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7. Normal modes (简正模) 

• This section is devoted to using symmetry considerations to help understand the vibrations of 

molecules and spectra that arise due to transitions between the associated energy levels. 

• Each normal mode has a set of energy levels, and the transitions between 

these levels give rise to infra-red spectra of the type.

e.g.,  three normal modes of H2O and their fundamental transitions 

• The vibrations of a molecule can be separated into contributions from a 

finite number of special vibrations called normal modes. 
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7. Normal modes 

Here we will show ideas about 

i) how to classify normal modes according to symmetry, 

ii) how to predict which modes give rise to infra-red spectra and vibrational 

Raman scattering. 

• We will use the symmetry arguments to explain the occurrence of more complex 

features of infra-red spectra, such as overtones and combination bands.
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7.1 Normal mode analysis

• Vibrations involve the physical displacement  of atoms from their equilibrium positions. 

• To simplify the problem, we first separate the displacement vectors into groups which are mapped 

onto one another(!!!!!!!!) by the operations of the point group.  

Basis (9 vectors )  a 9-D rep.!

与之前对原子轨道做
对称性分类相似！

• Example, H2O (C2v), basis (x, y and z displacement vectors on each atom).

For the ith normal mode (vibration) of an N-atom molecule, 

define its normal coordinate Qi (简正坐标) as  

𝑸𝒊 = 

𝒋=𝟏

𝟑𝑵

𝒄𝒊𝒋𝒒𝒋 (q: 各原子位移基矢) 

• To analyse the symmetry of vibrations, we simply imagine a basis which consists of an x, y and z 

displacement vector attached to each atom in the molecule. 



7.1 Normal mode analysis

1 2 0 2 0 = A1  B1(H1,x, H2,x)

(H1,y, H2,y) 2 2 0 -2 0 = A2  B2O,x

O,y

O,z

(H1,x, H2,x) A1  B1

(H1,z, H2,z) A1  B1

(H1,y, H2,y) A2  B2

3A1  3B1 A2 2B2 • 3N-6 normal modes for non-linear molecules.

Vector(s) IR

Full set （3N)                         3A1  3B1 A2 2B2

Translations (x,y,z) B1, B2, A1 (from the table)

Rotations (Rx,Ry,Rz) B2, B1, A2 (from the table)

Vibrations （3N-6) 2A1  B1

B1 (from the table)

B2

A1

Total

SALC
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7.1.1 Form of  the normal modes Ex.32

• H2O has ？ stretching modes and     ？ angle bending mode. 

• Alternatively, use internal displacements to derive the forms of normal modes—two rules

(i) there is 1 stretching vibration per bond

(ii) we must treat symmetry-related atoms together

• In a normal mode, the centre of mass has to remain fixed. Accordingly,  the atoms have to move 

in ways which balance one another out and in addition the amount by which each atom moves will 

be affected by its mass. (lower mass  larger displacement)

two one

Internal coordinates(内坐标): 

bond lengths, bond angles, 

dihedral angles

v3
15:31

• However, it is rather tedious to derive the form of the normal modes 

in a basis of (x,y,z) displacements even for simple molecules! 
𝑸𝒊 = 

𝒋=𝟏

𝟑𝑵

𝒄𝒊𝒋𝒒𝒋



7.1.1 Form of  the normal modes Example: H2O

• First use the two O-H bond stretches (𝒓𝟏,𝒓𝟐) as a basis.

O

H1 H2 𝑟1  𝑟2

𝚪(𝟐𝒓) 2 0 2 0 = A1  B1

x

z

y

The A1 stretching (z-like): ( r1+  r2)

The B1 stretching (x-like): (– r1+ r2)

~Symmetric (in-phase) stretching

~anti-symmetric (out-of-phase) stretching

𝚪(𝜶)• Use the H-O-H angle  bending as a basis.    



1 1 1 1 = A1

The angle bending transforms as A1 IR. 

Using internal (coordinate) displacements!

The A1 bending & symmetric stretching further mix! Neither purely bending nor purely stretching. 
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7.1.2 Normal modes of  𝑯𝟑
+

• Example: intersteller molecule 𝑯𝟑
+ (point group D3h).

• In a general axis system: (z,1 z,2 z,3), (x,1 x,2 x,3, y,1 y,2 y,3)

• In a local axis system:   (z,1 z,2 z,3), (a,1 a,2 a,3), and (b,1 b,2 b,3)  all 3-D reps.!

 a 6-D rep.!

Radial displacements Tangential displacements
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7.1.2 Normal modes of  𝑯𝟑
+

(z,1 z,2 z,3) ( 3 0  -1 -3 0 1）A2  E

(a,1 a,2 a,3) ( 3 0  1 3 0 1) A1  E

(b,1 b,2 b,3) ( 3 0  -1 3 0 -1) A2  E

Total A1  A2  2E A2  E

–translations (x,y,z) E  A2

–rotations (Rx,Ry,Rz) A2  E

Vibrations A1  E

Q: How does its three  

normal modes look like?

A1:   a1+a2+a3

Ey 2a1-a2-a3

Ex a2-a3

1st approx.:

x

y

Ey 2b1-b2-b3

Ex b2-b3

15:31

Sym. ring 
breathing

Asym. ring
breathing



7.1.3 X–H stretching analysis

• On account of the low mass of the hydrogen atom, it is often the case that particular normal 

modes are dominated by X–H stretching motions. 

• Therefore it is practically useful to make a symmetry analysis using a basis consisting of 

only X–H stretches, but not a general set of (x,y,z) displacements on each atom. 

• Of course, such an approach will only reveal the symmetries of those normal modes 

involving the X–H stretches. 

• Example: the C–H stretches of ethene (point group D2h).

𝒓𝟒 𝒓𝟏

𝒓𝟐𝒓𝟑
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7.1.3 X–H stretching analysis

 4 0 0 0 0 4 0 0

  = Ag  B1g  B2u  B3u  

Ag, Totally symmetric B2u , like y B3u , like xB1g , like xy

𝒓𝟒 𝒓𝟏

𝒓𝟐𝒓𝟑

(𝒓𝟏– 𝒓𝟐 – 𝒓𝟑 + 𝒓𝟒)(𝒓𝟏 + 𝒓𝟐 + 𝒓𝟑+ 𝒓𝟒) (𝒓𝟏 + 𝒓𝟐 – 𝒓𝟑 – 𝒓𝟒)(𝒓𝟏 - 𝒓𝟐 + 𝒓𝟑- 𝒓𝟒)
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• These pictures arising from combination of internal displacements are only approximations 

to the real normal modes. （In reality, the carbon atoms would also need to move by small 

amounts in order to ensure that the centre of mass remain fixed.）

• In the next two sections, we will see how a symmetry analysis helps us to determine 

whether or not a particular normal mode will give rise to absorptions in the infra-red or 

vibrational Raman scattering (i.e. whether or not a mode is ‘infra-red or Raman active’).

• We will start out by looking at the symmetry of the harmonic oscillator wavefunctions, 

which are a first approximation to the vibrational wavefunctions of the molecule, and then 

move on to discuss the selection rules for transitions between them.

Ex.33
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7.2 Symmetry of  the vibrational wavefunctions

• If we assume that the vibrations are harmonic, each normal mode has associated with a set 

of energy levels: (ωi is the vibrational frequency of the ith normal mode). 

𝑬𝒗𝒊 = 𝒗𝒊 +
𝟏

𝟐
ℏ𝝎𝒊 𝒗𝒊 = 𝟎, 𝟏, 𝟐…

• The normal modes can be excited independently of one another so, for example, we can 

have the first normal mode in the v1= 1 level, the second in the ground state (v2=0), the third 

in the v3= 3 level and so on. 

The set of energy levels 

available for H2O.

B115:31



7.2 Symmetry of  the vibrational wavefunctions

• For a diatomic, the harmonic oscillator 

wavefunctions depend only on the 

displacement x, where x=(r-re). 

In terms of  the scaled coordinate q( x), the 

form of  the first few wavefunctions and their 

energies (unit in ℏ𝝎) are tabulated here.

• In more complex molecules, a normal mode involves several atoms changing their 

positions, but we can define a single normal coordinate Qi (简正坐标) to describe the 

motion of ith normal mode. 

Normal coordinate Qi in the place of  q for complex molecules!

• Key point:  
(𝑸

𝒊
)
= 

(𝒊)

= 𝑯𝒗 𝒒 exp(−𝑞2/2)

15:31

2q

(4q2 – 2)

(8q3 – 12q)

Hv(q)

Hermite polynomials



7.2.1 Symmetry of  the ground state vibrational wavefunction

• For a non-degenerate normal mode, its ground-state wavefunction is ψ0= exp (–
𝟏

𝟐
𝑸𝒊
𝟐).

Qi (as a basis) transforms as a particular 1-D IR,  i.e.,        

 𝑹Qi =𝜒( 𝑹)Qi with 𝜒( 𝑹)= +1 or –1 (effect of symmetry operation  𝑹 on Qi)

 𝑹𝑸𝒊
𝟐 = [𝜒( 𝑹)Qi]

2 = (+1)𝑸𝒊
𝟐 (valid for arbitrary  𝑹 of the very point group!)

 𝑸𝒊
𝟐 transforms as the totally symmetric IR, so does ψ0= exp (−

𝟏

𝟐
𝑸𝒊
𝟐).  

 The ground-state wavefunction always transforms as the totally symmetric IR.

• For degenerate normal modes, the conclusion remains the same and the statement above 

therefore applies to all normal modes.
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State

7.2.2 Symmetry of  excited states: non-degenerate normal modes

ψ1 =  Qi exp (–
𝟏

𝟐
𝑸𝒊
𝟐) (i)

tot. sym.

= (i)

ψ2 = (4𝑸𝒊
𝟐–2) exp (–

𝟏

𝟐
𝑸𝒊
𝟐)

ψ3 = (8𝑸𝒊
𝟑–12Qi) exp (–

𝟏

𝟐
𝑸𝒊
𝟐)

vi =0 ψ0 = exp (–
𝟏

𝟐
𝑸𝒊
𝟐)

vi =1 tot. sym.

vi =2

Wavefunction Symmetry of 𝝍𝒗𝒊

vi =3

tot. sym.tot. sym. =tot. sym.

(i) = (i)tot. sym.

For non-degenerate normal modes, vibrational wavefunctions with v = 0, 2, 4, . . . (even 

v) transform as the totally symmetric IR, and those with odd v have the same IR as does 

the normal mode.

Key point:  𝚪(𝑸𝒊) = 𝚪(𝒊)

The first excited state transforms as 

the same IR as the normal mode. 
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7.2.2 Symmetry of  excited states: non-degenerate normal modes

E

Normal Modes of H2O

For non-degenerate normal modes, vibrational wavefunctions with v = 0, 2, 4, . . . (even v) 

transform as the totally symmetric IR, and those with odd v have the same IR as does the 

normal mode.

15:31



Symmetry of  excited states: degenerate normal modes

For degenerate normal modes,

• The ground state (v = 0) transforms as the totally symmetric IR, and the first excited state (v 

=1) transforms as the same IR as the normal mode.

• The symmetry properties of higher excited states follow a more complex pattern.  

15:31

e.g., for the u(2) bending modes of CO2, its second-excited state has symmetry,

Among which the state of Σ𝑔
+

symmetry mixes with the first excited 

state (Σ𝑔
+) of the symmetric C-O 

stretching, giving rise to combination 

bands in Raman spectrum. 

𝜫𝒖⨂𝜫𝒖 = 𝜮𝒈
+ + 𝜟𝒈+𝜮𝒈

−



7.2.3 Overall symmetry of  the vibrational wavefunction

𝜞𝒕𝒐𝒕 = 𝜞𝒗𝟏
(𝟏)

⊗𝜞𝒗𝟐
𝟐
⊗⋯𝜞𝒗𝒊

𝒊
⊗⋯

15:31

• The symmetry of the overall vibrational wavefunction (𝜓𝑡𝑜𝑡) for a molecule can be worked out 

straightforwardly using  direct product. 

Normal modes of a molecule and their states 

No. Energy level 

(quantum number)

IR of the corresponding 

vibrational wavefunction

1

2

i

…

…

v1

v2

vi

𝜞𝒗𝟏
(𝟏)

𝜞𝒗𝒊
(𝒊)

𝜞𝒗𝟐
(𝟐)

IR of 

N.M.

𝜞
(𝟏)

𝜞
(𝟐)

𝜞
(𝒊)

• Suppose the normal modes of a molecule are each at the energy level given below, 

The IR of the overall vibrational wavefunction for this molecule is given by the direct product,

𝜓𝑡𝑜𝑡 =  

𝑖

𝜓𝑣𝑖



7.2.3 Overall symmetry of the vibrational wavefunction

• For a molecule in which none of the vibrational modes are excited (all the νi are zero),  the overall 

vibrational wavefunction transforms as the totally symmetric IR. 

• If just one normal mode is excited to the v = 1 state, and all of the other normal modes have v = 0, 

the overall vibrational wavefunction has the same IR as the normal mode which is excited.

15:31

• In H2O, suppose that for the three normal modes ν1=0, ν2=1 and ν3=1, the IRs for each of  

these wavefunctions are    ? ,   ? and   ? , respectively. 

A1⊗A1⊗B1 = B1. The IR of the overall vibrational wavefunction is therefore 

A1 A1
B1

B1



7.3 Using symmetry to determine which transitions are allowed

• The wavefunctions for a normal mode are the same as those for a harmonic oscillator (but 

replacing the displacement q by the normal coordinate Qi). 

The usual selection rules apply. That is, for a transition to be allowed

(1) The dipole must change as the normal coordinate Qi changes about equilibrium.

(2) |∆νi|=1.

• A symmetry analysis gives us a systematic way of determining which particular transitions 

associated with particular normal modes are going to give rise to absorptions in the infra-red or 

vibrational Raman scattering.

• Due to anharmonicity, transitions with higher values of |∆vi| are weakly allowed (overtones), as 

are transitions in which more than one mode changes quantum number (combination bands).

15:31

(the quantum number of only one mode is allowed to change by ±1) 



7.3.1 Transitions between the energy levels of a single normal mode

• Since all of the ground states transform as the totally symmetric IR, the symmetry of the overall 

vibrational wavefunction is just determined by that of the one normal mode which is being excited. 

• The intensity I of a transition between two vibrational levels, νi  𝒗𝒊
′, of normal mode i is 

proportional to the square of the transition moment 𝑹𝒗𝒊𝒗𝒊
′ between those levels, 

𝑰𝒗𝒊𝒗𝒊
′ ∝ 𝑹

𝒗𝒊𝒗𝒊
′

𝟐 ,        with  𝑹𝒗𝒊𝒗𝒊
′ =  𝝍𝒗𝒊

′ 𝝁𝝍𝒗𝒊 𝒅𝑸𝒊

 𝝁 is the dipole moment operator which just depends on the coordinates x, y and z, since it simply 

describes the distribution of charge in space.
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7.3.1 Transitions between the energy levels of a single normal mode

• The IR of the integrand can be found by first determining the IRs of 𝝍𝒗𝒊
′,  𝝁 and 𝝍𝒗𝒊 and then 

taking the direct product,

𝜞
𝒗𝒊
′

(𝒊)
⊗𝜞𝝁 ⊗𝜞𝒗𝒊

(𝒊)

• The dipole moment operator  𝝁 ~ a function of x, y and z,

 Γµ:  either the IR of x, or of y, or of z, all three possibilities should be considered.

= 𝒕𝒐𝒕.𝒔𝒚𝒎. (…) → 𝑹𝒗𝒊𝒗𝒊
′  0 𝒗𝒊𝒗𝒊

′ transition is symmetry allowed, i.e., infra-red active

 𝒕𝒐𝒕.𝒔𝒚𝒎. (…) → 𝑹𝒗𝒊𝒗𝒊
′ = 0 𝒗𝒊𝒗𝒊

′ transition is symmetry forbidden, i.e., infra-red inactive

15:31

(𝑹𝒗𝒊𝒗𝒊
′ =  𝝍𝒗𝒊

′ 𝝁𝝍𝒗𝒊 𝒅𝑸𝒊)



The fundamental transition

• The fundamental transition (v=0v=1) of ith normal mode. 

The fundamental transition is allowed in the infra-red when the 

IR of the normal mode is the same as that of x, y or z.

v = 0 state  (𝜞𝒗=𝟎
(𝒊)

=  𝜞𝒕𝒐𝒕.𝒔𝒚𝒎.)  v = 1 state (𝜞
𝒗′=𝟏

(𝒊)
=        𝜞𝒏𝒎

(𝒊)
)

𝜞
𝒗=𝟏
(𝒊)

⊗𝜞𝝁 ⊗𝜞𝒗=𝟎
(𝒊)

= 𝜞𝒏𝒎
(𝒊)

⊗𝜞𝝁 ⊗𝜞𝒕𝒐𝒕.𝒔𝒚𝒎.

The IR of the ith

normal mode. 

= 𝜞𝒏𝒎
(𝒊)

⊗𝜞𝝁

The triple direct product for the transition moment is :  

• A normal mode whose fundamental transition is allowed in the infra-red is said to be 

infra-red active.

15:31

= 𝒕𝒐𝒕.𝒔𝒚𝒎.(⊕⋯)

Only when

𝜞𝒏𝒎
(𝒊)

= 𝜞𝝁



The fundamental transition

Example:  H2O

• The fundamentals of the A1 normal modes are allowed since z transforms like A1; 

• The fundamental of the B1 normal mode is allowed since x transforms like B1. 

15:31

• All（three）fundamental transitions are IR-active！

mode 3, B1 mode 2, A1

B1

B1

A1

A1

mode 1, A1

v2

v3



Other symmetry allowed transitions within the same normal mode

• For transitions other than the fundamental, we would, in 

principle, need to work out the triple direct product in each case. 

Example:  H2O, 

i) A1 modes: all transitions are due to A1  A1 and

ii) B1 mode:  allowed transitions are

𝑩𝟏 ⊗𝜞𝝁 ⊗𝑩𝟏

For a B1  B1 transition, the triple product is

=A1 (if 𝜞𝝁 = A1, z-like)

E
.

.

.

.

v1 =0 A1

A1

A1

A1

Mode 1, A1

.

.

.

A1

B1

A1

B1

Mode 3, B1

.

.

.

.

A1

A1

A1

A1

Mode 2, A1

v3=0 
v2=0 

A1 A1

A1  B1

B1  B1

symmetry-allowed. 

A1→ A1, A1→ B1, B1→ A1 (hot band),   ?and B1→ B1.

overtones

15:31

Thus it is IR-active.

• Hot bands are highly temperature-dependence.



A note of  caution 
• The symmetry argument is powerful:

I. All it does is to predict whether or not a transition is allowed.

II. It does not predict how strong a transition will be in the spectrum. 

III. In harmonic oscillator model, the selection rule is ∆v =±1. 

For a polyatomic molecule, the only allowed transitions are those in which the quantum number 

for a particular normal mode changes by one.

Furthermore, a transition will only have significant intensity if the lower level is appreciably 

occupied. In practice, for small molecules, easily observable transitions will come from the ground 

vibration states, i.e., the symmetry allowed fundamental transitions are visible!

H2O:  The fundamentals of the A1 , B1 normal modes are observable in IR spectra.
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A note of  caution:   anharmonicity & overtones 

• However, the vibrations of  real molecules are not harmonic and so the ∆v=±1 rule does 

not always apply strictly. 

• Anharmonicity-induced visible transitions with |∆v| >1 : 

i) symmetry allowed ! 

ii) transition from a significantly populated lower level. 

• For example, in H2O the 0 → 2 transitions in each normal mode satisfy these criteria 

(they are all A1→ A1), and these first overtone bands are often seen.

15:31



7.3.2 Raman scattering

𝑹𝒗𝒊𝒗𝒊
′ =  𝝍𝒗𝒊

′ 𝜶𝝍𝒗𝒊 𝒅𝑸𝒊

The IR of the integrand is thus given by the triple product,

• For Raman scattering, the transition moment depends on the polarizability operator  𝜶

𝜞
𝒗𝒊
′

(𝒊)
⊗𝜞𝜶 ⊗𝜞𝒗𝒊

(𝒊)

 Vibrational Raman scattering occurs when this direct product contains the totally symmetric IR.

• For the fundamental transition of ith normal mode,  the triple product is

with  𝜶 ∝ 𝒑𝒒 (𝒑, 𝒒 ~ 𝒙, 𝒚, 𝒛)

The fundamental transition will be Raman allowed when the 

symmetry of the normal mode matches that of pq. ( p, q ~ x, y or z)

𝜞𝒏𝒎
(𝒊)

⊗𝜞𝜶 ⊗𝜞
𝑇𝑜𝑡.𝑠𝑦𝑚

= 𝜞
𝑇𝑜𝑡.𝑠𝑦𝑚

if 𝜞𝒏𝒎
(𝒊)

= 𝜞𝜶 (⸪𝜞𝒗=𝟏
(𝒊)

= 𝜞𝒏𝒎
(𝒊)

& 𝜞𝒗=𝟎
𝒊

= 𝜞
𝑇𝑜𝑡.𝑠𝑦𝑚

)

15:31

ith normal mode

quadratic function



7.3.2  Raman Scattering

Example： H2O(C2v), three normal modes.

• Normal modes 1&2:  A1 IR, z2

• Normal mode 3:  B1 IR, xz

• All three modes Raman active!

15:31
mode 3, B1

mode 2, A1

B1

A1

v2

v3

B1

A1

A1



7.3.3 Features (特征峰) and coincidences

• If we concentrate on just the fundamental transitions (which are likely to be the 

strongest), each normal mode which is infra-red active will give rise to a band or 

‘feature’ in the infra-red spectrum. 

e.g, H2O:  

three normal modes are both infra-red and Raman active, 

 three features in both IR and Raman scattering spectrum

• Similarly, each normal mode which is Raman active will give rise to a feature in the 

Raman scattering spectrum.

15:31



7.3.3 Features (特征峰) and coincidences 

• The fundamental transitions of three 

normal modes of 𝑯𝟑
+

• Coincidence:  The same normal mode is active in both the 

infra-red and Raman, exhibiting a feature of the same 

frequency.

 Raman spectrum ~    ?      features 

infra-red spectrum ~ ?        feature

𝑨𝟏
′

𝑬′

Raman active

Raman activeIR active

two

one

𝑯𝟑
+ :  one coincidence (from the E mode).

？ coincidences

15:31

How can we use IR/Raman spectroscopy to identify the 

geometry of H3
+,  bent, linear or triangular?

H2O:  three



7.3.4 Combination lines
• A combination line is a transition in which the quantum numbers associated with two or more 

normal modes change. 

• (ν1, ν2, ν3. . .) : a notation gathering the vibrational quantum number for each normal mode 

describes the overall vibrational state of a molecule.

• The symmetry of the overall state  can be found by taking the direct product of the IRs of the 

individual vibrational wavefunctions:

𝜞𝒗𝟏
(𝟏)

⊗𝜞𝒗𝟐
𝟐
⊗𝜞𝒗𝟑

𝟑
⊗⋯

• For a vibrational state (1,0,1) in H2O, the overall symmetry is A1
⊗B1⊗A1 =B1.

Q：Is the double-excitation transition, (0,0,0) (1,0,1) , in H2O symmetry-allowed? 

The overall symmetry of the ground state (0,0,0) is A1 ⊗A1
⊗A1 =A1.

We have shown that A1 B1 transition is allowed.
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7.3.5 Rule of  mutual exclusion

Molecules having a centre of symmetry (i) have two distinct classes of IRs:

IRs labelled with a subscript g

~symmetric with respect to i

IRs labelled with a subscript u

~anti-symmetric with respect to i

Functions x, y, z.

 𝑖q = (–1)q   u-class IR

Functions pq (p,q ~x,y,z)

 𝑖(pq) = (-p)(-q)= (+1)pq  g-class IR

Infra-red active normal modes 

match the functions x,y,z in IR.

Fundamental 

transition(v=01)

Raman scattering active normal modes 

match functions pq in IR.

The rule of mutual exclusion:  for a molecule with a centre of inversion, the fundamental 

of a particular normal mode cannot both give rise to an absorption in the infra-red and 

vibrational Raman scattering. In other words, if the transition is allowed in the infra-red it 

will not also give rise to Raman scattering.
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7.3.5 Rule of  mutual exclusion

• For a molecule with a centre of inversion, a normal mode which is active in the infra-red will 

not be active in the Raman. E.g. the C–H stretching normal modes for ethane.

Normal 

Mode IR

Ag

B1g

B2u

B3u

inactive active

Infra-red
Raman 

scattering

activeinactive

active inactive

active inactive

similar

function

q2

xy

y

x

Exs.34-39

Q: Please work out the symmetry allowed 

overtones and  combination lines in both types of 

spectra.
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Overtones and combination lines of  C-H stretches in C2H4

• First overtone: (v = 0  v = 2)

0

1

2

NM Ag

Ag

Ag

Ag

B1g

Ag

B1g

Ag

B2u

Ag

B2u

Ag

B3u

Ag

B3u

Ag

Ag Ag

All Raman active!

• Combination  line: (01&01)

B1g & B2u Ag  B1g  B2u IR active!

B1g & B3u Ag  B1g  B3u IR active!

B2u & B3u Ag  B2u  B3u Raman active!

Ag & B2u Ag  Ag  B2u IR active!

Ag & B3u Ag  Ag  B3u IR active!

Ag & B1g Ag  Ag  B1g Raman active!

= B3u

= B2u

= B1g

= B2u

= B3u

= B1g

Combining with Ag normal mode does 

not affect the symmetry of the state.

Ag Ag
Ag Ag Ag Ag 𝑔⊗ 𝑔 = 𝑔 𝑔⊗ 𝑢 = 𝑢 𝑢 ⊗ 𝑢 = 𝑔



7.4 Summary

• Symmetry properties of vibrational wavefunctions:

1. The ground state wavefunction (v = 0) for any normal mode transforms as the 

totally symmetric IR.

2. The first excited state wavefunction (v = 1) for any normal mode transforms in the 

same way as does the normal mode i.e. its IR is the same as that of the normal mode.

3. For non-degenerate normal modes the states with even v (0, 2, 4 . . . ) transform as 

the totally symmetric IR, whereas the states with odd v (1, 3, 5 . . . ) transform in the 

same way as the normal mode i.e. their IR is the same as that of the normal mode.

4. The overall symmetry of the vibrational wavefunction is found by taking the direct 

product of the irreducible representations for the wavefunction associated with each 

normal mode.
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7.4 Summary

• Whether or not a general transition from 𝒗𝒊 to 𝒗𝒊
′ is allowed in the infra-red can be 

found by examining the direct product

𝜞
𝒗𝒊
′

(𝒊)
⊗𝜞𝝁 ⊗𝜞𝒗𝒊

(𝒊)

If this product contains the totally symmetric IR the transition is symmetry allowed. 

(Γµ itself transforms as x, y or z.)

15:31

• The fundamental of a particular normal mode is allowed in the infra-red if the IR of 

the normal mode matches that of x, y or z.

• The fundamental of a particular normal mode gives vibrational Raman scattering if 

the IR of the normal mode matches that of pq, where p and q are any of x, y or z.



7.4 Summary

• Whether or not a general transition from 𝐯𝐢 to 𝐯𝐢
′ gives rise to Raman scattering 

can be found by examining the direct product

𝜞
𝒗𝒊
′

(𝒊)
⊗𝜞𝜶 ⊗𝜞𝒗𝒊

(𝒊)

If this product contains the totally symmetric IR the transition is symmetry 

allowed. (Γα transforms as pq.)

15:31

• A symmetry-allowed transition may nevertheless not be observed on account 

of it having low intensity.

• The rule of mutual exclusion states that for a molecule with a centre of 

inversion the fundamental of a particular normal mode cannot both give rise to 

an absorption in the infra-red and vibrational Raman scattering.



7.5 Normal modes of  more complex molecules

• Example: SiH2Cl2 (point group ? )C2v

Si

Cl2

H1

Cl1

H2

z

x

y

• Classify the 15 vectors: 

i)  Si,x; Si,y; Si,z; 

(H1,x, H2,x); (H1,y, H2,y) ; (H1,z, H2,z)  

(Cl1,x, Cl2,x); (Cl1,y, Cl2,y) ; (Cl1,z, Cl2,z) 

(Cl1,x, Cl2,x)

(Cl1,y, Cl2,y)

(Cl1,z, Cl2,z)

2 0 0 -2 A2 B1

2 0 0 2 A1 B2

2 0 0 2 A1 B2

Full set                     5A1  4B1 2A2 4B2

Translations (x,y,z) B1, B2, A1

Rotations (Rx,Ry,Rz)
B2, B1, A2

Vibrations  4A1  2B1 A2 2B2

3N-6=9 

vibrational modes!

• SiH2 similar to H2O: 3A1 3B1 A2 2B215:31



Vibrational modes of  SiH2Cl2

Two rules

(i) there is 1 stretching vibration per bond

(ii) we must treat symmetry-related atoms together

We therefore have:-

two stretching modes of the SiCl2 group

two stretching modes of the SiH2 group

The remaining five modes must be deformations (angle bending vibrations)

15:31

Si

Cl2

H1

Cl1

H2
z

x

y



Vibrational modes of  SiH2Cl2

• Two stretching modes of the SiCl2 group

We can stretch the two Si-Cl bonds:  together in 

phase or together out of phase!

1) use the two  Si-Cl bond stretching as basis set:  

2SiCl 2    0     0   2 

Si

Cl2

H1

Cl1

H2

R1 R2

E   C2 xz yz

 2SiCl = A1  B2

2) Get the combinations of bond stretching: 

1 stretching =  (R1 + R2)/2       ~symmetric stretching

B2 stretching =  (R1 - R2)/2  ~anti-symmetric stretching

15:31
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Vibrational modes of  SiH2Cl2

• Two stretching modes of the SiH2 group

We can stretch the two Si-H bonds:  together in phase

or together out of phase!

1) use the two  Si-H bond stretching as basis set:  

2SiH 2    0     2   0 

Si

Cl2

H1

Cl1

H2

R3
R4

E   C2 xz yz

 2SiH = A1  B1

2) Get the combinations of bond stretchings: 

1 stretching =  (R3 + R4)/2       ~symmetric stretching

B1 stretching =  (R3 - R4)/2  ~anti-symmetric stretching

15:31
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• Take SiH2 (or SiCl2) as a whole when considering the deformations (related to 

change of bond angles and dihedral angles).

Vibrational modes of  SiH2Cl2

We now have:-

two stretching modes of the SiCl2 group: A1  B2

two of the SiH2 group:                               A1  B1

The remaining five modes must be deformations (angle bending vibrations)

As with stretches, we must treat symmetry-related atoms together.
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From the character table, this belongs to the symmetry 

species A1

We call the mode of vibration sym SiCl2 (or SiCl2 scissors) 

E C2 xz yz

+1 +1 +1 +1

x

z

y

SiCl2 scissors： Cl-S-Cl as a basis
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From the character table, this belongs to the symmetry 

species A1

We call the mode of vibration sym SiH2 (or SiH2 scissors) 

E C2 xz yz

+1 +1 +1 +1

x

z

y

SiH2 scissors： H-Si-H as a basis
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SiH2 wag

• Concerted move of SiH2 group ~ wag within the xz

plane. 

From the character table, this belongs to the symmetry species B1

We call the mode of vibration SiH2 (or SiH2 wag).

E C2 xz yz

+1 -1 +1 -1

x

z

y
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SiH2 rock

• Concerted move of the SiH2 group~ rock within the yz

plane. 

From the character table, this belongs to the symmetry species B2

We call the mode of vibration SiH2 (or SiH2 rock).

E C2 xz yz

+1 -1 -1 1

x

z

y
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SiH2 twist

• Concerted move of SiH2 group ~ rotating around the z-

axis. 

From the character table, this belongs to the symmetry species A2

We call the mode of vibration SiH2 (or SiH2 twist).

E C2 xz yz

+1 +1 -1 -1

y

x



Vibrational modes of  SiH2Cl2

Overall, we now have:-

two stretching modes of the SiCl2 group A1  B2

two of the SiH2 group A1  B1

five deformation modes      2A1  A2  B1  B2

Together, these account for all the modes we expect: 4A1 A2  2B1  2B2

• The aforementioned modes are just approximations of the exact normal modes of 

the molecule concerned. To obtain the exact forms of the normal modes, we need 

to mix those of the same IR!
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