Chapter | Title | Authors |
| Preface | Pavlo O. Dral |
Part 1 | Introduction | |
1 | Very brief introduction to quantum chemistry | Xun Wu, Peifeng Su |
2 | Density functional theory | Hong Jiang, Huai-Yang Sun |
3 | Semiempirical quantum mechanical methods | Pavlo O. Dral, Jan Řezáč |
4 | From small molecules to solid-state materials: A brief discourse on an example of carbon compounds | Bili Chen, Leyuan Cui, Shuai Wang, Gang Fu |
5 | Basics of dynamics | Xinxin Zhong, Yi Zhao |
6 | Machine learning: An overview | Eugen Hruska, Fang Liu |
7 | Unsupervised learning | Rose K. Cersonsky, Sandip De |
8 | Neural networks | Pavlo O. Dral, Alexei Kananenka, Fuchun Ge, Bao-Xin Xue |
9 | Kernel methods | Max Pinheiro Jr, Pavlo O. Dral |
10 | Bayesian inference | Wei Liang, Hongsheng Dai |
Part 2 | Machine learning potentials | |
11 | Potentials based on linear models | Gauthier Tallec, Gaétan Laurens, Owen Fresse–Colson, Julien Lam |
12 | Neural network potentials | Jinzhe Zeng, Liqun Cao, Tong Zhu |
13 | Kernel method potentials | Yi-Fan Hou, Pavlo O. Dral |
14 | Constructing machine learning potentials with active learning | Cheng Shang, Zhi-Pan Liu |
15 | Excited-state dynamics with machine learning | Lina Zhang, Arif Ullah, Max Pinheiro Jr, Mario Barbatti, Pavlo O. Dral |
16 | Machine learning for vibrational spectroscopy | Sergei Manzhos, Manabu Ihara, Tucker Carrington |
17 | Molecular structure optimizations with Gaussian process regression | Roland Lindh, Ignacio Fernández Galván |
Part 3 | Machine learning of quantum chemical properties | |
18 | Learning electron densities | Bruno Cuevas-Zuviría |
19 | Learning dipole moments and polarizabilities | Yaolong Zhang, Jun Jiang, Bin Jiang |
20 | Learning excited-state properties | Julia Westermayr, Pavlo O. Dral, Philipp Marquetand |
Part 4 | Machine learning-improved quantum chemical methods | |
21 | Learning from multiple quantum chemical methods: Δ-learning, transfer learning, co-kriging, and beyond | Pavlo O. Dral, Tetiana Zubatiuk, Bao-Xin Xue |
22 | Data-driven acceleration of coupled-cluster and perturbation theory methods | Grier M. Jones, P. D. Varuna S. Pathirage, Konstantinos D. Vogiatzis |
23 | Redesigning density functional theory with machine learning | Jiang Wu, Guanhua Chen, Jingchun Wang, Xiao Zheng |
24 | Improving semiempirical quantum mechanical methods with machine learning | Pavlo O. Dral, Tetiana Zubatiuk |
25 | Machine learning wavefunction | Stefano Battaglia |
Part 5 | Analysis of Big Data | |
26 | Analysis of nonadiabatic molecular dynamics trajectories | Yifei Zhu, Jiawei Peng, Hong Liu and Zhenggang Lan |
27 | Design of organic materials with tailored optical properties: Predicting quantum-chemical polarizabilities and derived quantities | Gaurav Vishwakarma, Aditya Sonpal, Aatish Pradhan, Mojtaba Haghighatlari, Mohammad Atif Faiz Afzal, Johannes Hachmann |