which they are 

formed can be found by solving the secular equations.

• The solution to these equations is simplified by adopting the Hückel approximations: 

(1) the overlap between orbitals is neglected, i.e. Sij= 0; 

(2) AOs are assumed to be normalized i.e. Sii= 1; 

(3) only adjacent orbitals have an interaction i.e. Hij= 0 if  i and j are not adjacent.

• In the secular equations Hii is written αi; this is approximately the energy of  orbital i, 

and is negative.

• In the secular equations Hij is written βij; this is the energy of  interaction of  adjacent 

orbitals i and j; it is negative.



6.5 Summary

• The secular equations are of  the form:

• The solution to the secular equations can be simplified by first constructing symmetry 

orbitals (SOs); only SOs of  the same symmetry overlap, thereby reducing the dimensionality 

of  the secular matrix. (That is why we use symmetry and group theory!!!!!!!!!!!)

• However, the forms and energies of  HMOs solely depend on the atomic connectivity!  

• The delocalization energy of  a π system is the difference between the energy of  

electrons in delocalized orbitals and the energy of  the electrons in localized orbitals.

𝛼1 − 𝐸 𝛽12 𝛽13 … 𝛽1𝑁
𝛽21 𝛼2 − 𝐸 𝛽23 … 𝛽2𝑁
𝛽31 𝛽32 𝛼3 − 𝐸 … 𝛽3𝑁
… … … … …
𝛽𝑁1 𝛽𝑁2 𝛽𝑁3 … 𝛼𝑁 − 𝐸

𝑐1
𝑐2
𝑐3
…
𝑐𝑁

= 0
𝑯𝒊𝒊 =  𝝓𝒊

 𝑯𝝓𝒊𝒅𝝉 = 𝜶𝒊

𝑯𝒊𝒋 =  𝝓𝒊
 𝑯𝝓𝒋𝒅𝝉 = 𝜷𝒊𝒋

Hückel

approximations

𝑺𝒊𝒋 =  𝝓𝒊𝝓𝒋𝒅𝝉 = 𝜹𝒊𝒋 = 𝟏 𝒊 = 𝒋
= 𝟎 (𝒊 ≠ 𝒋)

= 𝟎 (i-j non-bonding )



6.5 More considerations –graphical method for for linear [n]polyenes 

Graphical method to predefine the coefficients of  HMOs for conjugated systems (developed by 

Qianer Zhang et al.) 

• For a linear [n]polyene, we have n secular equations (x = (-E)/ ) :

i 1 2 3 nn-1

𝑥 1 … 0 0
1 𝑥 … 0 0
… … … … …
0 0 … 𝑥 1
0 0 … 1 𝑥

𝑐1
𝑐2
…

𝑐𝑛−1
𝑐𝑛

= 0

xc1 + c2=0

c1 + xc2 + c3= 0

……

ci-1 + xci+ ci+1 = 0

……

cn-2 + xcn-1+ cn = 0

cn-1 + xcn = 0

(cyclic formula)

ci+1 + ci-1 = xci 

𝑠𝑖𝑛𝐴 + 𝑠𝑖𝑛𝐵 = 2𝑠𝑖𝑛
𝐴+𝐵

2
𝑐𝑜𝑠

𝐴−𝐵

2

tℎ𝑒𝑛 𝑥 = 2𝑐𝑜𝑠

𝑖𝑓 𝐴= (i+1), 𝐵= (i1)

& 𝑐𝑖 = 𝑠𝑖𝑛𝑖

𝝍𝝅 =  

𝒊=𝟏

𝒏

𝒄𝒊𝝓𝒊



6.6 General process for [n]polyenes 

For a linear [n]polyene, we have n secular equations (x = (-E)/ ) :

xc1 + c2=0;                       

c1 + xc2 + c3= 0; ……

ci-1 + xci+ ci+1 = 0; 

(cyclic formula)

……; cn-1 + xcn = 0

set

x = 2cos

c1 = sin

c3 = sin3

…

c2 = –xc1=sin2

ci = sini

…  

cn = sinn

Boundary condition:  

cn+1 = sin(n+1) = 0

Ek=  + 2 cosk

k = k/(n+1)  (k=1,…,n)

i 1 2 3 nn-1

sin 𝜃 sin 2𝜃 sin 3𝜃 sin(𝑛 − 1)𝜃 sin 𝑛𝜃

0 n+1

ci sin 0 sin(𝑛 + 1)𝜃 = 0

𝝍𝝅 =  

𝒊=𝟏

𝒏

𝒄𝒊𝝓𝒊

(k defines the energy level!) 

𝝍𝒌
𝝅 =  

𝒊=𝟏

𝒏

𝝓𝒊𝒔𝒊𝒏(𝒊𝜽𝒌)

Now recall the sine wave rule we learnt in the 1st semester!



cyclic [n]polyenes

Ek = 𝛼 + 2𝛽cos(𝑘𝜃)


𝑘
𝑐𝑜𝑠 =  

𝑚=1

𝑛

𝑚cos[ 𝑚 − 1 𝑘]

 = 𝟐/𝒏

k= 0, 1, …, (n-1)/2 (for n 

=odd) or n/2 （for n= even）


𝑘
𝑠𝑖𝑛 =  

𝑚=1

𝑛

𝑚sin[(𝑚 − 1)𝑘]

( when k =  0 or , no 
𝑘
𝑠𝑖𝑛)  



• The method can be used for dealing with more complicated systems.

• Recent work developed by Prof. Zhenhua Chen can be found as “Graphical representation 

of  Hückel Molecular Orbitals” in J. Chem. Educ. 2020, 97(2), 448-456.

(https://pubs.acs.org/doi/10.1021/acs.jchemed.9b00687)

• FYI：“Introduction to Computational Chemistry: Teaching Hückel Molecular 

Orbital Theory Using an Excel Workbook for Matrix Diagonalization”

in  J. Chem. Educ. 2015, 92(2), 291-295. 

(https://pubs.acs.org/doi/full/10.1021/ed500376q)

https://pubs.acs.org/doi/10.1021/acs.jchemed.9b00687


Work out SOs quickly by using trend & sinspection! 

• The aforementioned trend of  SOs consisting of  2,3,4-equivalent-basis-functions can 

be used to quickly work out the SOs as well as the corresponding IRs by inspection.   

Trend in SOs arising from 

i)  2 equivalent AOs

(C2//i)  

In-phase Out of  phase

ii) 3 equivalent AOs (C3) 



Work out SOs quickly by using trends and inspection! 

• Example: Naphthalene (D2h)

x

y

z

𝜋10
10 formed by10 pz AOs:

(1,4,5,8)(2,3,6,7)(9,10)

(9,10):

a=(9+ 10)/2

z-like, B1u yz-like, B3g

b=(9–10)/2

(1,4,5,8):

z-like, B1u
xz-like, B2g

c=(1+ 4 + 5 + 8)/2 d=(1+ 4 – 5 – 8)/2

yz-like, B3g xyz-like, Au

e=(1– 4 – 5 + 8)/2 f=(1 – 4 + 5 – 8)/2

(2,3,6,7):

z-like, B1u
xz-like, B2g

g=(2+ 3 + 6 + 7)/2 h=(2+ 3 – 6 – 7)/2

yz-like, B3g xyz-like, Au

i=(2– 3 – 6 + 7)/2 j=(2 – 3 + 6 – 7)/2

xyz

B1gB1u =Au



• MOs of  B1u symmetry:   (B1u) =caa + ccc + cgg

𝐻𝑎𝑎 − 𝐸 𝐻𝑎𝑐 𝐻𝑎𝑔

𝐻𝑐𝑎 𝐻𝑐𝑐 − 𝐸 𝐻𝑐𝑔

𝐻𝑔𝑎 𝐻𝑔𝑐 𝐻𝑔𝑔 − 𝐸

𝑐𝑎
𝑐𝑐
𝑐𝑔

=0
Haa=(H99 + H1010+H910 +H109 )/2= +

Hcc=(H11 + H44+H55 +H88 )/4 = 

Hgg=  +

Hac=(H91 + H98+H104 +H105 )/22= 2  Hag= 0 Hcg= 

𝑥 + 1 2 0

2 𝑥 1
0 1 𝑥 + 1

𝑐𝑎
𝑐𝑐
𝑐𝑔

=0 det
𝑥 + 1 2 0

2 𝑥 1
0 1 𝑥 + 1

=0

………  


