中文

[ACIE] Prof. Yang Yang published a paper entitled "Taiji-Inspired Synergistic Attraction-Repulsion Electrostatic Interactions Enable Dual-Electrode Stabilization for Durable High-Areal-Capacity Aqueous Zinc-Bromine Batteries"

Posted:2025-09-01  Visits:

Title: Taiji-Inspired Synergistic Attraction-Repulsion Electrostatic Interactions Enable Dual-Electrode Stabilization for Durable High-Areal-Capacity Aqueous Zinc-Bromine Batteries

Authors: Qilong Wu, Rong Tang, Peiyao Wang, Fanxiang Meng, Minghao Zhang, Sirui Lin, Zeheng Lv, Jinbao Zhao, Yang Yang*

Abstract: Aqueous zinc-bromine (Zn-Br2) batteries have emerged as promising candidates for grid-scale energy storage due to their intrinsic safety and low cost. However, their practical deployment is hindered by the dissolution of polybromide species at the cathode and their subsequent shuttling and corrosive reactions at the zinc anode, which severely limit areal capacity and cycling stability. Herein, a Taiji-inspired dual-electrode stabilization strategy is developed to synergistically regulate interfacial chemistry at both electrodes, enabling durable high-areal-capacity Zn-Br2 batteries. This design leverages the dynamic balance of opposing yet complementary electrostatic interactions, facilitating targeted attraction (Yin) and repulsion (Yang) of polybromides at cathode/anode interfaces, respectively. At the cathode, positively charged quaternary ammonium groups in poly(diallyldimethylammonium chloride) (PDDA) enable strong electrostatic binding to polybromides, effectively confining them within the cathode and preventing diffusion into the electrolyte. Simultaneously, a lotus-leaf-biomimetic interphase with high electronegativity and hydrophobicity is constructed on Zn anode to repel polybromides and suppress parasitic reactions. Theoretical calculations and in situ spectroscopic analyses confirm the effective suppression of polybromide shuttling and Zn corrosion. Consequently, the optimized KB-PDDA//Zn@ZnO-PFNA cell achieves a high areal capacity of 5.5 mAh cm−2 and exceptional cycling stability exceeding 20000 cycles, highlighting the critical importance of dual-interface engineering for advancing practical Zn-Br2 battery technologies.

Full-Link: https://onlinelibrary.wiley.com/doi/10.1002/anie.202513224