English
首页 > 科学研究 > 科研动态 > 正文

赵金保课题组在Energy & Environmental Science上发表“A rational design of separator with substantially enhanced thermal features for lithium-ion batteries by the polydopamine–ceramic composite modification of polyolefin membranes”的论文

发布日期:2016年09月09日   浏览次数:

我室赵金保课题组在Energy & Environmental Science上发表了题为'A rational design of separator with substantially enhanced thermal features for lithium-ion batteries by the polydopamine–ceramic composite modification of polyolefin membranes’的研究论文。

相关链接:http://pubs.rsc.org/en/content/articlelanding/2016/EE/C6EE01219A#!divAbstract

Abstract:

A separator plays a crucial role in ensuring the safety in lithium-ion batteries (LIBs). However, commercial separators are mainly based on microporous polyolefin membranes, which possess serious safety risks, such as their thermal stabilities. Although many efforts have been made to solve these problems, they cannot yet fully ensure the safety of the batteries, especially in large-scale applications. Herein, we report a rational design of separator with substantially enhanced thermal features. We report how, by a simple dip-coating process, polydopamine (PDA) formed an overall-covered self-supporting film, both on the ceramic layer and on the pristine polyolefin separator, which made the ceramic layer and polyolefin separator appear as a single aspect and furthermore, this layer amended the film-forming properties of the separator. Combining the function of the ceramic and PDA, the developed composite-modified separator displays substantially enhanced thermal and mechanical stability, with no visual thermal shrink and can maintain its mechanical strength up to 230 °C when the polyethylene separator acts as the pristine separator.