English
首页 > 实验室动态 > 正文

我室Pavlo O. Dral教授主编及合著的《Quantum Chemistry in the Age of Machine Learning》一书在Elsevier出版

发布日期:2022年10月05日   浏览次数:


我室Pavlo O. Dral教授主编及合著的Quantum Chemistry in the Age of Machine Learning一书于2022年9月16日在Elsevier出版。我室苏培峰教授、傅钢教授及赵仪教授也为本书部分章节做出贡献。本书工作始于2020年,是对Pavlo O. Dral教授发表的一篇同名展望类文章[J. Phys. Chem. Lett. 2020, 11, 2336–2347]的深入扩展,书中部分内容源Pavlo O. Dral教授的教学资料。

机器学习(ML)已成为量子化学(QC)的一个重要工具,ML在QC中的广泛应用极速发展,深刻改变着量子化学乃至整个化学的研究范式和研究范围本书凝聚了来自各个子领域研究人员的专业知识,是65位作者大规模国际合作的产物。内容涵盖了与量子化学中机器学习相关的各种主题,包括:机器学习和量子化学的基本概念、势能面和其量子化学性质的机器学习方法、机器学习改进的量子化学方法、基于大数据分析和机器学习材料设计等诸多方面。值得一提的是,为了加深对各章内容的理解,本书提供大量教学材料,以方便读者自学。各章节均在案例学习部分设有实践教程,部分章节由Pavlo O.Dral教授在厦门大学教学课堂讲稿和练习组成

本书汇聚了近年来国际上研究前沿专家学者的科研成果。对从事该领域研究的学生和专家有重要的参考和指导意义。

 

本书主要内容和各章节作者如下:

章节

名字

作者

 

Preface

Pavlo O. Dral

Part 1

Introduction

 

1

Very brief introduction to quantum chemistry

Xun Wu, Peifeng Su

2

Density functional theory

Hong Jiang, Huai-Yang Sun

3

Semiempirical quantum mechanical methods

Pavlo O. Dral, Jan Řezáč

4

From small molecules to solid-state materials: A brief discourse on an example of carbon compounds

Bili Chen, Leyuan Cui, Shuai Wang, Gang Fu

5

Basics of dynamics

Xinxin Zhong, Yi Zhao

6

Machine learning: An overview

Eugen Hruska, Fang Liu

7

Unsupervised learning

Rose K. Cersonsky, Sandip De

8

Neural networks

Pavlo O. Dral, Alexei Kananenka, Fuchun Ge, Bao-Xin Xue

9

Kernel methods

Max Pinheiro Jr, Pavlo O. Dral

10

Bayesian inference

Wei Liang, Hongsheng Dai

Part 2

Machine learning potentials

 

11

Potentials based on linear models

Gauthier Tallec, Gaétan Laurens, Owen Fresse–Colson, Julien Lam

12

Neural network potentials

Jinzhe Zeng, Liqun Cao, Tong Zhu

13

Kernel method potentials

Yi-Fan Hou, Pavlo O. Dral

14

Constructing machine learning potentials with active learning

Cheng Shang, Zhi-Pan Liu

15

Excited-state dynamics with machine learning

Lina Zhang, Arif Ullah, Max Pinheiro Jr, Mario Barbatti, Pavlo O. Dral

16

Machine learning for vibrational spectroscopy

Sergei Manzhos, Manabu Ihara, Tucker Carrington

17

Molecular structure optimizations with Gaussian process regression

Roland Lindh, Ignacio Fernández Galván

Part 3

Machine learning of quantum chemical properties

 

18

Learning electron densities

Bruno Cuevas-Zuviría

19

Learning dipole moments and polarizabilities

Yaolong Zhang, Jun Jiang, Bin Jiang

20

Learning excited-state properties

Julia Westermayr, Pavlo O. Dral, Philipp Marquetand

Part 4

Machine learning-improved quantum chemical methods

 

21

Learning from multiple quantum chemical methods: Δ-learning, transfer learning, co-kriging, and beyond

Pavlo O. Dral, Tetiana Zubatiuk, Bao-Xin Xue

22

Data-driven acceleration of coupled-cluster and perturbation theory methods

Grier M. Jones, P. D. Varuna S. Pathirage, Konstantinos D. Vogiatzis

23

Redesigning density functional theory with machine learning

Jiang Wu, Guanhua Chen, Jingchun Wang, Xiao Zheng

24

Improving semiempirical quantum mechanical methods with machine learning

Pavlo O. Dral, Tetiana Zubatiuk

25

Machine learning wavefunction

Stefano Battaglia

Part 5

Analysis of Big Data

 

26

Analysis of nonadiabatic molecular dynamics trajectories

Yifei Zhu, Jiawei Peng, Hong Liu and Zhenggang Lan

27

Design of organic materials with tailored optical properties: Predicting quantum-chemical polarizabilities and derived quantities

Gaurav Vishwakarma, Aditya Sonpal, Aatish Pradhan, Mojtaba
Haghighatlari, Mohammad Atif Faiz Afzal, Johannes Hachmann

 

本书链接:
https://www.elsevier.com/books/quantum-chemistry-in-the-age-of-machine-learning/dral/978-0-323-90049-2


镜像网站以供更新及附加信息(如章节预印本):

https://www.elsevier.com/books-and-journals/book-companion/9780323900492

 

本书所附带网站,提供存储库链接,包含实践教程(案例研究)所需的程序、数据、说明、输入示例文件和输出示例文件,以及更新:

https://github.com/dralgroup/MLinQCbook22