English
首页 > 科学研究 > 科研动态 > 正文

科研进展:Förster Energy Transport in Metal-Organic Frameworks Is Beyond Step-by-Step Hopping

发布日期:2016年04月05日   浏览次数:

我室汪骋教授在J. Am. Chem. Soc.上发表了题为'Förster Energy Transport in Metal-Organic Frameworks Is Beyond Step-by-Step Hopping'的研究论文。
相关链接:http://pubs.acs.org/doi/abs/10.1021/jacs.6b01345

Abstract
Metal-organic frameworks (MOFs) with light-harvesting building blocks designed to mimic photosynthetic chromophore arrays in green plants provide an excellent platform to study exciton transport in networks with well-defined structures. A step-by-step exciton random hopping model made of the elementary steps of energy transfer between only the nearest neighbors is usually used to describe the transport dynamics. Although such a nearest neighbor approximation is valid in describing the energy transfer of triplet states via the Dexter mechanism, we found it inadequate in evaluating singlet exciton migration that occurs through the Förster mechanism, which involves one-step jumping over longer distance. We measured migration rates of singlet excitons on two MOFs constructed from truxene-derived ligands and zinc nodes, by monitoring energy transfer from the MOF skeleton to a coumarin probe in the MOF cavity. The diffusivities of the excitons on the frameworks were determined to be 1.8×10-2 cm2/s and 2.3×10-2 cm2/s, corresponding to migration distances of 43 nm and 48 nm within their lifetimes, respectively. “Through space” energy-jumping beyond nearest neighbor accounts for up to 67% of the energy transfer rates. This finding presents a new perspective in the design and understanding of highly efficient energy transport networks for singlet excited states.